To see the other types of publications on this topic, follow the link: Rapid adiabatic passage.

Journal articles on the topic 'Rapid adiabatic passage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Rapid adiabatic passage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zwanziger, Josef W., Ulrike Werner-Zwanziger, and Frank Gaitan. "Non-adiabatic rapid passage." Chemical Physics Letters 375, no. 3-4 (July 2003): 429–34. http://dx.doi.org/10.1016/s0009-2614(03)00920-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rangelov, A. A., N. V. Vitanov, and B. W. Shore. "Rapid adiabatic passage without level crossing." Optics Communications 283, no. 7 (April 2010): 1346–50. http://dx.doi.org/10.1016/j.optcom.2009.11.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klein, Jens, Fabian Beil, and Thomas Halfmann. "Rapid adiabatic passage in a Pr3+:Y2SiO5crystal." Journal of Physics B: Atomic, Molecular and Optical Physics 40, no. 11 (May 16, 2007): S345—S358. http://dx.doi.org/10.1088/0953-4075/40/11/s08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campbell, I. D. "Adiabatic rapid passage ESR of natural diamond." Journal of Magnetic Resonance (1969) 74, no. 1 (August 1987): 155–57. http://dx.doi.org/10.1016/0022-2364(87)90089-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xia, J. F., J. H. Sanderson, W.-K. Liu, and D. Strickland. "Experimental observation of Raman chirped adiabatic rapid passage." Journal of Physics B: Atomic, Molecular and Optical Physics 36, no. 21 (October 20, 2003): L409—L414. http://dx.doi.org/10.1088/0953-4075/36/21/l06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kittell, Aaron W., and James S. Hyde. "Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy." Journal of Magnetic Resonance 255 (June 2015): 68–76. http://dx.doi.org/10.1016/j.jmr.2015.03.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Linskens, A. F., N. Dam, B. Sartakov, and J. Reuss. "Selective population of dressed states by rapid adiabatic passage." Chemical Physics Letters 248, no. 3-4 (January 1996): 244–48. http://dx.doi.org/10.1016/0009-2614(95)01292-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Radonjić, M., and B. M. Jelenković. "Stark-Chirped Rapid Adiabatic Passage in a Multilevel Atom." Acta Physica Polonica A 116, no. 4 (October 2009): 476–78. http://dx.doi.org/10.12693/aphyspola.116.476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shirkhaghah, N., M. Saadati-Niari, and B. Nedaee-Shakarab. "Stark-shift-chirped rapid-adiabatic-passage technique in tripod systems." Revista Mexicana de Física 67, no. 2 Mar-Apr (July 15, 2021): 180–87. http://dx.doi.org/10.31349/revmexfis.67.180.

Full text
Abstract:
We show that the technique of Stark-chirped rapid adiabatic passage (SCRAP), can be implemented in tripod quantum systems. We propose a scheme for coherent superposition among two ground states via Stark-shiftchirped rapid adiabatic passage technique in a tripod system. Tripod-SCRAP uses four laser pulses: an intense far-off-resonance Stark laser pulse modifies the transition frequency between the states by Stark shifting their energies and three nearly resonant pump, Stokes, and control laser pulses that fractionally transfer the population between the ground states via adiabatic passage. In our scheme, the pulse duration of the pump pulse must be larger than the pulse duration of the Stokes and control pulses, although with a smaller amplitude, and the atom encounters with the pump, Stokes, control, and Stark laser pulses with counterintuitive order (Stokes pulse arrives before the rest of the pulses). This technique can be applied to one-photon as well as multiphoton transitions and it is not necessary to vanish the pulses (pump and Stokes) simultaneously and it is a powerful alternative tool for f-STIRAP and tripod-STIRAP techniques at least when inhomogeneous broadenings are included. inhomogeneous broadening. This technique is robust against moderate variations in the intensities of the laser pulses,in detunings, and in delays between the pulses.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou Yan-Wei, Ye Cun-Yun, Lin Qiang, and Wang Yu-Zhu. "Control of population and atomic coherence by adiabatic rapid passage." Acta Physica Sinica 54, no. 6 (2005): 2799. http://dx.doi.org/10.7498/aps.54.2799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yatsenko, L. P., N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann. "Creation of coherent superpositions using Stark-chirped rapid adiabatic passage." Optics Communications 204, no. 1-6 (April 2002): 413–23. http://dx.doi.org/10.1016/s0030-4018(02)01303-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kayanuma, Yosuke. "Population Inversion in Optical Adiabatic Rapid Passage with Phase Relaxation." Physical Review Letters 58, no. 19 (May 11, 1987): 1934–36. http://dx.doi.org/10.1103/physrevlett.58.1934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Topçu, Türker, and F. Robicheaux. "Multiphoton adiabatic rapid passage: classical transition induced by separatrix crossing." Journal of Physics B: Atomic, Molecular and Optical Physics 42, no. 4 (February 3, 2009): 044014. http://dx.doi.org/10.1088/0953-4075/42/4/044014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Shore, B. W., M. V. Gromovyy, L. P. Yatsenko, and V. I. Romanenko. "Simple mechanical analogs of rapid adiabatic passage in atomic physics." American Journal of Physics 77, no. 12 (December 2009): 1183–94. http://dx.doi.org/10.1119/1.3231688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kuznetsova, Elena, Gengyuan Liu, and Svetlana A. Malinovskaya. "Adiabatic rapid passage two-photon excitation of a Rydberg atom." Physica Scripta T160 (April 1, 2014): 014024. http://dx.doi.org/10.1088/0031-8949/2014/t160/014024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mukherjee, Amlan, Alex Widhalm, Dustin Siebert, Sebastian Krehs, Nandlal Sharma, Andreas Thiede, Dirk Reuter, Jens Förstner, and Artur Zrenner. "Electrically controlled rapid adiabatic passage in a single quantum dot." Applied Physics Letters 116, no. 25 (June 22, 2020): 251103. http://dx.doi.org/10.1063/5.0012257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Li, R., M. Hoover, and F. Gaitan. "High-fidelity single-qubit gates using non-adiabatic rapid passage." Quantum Information and Computation 7, no. 7 (September 2007): 594–608. http://dx.doi.org/10.26421/qic7.7-3.

Full text
Abstract:
Numerical simulation results are presented which suggest that a class of non-adiabatic rapid passage sweeps first realized experimentally in 1991 should be capable of implementing a set of quantum gates that is universal for one-qubit unitary operations and whose elements operate with error probabilities $P_{e}<10^{-4}$. The sweeps are non-composite and generate controllable quantum interference effects which allow the one-qubit gates produced to operate non-adiabatically while maintaining high accuracy. The simulations suggest that the one-qubit gates produced by these sweeps show promise as possible elements of a fault-tolerant scheme for quantum computing.
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Tengfei, Jinfeng Li, Wenhui Zhou, and Changshui Chen. "Efficient cascaded wavelength conversion based on Stark-chirped rapid adiabatic passage." Applied Physics Express 11, no. 12 (November 8, 2018): 122202. http://dx.doi.org/10.7567/apex.11.122202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gaitan, Frank. "Controlling qubit transitions during non-adiabatic rapid passage through quantum interference." Journal of Modern Optics 51, no. 16-18 (November 2004): 2415–27. http://dx.doi.org/10.1080/09500340408231800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rickes, T., J. P. Marangos, and T. Halfmann. "Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage." Optics Communications 227, no. 1-3 (November 2003): 133–42. http://dx.doi.org/10.1016/j.optcom.2003.09.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Peik, Ekkehard, Maxime Ben Dahan, Isabelle Bouchoule, Yvan Castin, and Christophe Salomon. "Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams." Physical Review A 55, no. 4 (April 1, 1997): 2989–3001. http://dx.doi.org/10.1103/physreva.55.2989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wanner, B., R. Grimm, A. Gruber, D. Habs, H. J. Miesner, J. S. Nielsen, and D. Schwalm. "Rapid adiabatic passage in laser cooling of fast stored ion beams." Physical Review A 58, no. 3 (September 1, 1998): 2242–51. http://dx.doi.org/10.1103/physreva.58.2242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Schuh, K., F. Jahnke, and M. Lorke. "Rapid adiabatic passage in quantum dots: Influence of scattering and dephasing." Applied Physics Letters 99, no. 1 (July 4, 2011): 011105. http://dx.doi.org/10.1063/1.3609016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Amniat-Talab, M., R. Khoda-Bakhsh, and S. Guérin. "Quantum state engineering in a cavity by Stark chirped rapid adiabatic passage." Physics Letters A 359, no. 5 (December 2006): 366–72. http://dx.doi.org/10.1016/j.physleta.2006.06.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wang, Tengfei, Ting Wan, Wenhui Zhou, and Changshui Chen. "Three-process cascaded frequency conversion based on Stark-chirped rapid adiabatic passage." Journal of the Optical Society of America B 36, no. 7 (July 1, 2019): 1958. http://dx.doi.org/10.1364/josab.36.001958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gawarecki, K., S. Lüker, D. E. Reiter, T. Kuhn, M. Glässl, V. M. Axt, A. Grodecka-Grad, and P. Machnikowski. "Adiabatic rapid passage in quantum dots: phonon-assisted decoherence and biexciton generation." physica status solidi (c) 10, no. 9 (May 31, 2013): 1210–13. http://dx.doi.org/10.1002/pssc.201200746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shi, Xuan, C. H. Oh, and Lian-Fu Wei. "Stark-Chirped Rapid Adiabatic Passage in Presence of Dissipation for Quantum Computation." Communications in Theoretical Physics 61, no. 2 (February 2014): 235–40. http://dx.doi.org/10.1088/0253-6102/61/2/15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Li, R., M. Hoover, and F. Gaitan. "High fidelity universal set of quantum gates using non-adiabatic rapid passage." Quantum Information and Computation 9, no. 3&4 (March 2009): 290–316. http://dx.doi.org/10.26421/qic9.3-4-7.

Full text
Abstract:
Numerical simulation results are presented which suggest that a class of non-adiabatic rapid passage sweeps first realized experimentally in 1991 should be capable of implementing a universal set of quantum gates \uniset\ that operate with high fidelity. The gates constituting \uniset\ are the Hadamard and NOT gates, together with variants of the phase, $\pi /8$, and controlled-phase gates. The universality of \uniset\ is established by showing that it can construct the universal set consisting of Hadamard, phase, $\pi /8$, and controlled-NOT gates. Sweep parameter values are provided which simulations indicate will produce the different gates in \uniset , and for which the gate error probability $P_{e}$ satisfies: (i)~$P_{e}<10^{-4}$ for the one-qubit gates; and (ii)~$P_{e}<1.27\times 10^{-3}$ for the modified controlled-phase gate. The sweeps in this class are non-composite and generate controllable quantum interference effects that allow the gates in \uniset\ to operate non-adiabatically while maintaining high fidelity. These interference effects have been observed using NMR, and it has previously been shown how these rapid passage sweeps can be applied to atomic systems using electric fields. Here we show how these sweeps can be applied to both superconducting charge and flux qubit systems. The simulations suggest that the universal set of gates \uniset\ produced by these rapid passage sweeps shows promise as possible elements of a fault-tolerant scheme for quantum computing.
APA, Harvard, Vancouver, ISO, and other styles
29

Wan, Ting, Tengfei Wang, Wenhui Zhou, and Changshui Chen. "Coupling modulation for efficient wavelength conversion with the Stark-chirped rapid adiabatic passage." Results in Physics 19 (December 2020): 103387. http://dx.doi.org/10.1016/j.rinp.2020.103387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chadwick, Helen, P. Morten Hundt, Maarten E. van Reijzen, Bruce L. Yoder, and Rainer D. Beck. "Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage." Journal of Chemical Physics 140, no. 3 (January 21, 2014): 034321. http://dx.doi.org/10.1063/1.4861054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Frueholz, R. P., and J. C. Camparo. "Microwave field strength measurement in a rubidium clock cavity via adiabatic rapid passage." Journal of Applied Physics 57, no. 3 (February 1985): 704–8. http://dx.doi.org/10.1063/1.334715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jiang, Li-Juan, Xian-Zhou Zhang, Huan-Qiang Ma, Li-Hua Xia, and Guang-Rui Jia. "Coherent Control of Lithium Atom by Adiabatic Rapid Passage with Chirped Microwave Pulses." Chinese Physics Letters 29, no. 7 (July 2012): 073203. http://dx.doi.org/10.1088/0256-307x/29/7/073203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Ran, and Frank Gaitan. "Robust high-fidelity universal set of quantum gates through non-adiabatic rapid passage." Journal of Modern Optics 58, no. 21 (December 10, 2011): 1922–27. http://dx.doi.org/10.1080/09500340.2011.592621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Ran, and Frank Gaitan. "High-fidelity universal quantum gates." Quantum Information and Computation 10, no. 11&12 (November 2010): 936–46. http://dx.doi.org/10.26421/qic10.11-12-4.

Full text
Abstract:
Twisted rapid passage is a type of non-adiabatic rapid passage that generates controllable quantum interference effects that were first observed experimentally in $2003$. It is shown that twisted rapid passage sweeps can be used to implement a universal set of quantum gates $\calGU$ that operate with high-fidelity. The gate set $\calGU$ consists of the Hadamard and NOT gates, together with variants of the phase, $\pi /8$, and controlled-phase gates. For each gate $g$ in $\calGU$, sweep parameter values are provided which simulations indicate will produce a unitary operation that approximates $g$ with error probability$P_{e} < 10^{-4}$. Note that \textit{all\/} gates in $\calGU$ are implemented using a \textit{single family\/} of control-field, and the error probability for each gate falls below the rough-and-ready estimate for the accuracy threshold $P_{a}\sim 10^{-4}$.
APA, Harvard, Vancouver, ISO, and other styles
35

Saadati-Niari, M., and N. Shirkhanghah. "Population transfer in a nonlinear three-level Λ-system by Stark - chirped rapid adiabatic passage." Canadian Journal of Physics 99, no. 9 (September 2021): 799–805. http://dx.doi.org/10.1139/cjp-2020-0563.

Full text
Abstract:
We propose the use of the Stark-chirped rapid adiabatic passage (SCRAP) method to induce a complete population transfer in a nonlinear three-level Λ-type system (nl-SCRAP). We also use the nl-SCRAP method for creating stable diatomic ground molecular Bose–Einstein condensates (BECs) from atomic BECs. In this three-laser technique the pump and Stokes pulses are slightly detuned from transition frequencies, and a third strong hyperbolic-tangent laser pulse induces dynamic Stark shifts of the relevant transitions and compensates for third-order nonlinearities. If the timing of the three pulses is appropriately chosen, the nonlinear quantum system is prepared to almost complete population inversion between the two lower states in the Λ-like scheme. The paper shows that the efficiency of the nl-SCRAP is higher than the nonlinear stimulated Raman adiabatic passage (nl-STIRAP) technique, and this method can be used in one-photon as well as multi-photon transitions. The transfer process is robust concerning fluctuations of experimental parameters, such as peak Rabi frequencies, the time delay between pulses, and static detunings.
APA, Harvard, Vancouver, ISO, and other styles
36

Oberst, Martin, Jens Klein, and Thomas Halfmann. "Enhanced four-wave mixing in mercury isotopes, prepared by stark-chirped rapid adiabatic passage." Optics Communications 264, no. 2 (August 2006): 463–70. http://dx.doi.org/10.1016/j.optcom.2005.12.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yatsenko, L. P., B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi. "Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique." Physical Review A 60, no. 6 (December 1, 1999): R4237—R4240. http://dx.doi.org/10.1103/physreva.60.r4237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Topçu, Türker, and Francis Robicheaux. "Multiphoton population transfer in a kicked Rydberg atom: adiabatic rapid passage by separatrix crossing." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 11 (May 19, 2010): 115003. http://dx.doi.org/10.1088/0953-4075/43/11/115003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Malinovsky, V. S., and J. L. Krause. "General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses." European Physical Journal D 14, no. 2 (May 2001): 147–55. http://dx.doi.org/10.1007/s100530170212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kaldewey, Timo, Andreas V. Kuhlmann, Sascha R. Valentin, Arne Ludwig, Andreas D. Wieck, and Richard J. Warburton. "Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch." Nature Photonics 12, no. 2 (January 22, 2018): 68–72. http://dx.doi.org/10.1038/s41566-017-0079-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kazda, Michael, Vladislav Gerginov, Nils Nemitz, and Stefan Weyers. "Investigation of Rapid Adiabatic Passage for Controlling Collisional Frequency Shifts in a Caesium Fountain Clock." IEEE Transactions on Instrumentation and Measurement 62, no. 10 (October 2013): 2812–19. http://dx.doi.org/10.1109/tim.2013.2248303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pan, Huilin, Sohidul Mondal, Chung-Hsin Yang, and Kopin Liu. "Imaging characterization of the rapid adiabatic passage in a source-rotatable, crossed-beam scattering experiment." Journal of Chemical Physics 147, no. 1 (July 7, 2017): 013928. http://dx.doi.org/10.1063/1.4982615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Topçu, Türker, and Francis Robicheaux. "Multiphoton population transfer between rovibrational states of HF: adiabatic rapid passage in a diatomic molecule." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 20 (September 27, 2010): 205101. http://dx.doi.org/10.1088/0953-4075/43/20/205101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lorent, V., W. Claeys, A. Cornet, and X. Urbain. "Rabi oscillations and adiabatic rapid passage measured in the 2s-3p transition of atomic hydrogen." Optics Communications 64, no. 1 (October 1987): 41–44. http://dx.doi.org/10.1016/0030-4018(87)90365-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bendall, M. Robin, and David T. Pegg. "Uniform sample excitation with surface coils for in vivo spectroscopy by adiabatic rapid half passage." Journal of Magnetic Resonance (1969) 67, no. 2 (April 1986): 376–81. http://dx.doi.org/10.1016/0022-2364(86)90447-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Guan, Yong, Dan-Dan Liu, Xin-Liang Wang, Hui Zhang, Jun-Ru Shi, Yang Bai, Jun Ruan, and Shou-Gang Zhang. "Investigation of cold atom collision frequency shift measured by rapid adiabatic passage in cesium fountain clock." Acta Physica Sinica 69, no. 14 (2020): 140601. http://dx.doi.org/10.7498/aps.69.20191800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wichman, B., C. Liedenbaum, and J. Reuss. "A numerical investigation of occurrence conditions and line broadening effects for a rapid adiabatic passage process." Applied Physics B Photophysics and Laser Chemistry 51, no. 5 (November 1990): 358–63. http://dx.doi.org/10.1007/bf00348973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Handa, Xiang Zhang, Ting Wan, Dong Cheng, Fujie Li, Zhonghao Zhang, and Changshui Chen. "Efficient cascaded wavelength conversion under two-peak modulated Stark-chirped rapid adiabatic passage via grating structures." Results in Physics 27 (August 2021): 104524. http://dx.doi.org/10.1016/j.rinp.2021.104524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

GOSWAMI, DEBABRATA. "ON THE PRACTICALITY OF ADIABATIC QUANTUM COMPUTING WITH OPTICAL SCHEMES." International Journal of Quantum Information 05, no. 01n02 (February 2007): 179–88. http://dx.doi.org/10.1142/s0219749907002621.

Full text
Abstract:
A robust implementation of quantum logical gates for a multilevel system is possible through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. Selective population inversion and Hamiltonian evolution with time through ultrafast pulse shaping techniques essentially amount to adiabatic quantum computing (AQC) instead of the standard unitary transformation. An important aspect of the AQC model is in addressing the atomic or molecular ensemble and hence in robust implementation. We argue that experimental demonstrations of selective population transfer through adiabatic rapid passage form useful adiabatic quantum computing logic. Similarly, a simple Hadamard operation can be demonstrated with phase-modulated laser pulses. Finally, we present a framework to efficiently solve approximate Euclidean Traveling Salesman Problem (Approx-TSP) with bounded error in the AQC model. We present an efficient and intuitive encoding for Approx-TSP in a quantum computing paradigm. Optical approaches to quantum computing have the potential to be used in a distributive sense to defray the present caveat of limited resources and scalability. We present how we make use of such schemes towards practicality issues in AQC. As far as we know, our results are the first realistic demonstration of the possibility of using ensemble states for AQC in multilevel systems.
APA, Harvard, Vancouver, ISO, and other styles
50

SHIBATA, Kaoru, and Seiji ARITA. "ESR study of some coals in various organic solvents under an adiabatic rapid passage condition at high temperature." Journal of the Fuel Society of Japan 65, no. 8 (1986): 684–89. http://dx.doi.org/10.3775/jie.65.8_684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography