Journal articles on the topic 'RANS simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'RANS simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fagbade, Adeyemi, and Stefan Heinz. "Continuous Eddy Simulation (CES) of Transonic Shock-Induced Flow Separation." Applied Sciences 14, no. 7 (2024): 2705. http://dx.doi.org/10.3390/app14072705.
Full textKim, Changhee, and Changmin Son. "Comparative Study on Steady and Unsteady Flow in a Centrifugal Compressor Stage." International Journal of Aerospace Engineering 2019 (June 9, 2019): 1–12. http://dx.doi.org/10.1155/2019/9457249.
Full textZhang, Shu Jia, Yue Ping Tong, and Le Hu. "Examine Applicability of the RANS and LES Method on Numerical Simulation of Centrifugal Pump." Applied Mechanics and Materials 55-57 (May 2011): 582–86. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.582.
Full textMejia, Omar, Jhon Quiñones, and Santiago Laín. "RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical Axis Water Turbine." Energies 11, no. 9 (2018): 2348. http://dx.doi.org/10.3390/en11092348.
Full textJin, Jianhai, Yuhuang Ye, Xiaohe Li, Liang Li, Min Shan, and Jun Sun. "A Mapping Model of Propeller RANS and LES Flow Fields Based on Deep Learning Methods." Applied Sciences 13, no. 21 (2023): 11716. http://dx.doi.org/10.3390/app132111716.
Full textHeinz, Stefan. "The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods." Fluids 9, no. 12 (2024): 278. http://dx.doi.org/10.3390/fluids9120278.
Full textBounouar, Mokhtari, and Guessab Ahmed. "A Comparative Study between FGM and SLF Approach for Turbulent Piloted Flame of Methane." WSEAS TRANSACTIONS ON FLUID MECHANICS 18 (December 31, 2023): 272–82. http://dx.doi.org/10.37394/232013.2023.18.26.
Full textNouri, N. M., S. M. H. Mirsaeedi, and M. Moghimi. "Large eddy simulation of natural cavitating flows in Venturi-type sections." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 2 (2010): 369–81. http://dx.doi.org/10.1243/09544062jmes2036.
Full textRenzsch, Hannes, and Britton Ward. "A RANS-BEM Method to Efficiently Include Appendage Effects in RANS-Based Hull Shape Evaluation." Journal of Sailing Technology 6, no. 01 (2021): 44–57. http://dx.doi.org/10.5957/jst/2021.6.3.1.
Full textZhong, Wei, Hongwei Tang, Tongguang Wang, and Chengyong Zhu. "Accurate RANS Simulation of Wind Turbine Stall by Turbulence Coefficient Calibration." Applied Sciences 8, no. 9 (2018): 1444. http://dx.doi.org/10.3390/app8091444.
Full textMeana-Fernández, Andrés, Jesús Fernández Oro, Katia Argüelles Díaz, and Sandra Velarde-Suárez. "Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil." Energies 12, no. 3 (2019): 488. http://dx.doi.org/10.3390/en12030488.
Full textHeinz, Stefan, Joachim Peinke, and Bernhard Stoevesandt. "Cutting-Edge Turbulence Simulation Methods for Wind Energy and Aerospace Problems." Fluids 6, no. 8 (2021): 288. http://dx.doi.org/10.3390/fluids6080288.
Full textCarrizales, Martin A., Gaétan Dussart, Vilius Portapas, Alessandro Pontillo, and Mudassir Lone. "Verification of a low fidelity fast simulation framework through RANS simulations." CEAS Aeronautical Journal 11, no. 1 (2019): 161–76. http://dx.doi.org/10.1007/s13272-019-00409-x.
Full textSchwarze, R. "Unsteady RANS simulation of oscillating mould flows." International Journal for Numerical Methods in Fluids 52, no. 8 (2006): 883–902. http://dx.doi.org/10.1002/fld.1208.
Full textKitamura, Masashi, Byungjin An, and Motohiko Nohmi. "Noise prediction of a box fan by RANS simulation." Journal of Physics: Conference Series 2217, no. 1 (2022): 012036. http://dx.doi.org/10.1088/1742-6596/2217/1/012036.
Full textEastwood, Simon J., Paul G. Tucker, Hao Xia, and Christian Klostermeier. "Developing large eddy simulation for turbomachinery applications." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1899 (2009): 2999–3013. http://dx.doi.org/10.1098/rsta.2008.0281.
Full textAshworth, R. M. "Prediction of acoustic resonance phenomena for weapon bays using detached eddy simulation." Aeronautical Journal 109, no. 1102 (2005): 631–38. http://dx.doi.org/10.1017/s0001924000000968.
Full textHami, Khelifa. "Turbulence Modeling a Review for Different Used Methods." International Journal of Heat and Technology 39, no. 1 (2021): 227–34. http://dx.doi.org/10.18280/ijht.390125.
Full textHanjalić, K., and S. Kenjereš. "RANS-Based Very Large Eddy Simulation of Thermal and Magnetic Convection at Extreme Conditions." Journal of Applied Mechanics 73, no. 3 (2005): 430–40. http://dx.doi.org/10.1115/1.2150499.
Full textArafat, Mohammad, Izuan Amin Ishak, Muhammad Aidil Safwan Abdul Aziz, et al. "A Hybrid RANS/LES Model for Predicting the Aerodynamics of Small City Vehicles." Journal of Advanced Research in Experimental Fluid Mechanics and Heat Transfer 17, no. 1 (2024): 1–13. http://dx.doi.org/10.37934/arefmht.17.1.113.
Full textCremades Rey, Luis F., Denis F. Hinz, and Mahdi Abkar. "Reynolds Stress Perturbation for Epistemic Uncertainty Quantification of RANS Models Implemented in OpenFOAM." Fluids 4, no. 2 (2019): 113. http://dx.doi.org/10.3390/fluids4020113.
Full textTucker, Paul G., and Sylvain Lardeau. "Applied large eddy simulation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1899 (2009): 2809–18. http://dx.doi.org/10.1098/rsta.2009.0065.
Full textBaranova, T. A., Yu V. Zhukova, A. D. Chorny, A. N. Skrypnik, R. A. Aksyanov, and I. A. Popov. "Non-isothermal vortex flow in the T-junction channel." Journal of Physics: Conference Series 2088, no. 1 (2021): 012034. http://dx.doi.org/10.1088/1742-6596/2088/1/012034.
Full textViti, Nicolò, Daniel Valero, and Carlo Gualtieri. "Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook." Water 11, no. 1 (2018): 28. http://dx.doi.org/10.3390/w11010028.
Full textGao, Guo Hua, Jing Zhao, Fei Ma, and Wei Dong Luo. "Hybrid RANS–LES Modeling for Unsteady Cavitating Flow Simulation." Applied Mechanics and Materials 152-154 (January 2012): 1187–90. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.1187.
Full textZhang, Lu, Yongfei Mou, Fan Liu, Shuai Ma, and Xingda Cui. "Grid density effect for numerical simulation of civil aircraft in post stall." Journal of Physics: Conference Series 2599, no. 1 (2023): 012002. http://dx.doi.org/10.1088/1742-6596/2599/1/012002.
Full textZhang, Shuai, and Adrian Wing-Keung Law. "Performance of Reynolds Averaged Navier–Stokes and Large Eddy Simulation Models in Simulating Flows in a Crossflow Ultraviolet Reactor: An Experimental Evaluation." Water 16, no. 2 (2024): 271. http://dx.doi.org/10.3390/w16020271.
Full textVita, Giulio, Simone Salvadori, Daniela Anna Misul, and Hassan Hemida. "Effects of Inflow Condition on RANS and LES Predictions of the Flow around a High-Rise Building." Fluids 5, no. 4 (2020): 233. http://dx.doi.org/10.3390/fluids5040233.
Full textZhong, Wenzhou, Tong Zhang, and Tetsuro Tamura. "CFD Simulation of Convective Heat Transfer on Vernacular Sustainable Architecture: Validation and Application of Methodology." Sustainability 11, no. 15 (2019): 4231. http://dx.doi.org/10.3390/su11154231.
Full textWeymouth, Gabriel David, Robert Vance Wilson, and Frederick Stern. "RANS Computational Fluid Dynamics Predictions of Pitch and Heave Ship Motions in Head Seas." Journal of Ship Research 49, no. 02 (2005): 80–97. http://dx.doi.org/10.5957/jsr.2005.49.2.80.
Full textAfailal, Al Hassan, Jérémy Galpin, Anthony Velghe, and Rémi Manceau. "Development and validation of a hybrid temporal LES model in the perspective of applications to internal combustion engines." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 (2019): 56. http://dx.doi.org/10.2516/ogst/2019031.
Full textChen, Shiyi, Zhenhua Xia, Suyang Pei, et al. "Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows." Journal of Fluid Mechanics 703 (June 7, 2012): 1–28. http://dx.doi.org/10.1017/jfm.2012.150.
Full textMorton, Scott, James Forsythe, Anthony Mitchell, and David Hajek. "Detached-Eddy Simulations and Reynolds-Averaged Navier-Stokes Simulations of Delta Wing Vortical Flowfields." Journal of Fluids Engineering 124, no. 4 (2002): 924–32. http://dx.doi.org/10.1115/1.1517570.
Full textHan, Yi, Michael Karl Stoellinger, Huaiwu Peng, Lihui Zhang, and Wei Liu. "Large eddy simulation of atmospheric boundary layer flow over complex terrain in comparison with RANS simulation and on-site measurements under neutral stability condition." Journal of Renewable and Sustainable Energy 15, no. 2 (2023): 023301. http://dx.doi.org/10.1063/5.0133585.
Full textKetong, Liu, and Tang Aiping. "Numerical Investigation for Aerodynamic Derivatives of Bridge Deck Using DES." Open Civil Engineering Journal 8, no. 1 (2014): 326–34. http://dx.doi.org/10.2174/1874149501408010326.
Full textMahak, M., IZ Naqavi, and PG Tucker. "Cost-effective hybrid RANS-LES type method for jet turbulence and noise prediction." International Journal of Aeroacoustics 16, no. 1-2 (2017): 97–111. http://dx.doi.org/10.1177/1475472x16684702.
Full textAli, Md Shahjahan, Takashi Hosoda, and Ichiro Kimura. "Unsteady RANS and LES Simulation of an Ideal Rankine Vortex Decay." Advances in Civil Engineering 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/523839.
Full textSecundov, Alexander N., Stanley F. Birch, and Paul G. Tucker. "Propulsive jets and their acoustics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, no. 1859 (2007): 2443–67. http://dx.doi.org/10.1098/rsta.2007.2017.
Full textXue, Xiao, Hua-Dong Yao, and Lars Davidson. "Synthetic turbulence generator for lattice Boltzmann method at the interface between RANS and LES." Physics of Fluids 34, no. 5 (2022): 055118. http://dx.doi.org/10.1063/5.0090641.
Full textMenzies, Kevin. "Large eddy simulation applications in gas turbines." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1899 (2009): 2827–38. http://dx.doi.org/10.1098/rsta.2009.0064.
Full textFasel, Hermann F., Dominic A. von Terzi, and Richard D. Sandberg. "A Methodology for Simulating Compressible Turbulent Flows." Journal of Applied Mechanics 73, no. 3 (2005): 405–12. http://dx.doi.org/10.1115/1.2150231.
Full textBaranova, Tatyana A., Yulia V. Zhukova, Andrei D. Chorny, Artem Skrypnik, and Igor A. Popov. "Non-Isothermal Vortex Flow in the T-Junction Pipe." Energies 14, no. 21 (2021): 7002. http://dx.doi.org/10.3390/en14217002.
Full textO'Mahoney, T. S. D., N. J. Hills, J. W. Chew, and T. Scanlon. "Large-Eddy simulation of rim seal ingestion." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 12 (2011): 2881–91. http://dx.doi.org/10.1177/0954406211409285.
Full textLi, Tian, Hassan Hemida, and Jiye Zhang. "Evaluation of SA-DES and SST-DES models using OpenFOAM for calculating the flow around a train subjected to crosswinds." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 234, no. 10 (2019): 1346–57. http://dx.doi.org/10.1177/0954409719895652.
Full textRoy, Christopher J., Jeffrey Payne, and Mary McWherter-Payne. "RANS Simulations of a Simplified Tractor/Trailer Geometry." Journal of Fluids Engineering 128, no. 5 (2006): 1083–89. http://dx.doi.org/10.1115/1.2236133.
Full textGrecu, I. S., G. Dunca, D. M. Bucur, and M. J. Cervantes. "URANS numerical simulations of pulsating flows considering streamwise pressure gradient on asymmetric diffuser." IOP Conference Series: Earth and Environmental Science 1079, no. 1 (2022): 012087. http://dx.doi.org/10.1088/1755-1315/1079/1/012087.
Full textWan Zulkafli, Wan Muhammad Fadhli Arif, Anas Abdul Rahman, Ayu Abdul-Rahman, et al. "Flow Analysis of Tidal Turbine Array Interaction Using LES." Journal of Engineering and Science Research 6, no. 5 (2022): 40–49. http://dx.doi.org/10.26666/rmp.jesr.2022.5.5.
Full textJoßberger, Simon, and Stefan Riedelbauch. "Scale-Resolving Hybrid RANS-LES Simulation of a Model Kaplan Turbine on a 400-Million-Element Mesh." International Journal of Turbomachinery, Propulsion and Power 8, no. 3 (2023): 26. http://dx.doi.org/10.3390/ijtpp8030026.
Full textIslam, Mohammed, and Fatima Jahra. "Improving accuracy and efficiency of CFD predictions of propeller open water performance." Journal of Naval Architecture and Marine Engineering 16, no. 1 (2019): 1–20. http://dx.doi.org/10.3329/jname.v16i1.34756.
Full textYu, Chao, Xiangyao Xue, Kui Shi, Mingzhen Shao, and Yang Liu. "Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator." Processes 8, no. 12 (2020): 1687. http://dx.doi.org/10.3390/pr8121687.
Full text