Academic literature on the topic 'Rare earth elements'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rare earth elements.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rare earth elements"

1

Djuraev, Davron Rakhmonovich, and Mokhigul Madiyorovna Jamilova. "Physical Properties Of Rare Earth Elements." American Journal of Applied sciences 03, no. 01 (January 30, 2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Full text
Abstract:
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
APA, Harvard, Vancouver, ISO, and other styles
2

Mendéz, Camilo. "Rare (Earth) Elements." Revista Vórtex 2, no. 2 (December 30, 2014): 122–39. http://dx.doi.org/10.33871/23179937.2014.2.2.468.

Full text
Abstract:
Rare (Earth) Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon's Book of Elements (Vol. I-V). The complete cycle will consist of 14 pieces; one for each selected rare (earth) element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.
APA, Harvard, Vancouver, ISO, and other styles
3

Forgan, Ted, and Colin Greaves. "Rare-earth elements redundant." Nature 332, no. 6159 (March 1988): 14–15. http://dx.doi.org/10.1038/332014a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

RABER, LINDA R. "SEPARATING RARE-EARTH ELEMENTS." Chemical & Engineering News 77, no. 47 (November 22, 1999): 89–90. http://dx.doi.org/10.1021/cen-v077n047.p089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saito, Tetsuji, Hironori Sato, and Tetsuichi Motegi. "Recovery of rare earths from sludges containing rare-earth elements." Journal of Alloys and Compounds 425, no. 1-2 (November 2006): 145–47. http://dx.doi.org/10.1016/j.jallcom.2006.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Giacalone, Joseph A. "The Market For The "Not-So-Rare" Rare Earth Elements." Journal of International Energy Policy (JIEP) 1, no. 1 (May 3, 2012): 11–18. http://dx.doi.org/10.19030/jiep.v1i1.7013.

Full text
Abstract:
This paper examines the market for the Rare earth elements. These are comprised of 17 elements of the periodic table which include 15 elements from the group known as lanthanides and two additional elements known as scandium and yttrium. The metals are often found combined together in ores and must be separated into its individual elements. The fact is that rare earth metals are not rare in terms of the quantity present in the earths crust. However, the metals are less concentrated than other more common metals and the extraction and separation processes necessitate high research and development costs and large capital outlays.The various applications of rare earth elements can be broadly classified into four major categories, namely: High Technology Consumer Products, Environmentally Friendly Products, Industrial and Medical Devices, and National Defense Systems. The demand for such high technology products is rapidly increasing causing a simultaneous upsurge in the demand for rare earth metals as well.On the supply side, China dominates the production rare earth elements, mining approximately 97% of total world production. Consequently, most countries must rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. This near-monopoly imposes several supply-chain risks on the importing nations which are exploring ways to mitigate the potential economic harm associated with these risks.
APA, Harvard, Vancouver, ISO, and other styles
7

Gross, G. A. "The distribution of rare earth elements in iron-formations." Global Tectonics and Metallogeny 5, no. 1-2 (November 27, 1995): 63–67. http://dx.doi.org/10.1127/gtm/5/1995/63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shihua, Wang, Qin Li, Cao Baopeng, Wang Xiaodong, and Zhao Xinhua. "Valence determination of rare earth elements in rare earth iodides." Journal of Alloys and Compounds 181, no. 1-2 (April 1992): 515–19. http://dx.doi.org/10.1016/0925-8388(92)90349-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Turner, Andrew, John W. Scott, and Lee A. Green. "Rare earth elements in plastics." Science of The Total Environment 774 (June 2021): 145405. http://dx.doi.org/10.1016/j.scitotenv.2021.145405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grigoryeva, L. S. "SYSTEMS OF RARE EARTH ELEMENTS." Scientific and Technical Volga region Bulletin 8, no. 1 (January 2018): 28–32. http://dx.doi.org/10.24153/2079-5920-2018-8-1-28-32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Rare earth elements"

1

Pasinli, Türker Eroğlu Ahmet E. "Preconcentration And Atomic Spectrometric Determination of Rare Earth Elements (Rees) In Environmental Samples/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/kimya/T000460.doc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Broom-Fendley, Sam Louis. "Targeting heavy rare earth elements in carbonatite complexes." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18490.

Full text
Abstract:
The HREE are generally considered to be the most critical of the REE, indispensable for many high-tech applications such as smart-phones and electric vehicles. Currently, carbonatites are the main source of REE due to their high REE grade; most carbonatites, however, are HREE-poor. This thesis presents the findings on HREE mineralisation at the Songwe Hill carbonatite, in the CAP of south-eastern Malawi. Across all carbonatite types at Songwe, whole-rock Y and P2O5 concentrations correlate positively, indicating that phosphate minerals have a strong control over the HREE contents. This is confirmed through textural and geochemical analyses (LA ICP-MS and EPMA) of apatite, which show that it can be subdivided into 5 different types (Ap-0–4), found at different stages of the paragenetic sequence. The chemistry of each of these apatite types becomes progressively more HREE-enriched, up to 3 wt. % Y2O3, and ultimately culminating in xenotime crystallisation. Cross-cutting relationships indicate that HREE-enriched apatite formed as an early crystallisation product from a late-stage, carbonatite-derived hydrothermal fluid. It is evident that LREE-fluorcarbonate mineralisation occurred after apatite crystallisation and it is assumed that crystallisation of all hydrothermal phases was though the evolution of a single fluid, rather than several different fluids. The apatite composition is compared to a compilation of analyses of apatite from other carbonatites and granitoids, as well as new analyses of late-stage apatite from the Kangankunde and Tundulu carbonatites, Malawi. Based on these analyses, it is concluded that apatite from Songwe has the highest HREE concentration compared to apatite from any previously analysed carbonatite. However, apatite from the Tundulu carbonatite has a similar geochemistry and paragenesis to the HREE-rich apatite from Songwe, suggesting that late-stage HREE enrichment may be a common process in carbonatites. In order to elucidate the fluid conditions which led to HREE mineralisation, new fluid inclusion and stable isotope data are presented to complement the mineralogical data. The fluid inclusions constrain the minimum temperature of apatite crystallisation of 160 °C, and most homogenisation temperatures in apatite are between 160-360 °C. Inclusions from apatite are CO2-rich, and it is suggested that transport of the REE occurred in carbonate complexes. Stable isotope data were obtained from both conventional C and O analyses of carbonates and from a novel method developed for acquiring δ18OPO4 from apatite. A conceptual model involving the simultaneous cooling and mixing of magmatically-derived and meteoric fluids is suggested. Two possible causes of REE fractionation are suggested: (1) a crystal-chemical control and (2) control through preferential stability of LREE and HREE complexes. However, neither mechanism is equivocal and further work on the stability of carbonate complexes is suggested in order to better understand REE mineralisation at carbonatites In addition to results on the HREE mineralisation in carbonatites, new data on the mineralogy, geochemistr y and age of the Songwe Hill carbonatite and the closely-associated Mauze nepheline syenite intr usion are presented. Songwe compr ises three stages of intr usion (C1–3): (C1) sovitic calcite carbonatite, (C2) alvikitic calcite-carbonatite and (C3) Fe-rich carbonatite. The LREE grade increases with the increasing Fe-content of the intrusion, as is common at many REE-rich carbonatites. Later-stages of the intrusion include apatite-fluorite veins (C4) and Mn-Fe-veins. The former is a volumetrically minor stage, but can contain up to 1 wt. % Y2O3, and the latter is formed through oxidation of carbonatite by supergene fluids. Samples analysed from Mauze show that it is REE- and P2O5-poor, with MREE-depleted REE distributions. U-Pb dating of zircons from Songwe and Mauze show that they are 131.5 ± 1.3 and 133.1 ± 2.0 Ma, respectively. The close temporal association of each intrusion suggests that Mauze could be a ‘heat-engine’ for hydrothermal mineralisation at Songwe.
APA, Harvard, Vancouver, ISO, and other styles
3

Simpson, John Andrew. "Magnetic properties of rare-earth elements and superlattices." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Otu, Emmanuel Ogbonna. "Liquid-liquid extraction studies of the rare earth elements." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5804.

Full text
Abstract:
This thesis is directed towards the study of the solvent extraction behaviour of the lanthanides and aluminium, bismuth, calcium and zinc whose radii and/or charges are similar to those of the REE. A brief review of the fundamentals and classification of extraction systems and of extractants is presented in Chapter 1. Chapters 2 and 3 are reviews of the properties and uses of the lanthanides and solvent extraction using phosphonate and sulphonate extractants, respectively. Chapter 4 deals with experimental procedures, results, discussions and conclusions. The extraction of zinc (II), calcium (II), aluminium (III), bismuth (III) and some lanthanide ions from aqueous perchlorate solutions into hexane solutions of 2-ethylhexyl phenylphosphonic acid, HEH$\Phi$P, was studied. The mechanisms of extraction are discussed on the basis of the results obtained by slope analysis. Depending upon the size and charge of the ion, the extracted species contain varying numbers of extractant molecules and phosphonate groups as ligands. Monomeric complexes are formed in the presence of excess extractant. High loadings of the extractant phase with the metal ion resulted in suppression of the extraction. Alkali ions were not extracted but alkali perchlorate suppressed the extraction through the effect of ionic strength on the metal ion activity. To further investigate the mechanism of extraction, $\sp{31}$P NMR of the organic phase following extraction of lanthanum was studied. A polymeric lanthanum-HEH$\Phi$P complex which precipitates out in the organic phase is formed at high (saturation) loading of this phase. A structure is proposed for this complex. The thermodynamics of extraction of these ions from perchlorate solutions into petroleum ether solutions of dinonylnaphthalene sulphonic acid, DNNSA, and HEH$\Phi$P were studied. In the case of DNNSA, extraction of the trivalent ions is dominated by the enthalpy of complexing. Electrostriction of large complex micelles by the complexed ion is postulated in order to account for the entropy effect. For the divalent ions, the enthalpy of dehydration of the ion is more important. A strategy for improving the separation factors is proposed. In the case of HEH$\Phi$P, charge density of the cation has a major influence upon the mechanism of the reaction and in turn upon the thermodynamic parameters. The ionic strength of the aqueous phase influences the thermodynamic parameters in the HEH$\Phi$P and DNNSA systems. Amongst the REE, lanthanum shows a singular behaviour. The extractions have been compared with those that employ dinonylnaphthalene sulphonic acid and factors that are responsible for the greater selectivity of the phosphonate have been elucidated. Development of an extraction chromatographic separation procedure for the lanthanides with a view to separating them from other matrix elements and fractionating them among themselves was studied. This was to be achieved by employing an organic polar solvent in the later stages of column elution. However, low recoveries were observed upon ashing the organic eluent and DCP determinations. The presence of phosphate (as KH$\sb2$PO$\sb4$ or H$\sb3$PO$\sb4)$ was found to lead to depression of analyte signal (concentration) in the DCP.
APA, Harvard, Vancouver, ISO, and other styles
5

Dudley, R. "Magnetoelastic properties and microstructure of rare-earth/iron compounds." Thesis, University of Brighton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lozano, Letellier Alba. "Geochemistry of rare earth elements in acid mine drainage precipitates." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668458.

Full text
Abstract:
Rare earth elements (REE) are known as the lanthanide series (La-Lu) plus yttrium (Y) and scandium (Sc). REE are essential materials for modern industries and especially for green technologies (wind turbines, batteries, lasers, catalysts, etc.). However, despite their high global demand, their supply is limited such that the EU has cataloged it as critical raw materials. In order to ensure the supply of REE in the future, the search for alternative sources of these elements worldwide has been promoted in recent years. Acid mine drainage (AMD) produced by the Fe-sulphide weathering can effectively leach Fe, Al, SO4, and REE from the host rock. This can lead to high concentrations of these liberated species in the affected waters. Thus, the REE concentrations in AMD can be between two and three orders of magnitude higher than natural waters, as such it can be considered as a complementary source of REE recovery. The increase of pH in AMD by mixing neutral waters results in the precipitation of iron oxy-hydroxysulfate (schwertmannite) from pH 3-3.5, and aluminum (basaluminite) from pH 4-4.5 in the river channels. This process may be accompanied by REE scavenging. Due to its acidity and high metal load, acid mine drainage presents a major environmental problem worldwide, therefore, different treatment systems have been developed to minimize its impact. Disperse Alkaline Substrate (DAS) passive remediation system neutralizes AMD by dissolving calcite, and allowing the sequential precipitation of schwertmannite and basaluminite in separated layers, where REE are preferably retained in the basaluminite-enriched waste. Despite this, there are still no studies describing the adsorption of REE on both basaluminite and schwertmannite in these environments. The REE scavenging mechanism is studied by adsorption on synthetic minerals of basaluminite and schwertmannite as a result of variation to the both the pH and sulfate concentration. A thermodynamic adsorption model is proposed based on experimental results in order to predict and explain the REE mobility in AMD mixtures with neutral waters and in a passive treatment system. Basaluminite and schwertmannite have a nanocrystalline character. Further, schwertmannite has been observed to transform into goethite on weekly timescales, resulting in sulfate release. However, there is a gap of knowledge about basaluminite stability at variable sulfate concentration and pH and its possible transformation to other more crystalline Al-minerals. In this study, basaluminite local order at different pH values and dissolved sulfate concentrations was characterized. Results demonstrate that basaluminite can transform to nanoboehmite in weeks under circumneutral pH. However, the presence of sulfate can inhibit this transformation. Separate adsorption experiments on both basaluminite and schwertmannite were performed with two different concentrations of SO4 while varying the pH (3-7). Results show that the adsorption is strongly dependent on pH, and to a lesser extent on sulfate concentration. Lanthanide and yttrium adsorption is most effective near pH 5 and higher, while that of scandium begins around pH 4. Due to the high concentrations of sulfate in acidic waters, the predominant aqueous REE species are sulfate complexes (MSO4+). Notably, Sc(OH)2+ represents a significant proportion of aqueous Sc. , A surface complexation model is proposed in which predominant aqueous species (Mz+) adsorb on the mineral surface, XOH, following the reaction: The adsorption of the lanthanides and yttrium occurs through the exchange of one and two protons from the basaluminite and schwertmannite surface, respectively, with the aqueous sulfate complexes. The sorbed species form monodentate surface complexes with the aluminum mineral and bidentate with the iron mineral. In the case of Sc, the aqueous species ScSO4+ and Sc(OH)2+ form bidentate surface complexes with both minerals. EXAFS analysis of the YSO4+ complex adsorbed on the basaluminite surface suggests the formation of a monodentate inner sphere complex, in agreement with the proposed thermodynamic model. Once the surface complexation model was validated, it was used to asses and predict the REE mobility in passive remediation systems and acidic water mixing zones with alkaline inputs from the field. The REE are preferentially retained in basaluminite-rich waste during passive remediation due to its sorption capacity between pH 5-6. In contrast, schwertmannite waste contains very little REE because the formation of this mineral occurs at pH lower than 4, which prevents REE adsorption. Further, Sc may be scavenged during schwertmannite precipitation as a result of this low pH The model correctly predicts the absence of REE in schwertmannite precipitates and the enrichment of the heavy and intermediate REE with respect to the light REE in basaluminite precipitates collected in the water mixing zones. However, there is a systematic overestimation of the fractionation of rare earths in basaluminite precipitate. This inaccuracy is mainly due to the fact that the mineral precipitation and adsorption are not synchronous process, while basaluminite precipitates from pH 4, REE adsorption occurs at higher pH values, between 5 and 7, when the water mixture reaches these values and a fraction of the particles have been dispersed.
Las tierras raras (en inglés rare earth elements, REE) son conocidas como el conjunto de la serie de los lantánidos (La-Lu), itrio (Y) y escandio(Sc). Las tierras raras son materiales indispensables para las industrias modernas y en especial para las tecnologías verdes (aerogeneradores, baterías, láseres, catalizadores, etc.). Sin embargo a pesar de su gran demanda mundial, su abastecimiento es limitado, por lo que han sido catalogadas por la UE como materias primas críticas (Critical Raw Materials). Con el objetivo de asegurar el abastecimiento de REE en el futuro, en los últimos años se ha promovido la búsqueda de fuentes alternativas de estos elementos en todo el mundo. El drenaje ácido de mina (en inglés acid mine drainage, AMD) producido por la meteorización de sulfuros de Fe, tiene un alto poder de lixiviación de las rocas, por lo que las aguas afectadas adquieren elevadas concentraciones en disolución de Fe, Al, SO4 y otros metales, como las REE. Así, las concentraciones de REE en AMD son entre dos y tres órdenes de magnitud superiores al resto de las aguas naturales y pueden suponer una fuente complementaria de recuperación de REE. El aumento de pH del AMD por mezcla con aguas neutras da lugar a la precipitación en los cauces de los ríos de oxy-hidroxisulfatos de hierro (schwertmannita), a partir de pH 3-3.5, y de aluminio (basaluminita), a partir de pH 4-4.5; acompañado de la eliminación de las tierras raras. Debido a su acidez y carga metálica, el drenaje ácido de mina presenta un problema medioambiental de primera magnitud, por lo que se han desarrollado diferentes sistemas de tratamiento para minimizar su impacto. El sistema de tratamiento pasivo Disperse Alkaline Substrate (DAS) produce la neutralización de las aguas ácidas por la disolución de la calcita presente en el sistema, permitiendo la precipitación secuencial, de schwertmannita y basaluminita. Las tierras raras quedan retenidas preferentemente en el residuo enriquecido en basaluminita. A pesar de ello, aún no existen estudios que describan la adsorción de tierras raras tanto en basaluminita como schwertmannita en estos ambientes. En esta tesis se estudia el mecanismo de retención de las tierras raras mediante adsorción en minerales sintéticos de basaluminita y schwertmannita, en función del pH y del contenido de sulfato disuelto. Con los resultados experimentales obtenidos, se propone un modelo termodinámico de adsorción para predecir y explicar la movilidad de las tierras raras observada en mezclas de AMD con aguas neutras y en un sistema de tratamiento pasivo. La basaluminita y la schwertmannita presentan un carácter nanocristalino. Es conocido que la schwertmannita se transforma en goethita en semanas, liberando sulfato. Sin embargo, nada se sabe de la basaluminita y su posible transformación a otros minerales de Al más cristalinos. De este modo, la caracterización del orden local de la basaluminita a diferentes valores de pH y sulfato se expone en primer lugar. Dependiendo del pH y el sulfato en disolución, la basaluminita se transforma en diferentes grados a nanoboehmita en semanas, pero tiende a estabilizarse con la presencia de sulfato en solución. Los experimentos de adsorción en basaluminita y schwertmannita con diferentes concentraciones de SO4 realizados para cada mineral y en rangos de 3-7 de pH han demostrado que la adsorción es fuertemente dependiente del pH, y en menor medida del sulfato. La adsorción de los lantánidos y del itrio es efectiva a pH 5, mientras que la del escandio comienza a pH 4. Debido a las altas concentraciones de sulfato en aguas ácidas, las especies acuosas predominantes de las tierras raras son los complejos con sulfato, MSO4+. Además del complejo sulfato, el Sc presenta importantes proporciones de Sc(OH)2+ en solución. En función de la dependencia del pH y de la importancia de la especiación acuosa, se propone un modelo de complejación superficial donde la especie acuosa predominante (Mz+) se adsorbe a la superficie libre el mineral, XOH, cumpliendo la siguiente reacción: La adsorción de los lantánidos y del itrio se produce a través del intercambio de uno o dos protones de la superficie de la basaluminita o de la schwertmannita, respectivamente, con los complejos sulfato acuoso, formando complejos superficiales monodentados con el mineral de aluminio y bidentados con el de hierro. En el caso del Sc, las especies acuosas ScSO4+ y Sc(OH)2+ forman complejos superficiales bidentados con ambos minerales. Complementando el modelo propuesto, el análisis de EXAFS del complejo YSO4+ adsorbido en la superficie basaluminita sugiere la formación de un complejo monodentado de esfera interna, coincidiendo con el modelo termodinámico propuesto. El modelo de complejación superficial, una vez validado, ha permitido evaluar y predecir la movilidad de REE en los sistemas de tratamiento pasivos y en zonas de mezcla de aguas ácidas con aportes alcalinos estudiados en el campo. La preferente retención de las tierras raras en la zona de la basaluminita precipitada en los sistemas de tratamiento pasivo ocurre por adsorción de las mismas a pH entre 5-6. La ausencia de tierras raras en la zona de schwertmannita se debe al bajo pH de su formación, inferior a 4, que impide la adsorción de las mismas. Sin embargo, debido a su menor pH de adsorción, una fracción de Sc puede quedar retenida en la schwertmannita. El modelo también predice correctamente la ausencia de REE en los precipitados de schwertmannita y el enriquecimiento de las tierras raras pesadas e intermedias respecto a las ligeras en los precipitados de basaluminita recogidos en el campo en las zonas de mezcla de aguas. Sin embargo, se ha observado una sistemática sobreestimación del fraccionamiento de las tierras raras en los precipitados de basaluminita. Este hecho se debe principalmente a que la precipitación del mineral no ocurre de forma síncrona con la adsorción, precipitando la basaluminita a partir de pH 4 y adsorbiendo tierras raras a pH más altos, entre 5 y 7, cuando las partículas sólidas han sido parcialmente dispersadas.
APA, Harvard, Vancouver, ISO, and other styles
7

Redling, Kerstin. "Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry." Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-59362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bristøl, Lene Marie Lysgaard. "Characterization and recovery of rare earth elements from electronic scrap." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18906.

Full text
Abstract:
The rare earth elements are a group of 17 elements consisting of the lantahnide series, scandium and yttrium. The application with the largest rare earth consumption is the permanent rare earth magnets. The neodymium-iron-boron magnets are the strongest permanent magnetic material known and are widely used. There is a concern that there will be a shortage in Nd-Fe-B magnets in short time. This has lead to an increased interest in the recycling of the rare earth magnets in the world.This project gives a very brief introduction to the Nd-Fe-B magnets, their uses and recycling. Two types of experiments that aims at recovery of neodymium from Nd-Fe-B magnets have been performed; extraction of neodymium by the use of molten silver and extraction of neodymium by direct oxidation. In the liquid silver experiments, extraction was obtained, but the analysis gave equivocal results. In the direct oxidation experiment, the separation of an iron phase and a neodymium oxide phase failed, and the experiment was not seen as successful.Magnetic waste from WEEE Recycling was also performed, and it turned out to contain small amounts of rare earth elements.
APA, Harvard, Vancouver, ISO, and other styles
9

Bertram, Caroline Jane. "Rare earth elements and neodymium isotopes in the Indian Ocean." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Noack, Clinton W. "Measurement and Recovery of Rare Earth Elements from Hypersaline Fluids." Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/675.

Full text
Abstract:
The rare earth elements (REE) constitute much of Group 3 of the periodic table, a group of 16 transition metals, including the lanthanide series (La to Lu, excluding Pm), yttrium (Y) and scandium (Sc).
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Rare earth elements"

1

Zepf, Volker. Rare Earth Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35458-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1927-, Gürs K., Bergmann Hartmut, Koeppel Claus, and Pscheidl Helmut, eds. Rare earth elements. 8th ed. Berlin: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Voncken, J. H. L. The Rare Earth Elements. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26809-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bochkarev, M. N., L. N. Zakharov, and G. S. Kalinina. Organoderivatives of Rare Earth Elements. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0361-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hedrick, James B. Rare earth elements and yttrium. [Washingtion, D.C.?]: Bureau of Mines, U.S. Dept. of the Interior, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

N, Zakharov L., and Kalinina G. S, eds. Organoderivatives of rare earth elements. Dordrecht: Kluwer Academic Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Jack, Baodong Zhao, and Bryan Schreiner. Separation Hydrometallurgy of Rare Earth Elements. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28235-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roesky, Peter W., ed. Molecular Catalysis of Rare-Earth Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12811-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wijn, H. P. J., ed. Rare Earth Elements, Alloys and Compounds. Berlin/Heidelberg: Springer-Verlag, 2004. http://dx.doi.org/10.1007/b79359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

1950-, Evans C. H., ed. Episodes from the history of the rare earth elements. Dordrecht: Kluwer Academic Publishers, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Rare earth elements"

1

Kurtz, Wolfgang, and Hans Vanecek. "Rare Earth Elements." In W Tungsten, 20–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-08690-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ting, Ming Hwa. "Rare Earth Elements." In Mining in the Asia-Pacific, 177–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61395-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 1432–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 2148–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wall, Frances. "Rare earth elements." In Critical Metals Handbook, 312–39. Oxford: John Wiley & Sons, 2013. http://dx.doi.org/10.1002/9781118755341.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spellman, Frank R. "Rare Earth Elements." In The Science of Rare Earth Elements, 43–45. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003350811-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_1348-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1348-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 2619–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zepf, Volker. "Introduction." In Rare Earth Elements, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35458-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rare earth elements"

1

Ghanbari, Yasaman. "Quantification of Rare Earth Elements." In Proposed for presentation at the LDRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wise, Paige. "RARE EARTH ELEMENTS ADSORPTION ON KAOLINITE." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-368035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martinez Bejarano, Cesar. "Reactors and Rare Earth Elements Extraction Systems." In Proposed for presentation at the DRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morones, Isaiah. "Opportunities and Challenges of Rare Earth Elements." In Proposed for presentation at the LDRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yatskiv, R., J. Grym, K. Zdansky, L. Pekarek, and J. Zavadil. "Growth of InP crystals with rare-earth elements." In Related Materials (IPRM). IEEE, 2009. http://dx.doi.org/10.1109/iciprm.2009.5012450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Churchill, Dakota, Michael Manga, Michael Manga, Shaul Hurwitz, Shaul Hurwitz, Sara Peek, Sara Peek, Richard M. Conrey, and Richard M. Conrey. "RARE EARTH ELEMENTS IN YELLOWSTONE’S SILICEOUS SINTER DEPOSITS." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-354438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hedrick, Gabrielle. "Towards Mining Rare Earth Elements on the Moon." In 2023 IEEE Aerospace Conference. IEEE, 2023. http://dx.doi.org/10.1109/aero55745.2023.10116027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pirzada, Muhammad Daniel Saeed. "Alternative Resources of Rare Earth Elements in Pakistan." In The 6th Conference on Emerging Materials and Processes (CEMP 2023). Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/materproc2024017026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boguslaw, Boguslaw. "UNCERTAINTY ANALYSIS OF THE LIFE CYCLE INVENTORY OF RARE EARTH ELEMENTS FROM SECONDARY FLOTATION OF RARE EARTH ELEMENTS IN BENEFICIATION RARE EARTH WASTE FROM THE GOLD PROCESSING: CASE STUDY." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/41/s18.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Donath, M., P. A. Dowben, and W. Nolting. "Magnetism and Electronic Correlations in Local-Moment Systems: Rare-Earth Elements and Compounds." In Workshop on Magnetism and Electronic Correlations in Local-Moment Systems: Rare-Earth Elements and Compounds. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528344.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Rare earth elements"

1

Huleatt, Mike. Australian resource reviews: rare earth elements 2019. Geoscience Australia, 2019. http://dx.doi.org/10.11636/9781925848441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Romero, Jared L., and Samuel Adam McCord. Rare earth elements : procurement, application, and reclamation. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1051724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

BRIGMON, ROBIN. LDRD-2022-00108: BIOMINING RARE EARTH ELEMENTS. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1894914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skone, Timothy J. Separation of rare earth elements using ion exchange. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1509123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bopp, Karl. An Integrated Rare Earth Elements Supply Chain Strategy. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada547354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siew Yean, Tham, and Neo Hui Yun Rebecca. Rare earth elements a potential bonanza for Malaysia. Edited by S. Vicknesan. Monash University, July 2024. http://dx.doi.org/10.54377/78b7-3e1f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hasler, Abigail, and David Reed. Recovery of Rare Earth Elements from Bioleachates by Precipitation. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1668825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sadan, Mandy, Dan Smyer Yü, Dan Seng Lawn, David Brown, and Ronghui Zhou. Rare Earth Elements, Global Inequalities, and the ‘Just Transition’. The British Academy, June 2022. http://dx.doi.org/10.5871/just-transitions-s-i/m-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hurst, Cindy. China's Rare Earth Elements Industry: What Can the West Learn? Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada525378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sutterlin, William. RECOVERY OF RARE EARTH ELEMENTS FROM COAL MINING WASTE MATERIALS. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1560384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography