To see the other types of publications on this topic, follow the link: Rare-earth compounds.

Journal articles on the topic 'Rare-earth compounds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Rare-earth compounds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Johansson, Börje, Lars Nordström, Olle Eriksson, and M. S. S. Brooks. "Magnetism in Rare-Earth Metals and Rare-Earth Intermetallic Compounds." Physica Scripta T39 (January 1, 1991): 100–109. http://dx.doi.org/10.1088/0031-8949/1991/t39/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Onoda, Hiroaki, Hiroyuki Nariai, Hideshi Maki, and Itaru Motooka. "Syntheses of various rare earth phosphates from some rare earth compounds." Materials Chemistry and Physics 73, no. 1 (January 2002): 19–23. http://dx.doi.org/10.1016/s0254-0584(01)00341-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aita, Osamu, Kouichi Ichikawa, Masao Kamada, Makoto Okusawa, Hatsuo Nakamura, and Kenjiro Tsutsumi. "Rare-EarthN4,5Absorption Spectra of Some Rare-Earth Compounds." Journal of the Physical Society of Japan 56, no. 2 (February 15, 1987): 649–54. http://dx.doi.org/10.1143/jpsj.56.649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheremisina, Olga, Elizaveta Cheremisina, Maria Ponomareva, and Аleksander Fedorov. "Sorption of rare earth coordination compounds." Journal of Mining Institute 244 (July 30, 2020): 474–81. http://dx.doi.org/10.31897/pmi.2020.4.10.

Full text
Abstract:
Rare earth elements (REEs) are valuable and strategically important in many high-technology areas, such as laser technology, pharmacy and metallurgy. The main methods of REE recovery are precipitation, extraction and sorption, in particular ion exchange using various sorbents, which allow to perform selective recovery and removal of associated components, as well as to separate rare earth metals with similar chemical properties. The paper examines recovery of ytterbium in the form of coordination compounds with Trilon B on weakly basic anion exchange resin D-403 from nitrate solutions. In order to estimate thermodynamic sorption parameters of ytterbium anionic complexes, ion exchange process was carried out from model solutions under constant ionic strength specified by NaNO3, optimal liquid to solid ratio, pH level, temperatures 298 and 343 K by variable concentrations method. Description of thermodynamic equilibrium was made using mass action law formulated for ion exchange equation and mathematically converted to linear form. Values of equilibrium constants, Gibbs free energy, enthalpy and entropy of the sorption process have been calculated. Basing on calculated values of Gibbs energy, a sorption series of complex REE ions with Trilon B was obtained over anion exchange resin D-403 from nitrate solutions at temperature 298 K. Sorption characteristics of anion exchange resin have been estimated: total capacity, limiting sorption of complex ions, total dynamic capacity and breakthrough dynamic capacity.
APA, Harvard, Vancouver, ISO, and other styles
5

Schwer, H., and F. Hulliger. "On new rare-earth compounds LnRhAl." Journal of Alloys and Compounds 259, no. 1-2 (August 1997): 249–53. http://dx.doi.org/10.1016/s0925-8388(97)00125-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gignoux, D., and D. Schmitt. "Frustration in rare earth intermetallic compounds." Journal of Alloys and Compounds 326, no. 1-2 (August 2001): 143–50. http://dx.doi.org/10.1016/s0925-8388(01)01253-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rossi, D., R. Marazza, and R. Ferro. "Ternary rare earth alloys: RAuGe compounds." Journal of Alloys and Compounds 187, no. 2 (September 1992): 267–70. http://dx.doi.org/10.1016/0925-8388(92)90432-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kasuya, T. "Exchange interactions in rare earth compounds." Journal of Alloys and Compounds 192, no. 1-2 (February 1993): 11–16. http://dx.doi.org/10.1016/0925-8388(93)90171-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Loewenhaupt, M., M. Rotter, and S. Kramp. "Magnetic anisotropies of rare-earth compounds." Physica B: Condensed Matter 276-278 (March 2000): 602–3. http://dx.doi.org/10.1016/s0921-4526(99)01398-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manfrinetti, P., A. Provino, and K. A. Gschneidner. "On the RMgSn rare earth compounds." Journal of Alloys and Compounds 482, no. 1-2 (August 2009): 81–85. http://dx.doi.org/10.1016/j.jallcom.2009.03.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hanzawa, Katsurou. "Pseudogap Formation in Rare-Earth Compounds." Journal of the Physical Society of Japan 71, no. 6 (June 15, 2002): 1481–94. http://dx.doi.org/10.1143/jpsj.71.1481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Casper, Frederick, Shafagh Dastjani, and Claudia Felser. "Giant Magnetoresistance in Rare Earth Compounds." Zeitschrift für anorganische und allgemeine Chemie 634, no. 11 (September 2008): 2033. http://dx.doi.org/10.1002/zaac.200870049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Blasse, G. "Energy migration in rare-earth compounds." Recueil des Travaux Chimiques des Pays-Bas 105, no. 5 (September 2, 2010): 143–49. http://dx.doi.org/10.1002/recl.19861050502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Matsuoka, Eiichi, Yo Tomiyama, Kotaro Iwasawa, Hitoshi Sugawara, Takahiro Sakurai, and Hitoshi Ohta. "Magnetic anisotropy of tetragonal rare-earth compounds RRu2Al2B (R: rare-earth metals)." Journal of the Korean Physical Society 62, no. 12 (June 2013): 1866–68. http://dx.doi.org/10.3938/jkps.62.1866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chen, Zongbin, Habib Rozale, Yongchun Gao, and Heju Xu. "Strain Control of the Tunable Physical Nature of a Newly Designed Quaternary Spintronic Heusler Compound ScFeRhP." Applied Sciences 8, no. 9 (September 7, 2018): 1581. http://dx.doi.org/10.3390/app8091581.

Full text
Abstract:
Recently, an increasing number of rare-earth-based equiatomic quaternary compounds have been reported as promising novel spintronic materials. The rare-earth-based equiatomic quaternary compounds can be magnetic semiconductors (MSs), spin-gapless semiconductors (SGSs), and half-metals (HMs). Using first-principle calculations, we investigated the crystal structure, density of states, band structure, and magnetic properties of a new rare-earth-based equiatomic quaternary Heusler (EQH) compound, ScFeRhP. The results demonstrated that ScFeRhP is a HM at its equilibrium lattice constant, with a total magnetic moment per unit cell of 1 μB. Furthermore, upon introduction of a uniform strain, the physical state of this compound changes with the following transitions: non-magnetic-semiconductor-(NMS) → MS → SGS → HM → metal. We believe that these results will inspire further studies on other rare-earth-based EQH compounds for spintronic applications.
APA, Harvard, Vancouver, ISO, and other styles
16

Petrosyants, S. P. "Coordination compounds of rare-earth metal thiocyanates." Russian Journal of Coordination Chemistry 41, no. 11 (November 2015): 715–29. http://dx.doi.org/10.1134/s107032841511007x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kolokolov, F. A., N. N. Bukov, and V. T. Panyushkin. "Rare-Earth Coordination Compounds with Aspartic Acid." Russian Journal of General Chemistry 73, no. 12 (December 2003): 1942. http://dx.doi.org/10.1023/b:rugc.0000025158.46592.8a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pindwal, Aradhana, KaKing Yan, Smita Patnaik, Bradley M. Schmidt, Arkady Ellern, Igor I. Slowing, Cheolbeom Bae, and Aaron D. Sadow. "Homoleptic Trivalent Tris(alkyl) Rare Earth Compounds." Journal of the American Chemical Society 139, no. 46 (November 7, 2017): 16862–74. http://dx.doi.org/10.1021/jacs.7b09521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Langridge, S., J. A. Paixão, N. Bernhoeft, C. Vettier, G. H. Lander, Doon Gibbs, S. Aa Sørensen, A. Stunault, D. Wermeille, and E. Talik. "Changes in5dBand Polarization in Rare-Earth Compounds." Physical Review Letters 82, no. 10 (March 8, 1999): 2187–90. http://dx.doi.org/10.1103/physrevlett.82.2187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Purwins, H. G., and A. Leson. "Magnetic properties of (rare earth)Al2intermetallic compounds." Advances in Physics 39, no. 4 (August 1990): 309–403. http://dx.doi.org/10.1080/00018739000101511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Eschtmann, B. E., E. N. Maslen, and N. R. Streltsova. "Deformation densities in simple rare earth compounds." Acta Crystallographica Section A Foundations of Crystallography 49, s1 (August 21, 1993): c382. http://dx.doi.org/10.1107/s0108767378089278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Morin, P., and D. Schmitt. "QUADRUPOLE INTERACTIONS IN RARE-EARTH INTERMETALLIC COMPOUNDS." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–321—C8–325. http://dx.doi.org/10.1051/jphyscol:19888144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Szytula, A., W. Baźela, and J. Leciejewicz. "MAGNETIC STRUCTURES OF ORTHORHOMBIC RARE EARTH COMPOUNDS." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–383—C8–384. http://dx.doi.org/10.1051/jphyscol:19888173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

du Plessis, P. de V., and R. G. Booysen. "ELECTRICAL RESISTIVITY OF RARE EARTH INDIUM COMPOUNDS." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–391—C8–392. http://dx.doi.org/10.1051/jphyscol:19888177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Guskos, N., V. Likodimos, S. Glenis, J. Typek, M. Wabia, D. G. Paschalidis, I. Tossidis, and C. L. Lin. "Magnetic properties of rare-earth hydrazone compounds." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 1067–69. http://dx.doi.org/10.1016/j.jmmm.2003.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Maple, M. Brian, Marcio C. de Andrade, Jan Herrmann, Robert P. Dickey, Neil R. Dilley, and Seungho Han. "Superconductivity in rare earth and actinide compounds." Journal of Alloys and Compounds 250, no. 1-2 (March 1997): 585–95. http://dx.doi.org/10.1016/s0925-8388(96)02832-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ballou, Rafik. "Geometric frustration in Rare Earth antiferromagnetic compounds." Journal of Alloys and Compounds 275-277 (July 1998): 510–17. http://dx.doi.org/10.1016/s0925-8388(98)00382-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Rösch, P., J. Weizenecker, M. T. Kelemen, J. Ruf, C. Zobel, and E. Dormann. "NMR and magnetization of rare-earth compounds." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 1071–72. http://dx.doi.org/10.1016/s0304-8853(97)00802-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tomy, C. V., L. J. Chang, G. Balakrishnan, and D. M. cK Paul. "Superconductivity in RNi2B2C (R = rare earth) compounds." Physica C: Superconductivity 235-240 (December 1994): 2551–52. http://dx.doi.org/10.1016/0921-4534(94)92496-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Umehara, I., T. Kuwai, J. Sakurai, K. Maezawa, Q. F. Lu, and K. Sato. "Thermopower of rare earth-cobalt compounds R3Co." Physica B: Condensed Matter 206-207 (February 1995): 405–7. http://dx.doi.org/10.1016/0921-4526(94)00473-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gurin, V. N. "Polyelement solid solutions of rare earth compounds." Solid State Sciences 110 (December 2020): 106489. http://dx.doi.org/10.1016/j.solidstatesciences.2020.106489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lieser, K. H., S. R. Burckhardt, and W. Fey. "Determination of impurities in rare-earth compounds." Fresenius' Journal of Analytical Chemistry 338, no. 2 (1990): 156–58. http://dx.doi.org/10.1007/bf00321879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Faucher, M., D. Garcia, and O. K. Moune. "Crystal field effects in rare earth compounds." Journal of Luminescence 51, no. 6 (May 1992): 341–50. http://dx.doi.org/10.1016/0022-2313(92)90063-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

de Oliveira, N. A. "Magnetocaloric effect in rare earth doped compounds." Journal of Alloys and Compounds 455, no. 1-2 (May 2008): 81–86. http://dx.doi.org/10.1016/j.jallcom.2007.01.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Du Plessis, P. de V. "Electrical resistivity of rare earth ruthenium compounds." Physica B: Condensed Matter 163, no. 1-3 (April 1990): 603–5. http://dx.doi.org/10.1016/0921-4526(90)90282-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Burzo, E. "Spin fluctuations in cobalt rare-earth compounds." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 2013–14. http://dx.doi.org/10.1016/0304-8853(94)01448-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Merlo, F., and M. L. Fornasini. "Volume effects in rare earth intermetallic compounds." Journal of Alloys and Compounds 197, no. 2 (June 1993): 213–16. http://dx.doi.org/10.1016/0925-8388(93)90043-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Meijerink, A., G. Blasse, J. Sytsma, C. de Mello Donega, and A. Ellens. "Electron-Phonon Coupling in Rare Earth Compounds." Acta Physica Polonica A 90, no. 1 (July 1996): 109–19. http://dx.doi.org/10.12693/aphyspola.90.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shiozawa, Hidetsugu, Tsuneaki Miyahara, Kenji Obu, Yasuhiro Takayama, Hiroyoshi Ishii, Tatsuma D. Matsuda, Hitoshi Sugawara, Hideyuki Sato, Takayuki Muro, and Yuji Saitoh. "Local Magnetic Susceptibility in Rare-Earth Compounds." Journal of the Physical Society of Japan 72, no. 8 (August 15, 2003): 2079–84. http://dx.doi.org/10.1143/jpsj.72.2079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Michelutti, B., and P. Morin. "Paramagnetic torque in cubic rare-earth compounds." Physical Review B 46, no. 21 (December 1, 1992): 14213–16. http://dx.doi.org/10.1103/physrevb.46.14213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Xue, D., K. Betzler, and H. Hesse. "Dielectric constants of binary rare-earth compounds." Journal of Physics: Condensed Matter 12, no. 13 (March 15, 2000): 3113–18. http://dx.doi.org/10.1088/0953-8984/12/13/319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Smirnov, I. A., V. S. Oskotskii, and L. S. Parfeneva. "Unusual thermal properties of rare earth compounds." Journal of the Less Common Metals 111, no. 1-2 (September 1985): 353–57. http://dx.doi.org/10.1016/0022-5088(85)90209-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gulacsi, M. "Double-exchange mechanism in rare-earth compounds." Annals of Physics 354 (March 2015): 454–74. http://dx.doi.org/10.1016/j.aop.2014.12.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nieland, Anja, Jan-Hendrik Lamm, Andreas Mix, Beate Neumann, Hans-Georg Stammler, and Norbert W. Mitzel. "Alkynyl Compounds of the Rare-earth Metals." Zeitschrift für anorganische und allgemeine Chemie 640, no. 12-13 (August 13, 2014): 2484–91. http://dx.doi.org/10.1002/zaac.201400158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

SCHWER, H., and F. HULLIGER. "ChemInform Abstract: New Rare-Earth Compounds LnRhAl." ChemInform 28, no. 50 (August 2, 2010): no. http://dx.doi.org/10.1002/chin.199750002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stein, Sebastian, Marcel Kersting, Lukas Heletta, and Rainer Pöttgen. "Rare earth-ruthenium-magnesium intermetallics." Zeitschrift für Naturforschung B 72, no. 6 (May 24, 2017): 447–55. http://dx.doi.org/10.1515/znb-2017-0048.

Full text
Abstract:
AbstractEight new intermetallic rare earth-ruthenium-magnesium compounds have been synthesized from the elements in sealed niobium ampoules using different annealing sequences in muffle furnaces. The compounds have been characterized by powder and single crystal X-ray diffraction. Sm9.2Ru6Mg17.8 (a=939.6(2), c=1779(1) pm), Gd11Ru6Mg16 (a=951.9(2), c=1756.8(8) pm), and Tb10.5Ru6Mg16.5 (a=942.5(1), c=1758.3(4) pm) crystallize with the tetragonal Nd9.34Ru6Mg17.66 type structure, space group I4/mmm. This structure exhibits a complex condensation pattern of square-prisms and square-antiprisms around the magnesium and ruthenium atoms, respectively. Y2RuMg2 (a=344.0(1), c=2019(1) pm) and Tb2RuMg2 (a=341.43(6), c=2054.2(7) pm) adopt the Er2RuMg2 structure and Tm3Ru2Mg (a=337.72(9), c=1129.8(4) pm) is isotypic with Sc3Ru2Mg. Tm3Ru2Mg2 (a=337.35(9), c=2671(1) pm) and Lu3Ru2Mg2 (a=335.83(5), c=2652.2(5) pm) are the first ternary ordered variants of the Ti3Cu4 type, space group I4/mmm. These five compounds belong to a large family of intermetallics which are completely ordered superstructures of the bcc subcell. The group-subgroup scheme for Lu3Ru2Mg2 is presented. The common structural motif of all three structure types are ruthenium-centered rare earth cubes reminicent of the CsCl type. Magnetic susceptibility measurements of Y2RuMg2 and Lu3Ru2Mg2 samples revealed Pauli paramagnetism of the conduction electrons.
APA, Harvard, Vancouver, ISO, and other styles
47

LAUBSCHAT, C., and E. WESCHKE. "SURFACE EFFECTS IN RARE-EARTH MATERIALS." Surface Review and Letters 03, no. 05n06 (October 1996): 1773–78. http://dx.doi.org/10.1142/s0218625x96002709.

Full text
Abstract:
Recent experimental results concerning the surface-related electronic structure of rare-earth (RE) compounds are presented. Special attention is paid to the occurrence of surface-valence transitions for trivalent and mixed-valent compounds of Sm, Eu, Tm and Yb which are due to an energetical lowering of unoccupied 4f states caused by the reduced atomic coordination at the surface. Similar phenomena are observed for so-called α-like Ce compounds which are characterized by a strong hybridization of the 4f levels with valence-band states. Here, the reduced atomic coordination causes mainly a decrease in hybridization leading to an enhanced localization of the 4f states in the outermost atomic surface layer. The importance of this phenomenon for the correct interpretation of electron-spectroscopic data of Ce systems is discussed.
APA, Harvard, Vancouver, ISO, and other styles
48

Quill, Laurence L., Richard F. Robey, and Sam Seifter. "The Rare Earth Metals and Their Compounds: Thermal Analysis of Rare Earth Nitrate Mixtures." Einstein Journal of Biology and Medicine 24, no. 1 (March 2, 2016): 26. http://dx.doi.org/10.23861/ejbm20082463.

Full text
Abstract:
A method of analysis is proposed which utilizes thecharacteristic melting points of the hydrated salts andthe liquidus curves of the binary salt mixtures for theestimation of the composition of rare earth mixtures.Several binary salt systems were investigated, employingvery pure simple and double rare earth nitrates toprovide basic information concerning the possibilitiesof the method.
APA, Harvard, Vancouver, ISO, and other styles
49

Ushakov, S. V., K. B. Helean, A. Navrotsky, and L. A. Boatner. "Thermochemistry of rare-earth orthophosphates." Journal of Materials Research 16, no. 9 (September 2001): 2623–33. http://dx.doi.org/10.1557/jmr.2001.0361.

Full text
Abstract:
The enthalpies of formation for the compounds (RE3+)PO4, (where RE = Sc, Y, La–Nd, Sm–Lu) were determined by oxide-melt solution calorimetry. Calorimetric measurements were performed in a Calvet-type twin microcalorimeter in sodium molybdate (3Na2O · 4MoO3) and lead borate (2PbO · 2B2O3) solvents at 975 K. The experiments were carried out using both powdered single crystals grown by a flux technique and powders synthesized by precipitation. Formation enthalpies were derived from the drop-solution enthalpies for (RE)PO4, RE oxides, and P2O5. Enthalpies of formation for the (RE)PO4 compounds with respect to the oxides at 298 K become more negative with increasing RE3+ ionic radius; i.e., in going from ScPO4 (−209.8 ± 1.0 kJ/mol), to LuPO4 (−263.9 ± 1.9 kJ/mol), to LaPO4 (−321.4 ± 1.6 kJ/mol). From structural considerations, a similar trend is expected for the isostructural RE vanadates and arsenates, as well as for the tetravalent actinide orthosilicates.
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Lin, Wei Yang, Yan Yan Zhang, Wang Yan Shi, Dan Yu Jiang, and Qiang Li. "Preparation and Characterization of Layered Rare Earth Compound." Key Engineering Materials 633 (November 2014): 73–76. http://dx.doi.org/10.4028/www.scientific.net/kem.633.73.

Full text
Abstract:
We prepared a series of organic acids pillared layered rare earth compounds Y2-xEux(OH)5X·nH2O (X= Organic acid) by hydrothermal reaction, The distance of layers was determined by X-ray diffraction, and discussed the relationship between the intercalated organic anion and the distance between the layers, In addition, the layered rare earth compound we prepared exhibited good fluorescence properties, being excited by ultraviolet light, the layered compound exhibited characteristic fluorescence spectra of Eu3+ions. But the fluorescence intensity of the layered compound changed with different intercalated organic anions, by the ratio of the electric dipole transition and magnetic dipole transitions (5D0-7F2)/ (5D0-7F1), we studied the coordination environment of the luminescent center. And discussed the relationship between intercalated organic anions and fluorescence intensity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography