Academic literature on the topic 'Raspberry Pi 3 Model B'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raspberry Pi 3 Model B.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Raspberry Pi 3 Model B"
Novikov, D. V., A. S. Stankevich, E. G. Silkis, A. M. Torubarov, and G. A. Perepelkin. "THE MORS-4 SPECTRA RECORDING SYSTEM WITH THE RASPBERRY PI 3 MODEL B MICROCOMPUTER." NAUCHNOE PRIBOROSTROENIE 28, no. 3 (August 29, 2018): 24–28. http://dx.doi.org/10.18358/np-28-3-i2428.
Full textSedayu, Agung, Elvan Yuniarti, and Edi Sanjaya. "Rancang Bangun Home Automation Berbasis Raspberry Pi 3 Model B dengan Interface Aprlikasi Media Sosial Telegram sebagai Kendali." Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics 1, no. 2 (April 2, 2019): 42–47. http://dx.doi.org/10.15408/fiziya.v1i2.9254.
Full textEndang Supriyadi, Maya Sofiana, and Surya Dwipangga. "Sistem Kendali Lampu Defect Dan Reject Berbasis Web Server Menggunakan Raspberrry Pi 3 Model B." Jurnal Teknik Informatika 7, no. 1 (February 2, 2021): 09–15. http://dx.doi.org/10.51998/jti.v7i1.346.
Full textDhakate, Prajwal. "NFC based Smart Attendance System using Raspberry Pi 3 Model B+." International Journal for Research in Applied Science and Engineering Technology 8, no. 5 (May 31, 2020): 1830–35. http://dx.doi.org/10.22214/ijraset.2020.5293.
Full textSudarsono, Joshua Fernaldy, Gede Sukadarmika, and Linawati Linawati. "Rancang Bangun Alat Ukur Kualitas Jaringan Berbasis Raspberry Pi 3 Model B." Majalah Ilmiah Teknologi Elektro 20, no. 1 (March 1, 2021): 53. http://dx.doi.org/10.24843/mite.2021.v20i01.p06.
Full textMuttaqin, Imam Wildan, and Arif Rahman. "Sistem Presensi Berbasis RFID Menggunakan Raspberry Pi 3." Buletin Ilmiah Sarjana Teknik Elektro 1, no. 1 (August 19, 2019): 27. http://dx.doi.org/10.12928/biste.v1i1.850.
Full textSałuch, Mateusz, Daniel Tokarski, Tomasz Grudniewski, Marta Chodyka, JerzyAntoni Nitychoruk, Paweł Woliński, Beata Jaworska, and Grzegorz Adamczewski. "Raspberry PI 3B + microcomputer as a central control unit in intelligent building automation management systems." MATEC Web of Conferences 196 (2018): 04032. http://dx.doi.org/10.1051/matecconf/201819604032.
Full textYenni, Helda, and M. Ari Ardianto. "ALAT DIGITAL PENCETAK KUE BAWANG MENGGUNAKAN RASPBERRY PI 3 MODEL B BERBASIS ANDROID." JTT (Jurnal Teknologi Terapan) 6, no. 1 (April 30, 2020): 93. http://dx.doi.org/10.31884/jtt.v6i1.246.
Full textMuck, P. Y., and M. J. Homam. "Iot Based Weather Station Using Raspberry Pi 3." International Journal of Engineering & Technology 7, no. 4.30 (November 30, 2018): 145. http://dx.doi.org/10.14419/ijet.v7i4.30.22085.
Full textAgustian, Indra, Faisal Hadi, and M. Khairul Amri Rosa. "Pre-Diagnosis Gangguan Ginjal Melalui Citra Iris Mata Menggunakan Raspberry PI Dengan Metode Convolutional Neural Network (CNN)." JURNAL AMPLIFIER : JURNAL ILMIAH BIDANG TEKNIK ELEKTRO DAN KOMPUTER 9, no. 1 (May 30, 2019): 16–25. http://dx.doi.org/10.33369/jamplifier.v9i1.15396.
Full textDissertations / Theses on the topic "Raspberry Pi 3 Model B"
Hadzima, Jaroslav. "Algoritmy hlubokého učení na embedded platformě." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400703.
Full textAspernäs, Andreas, and Thommy Simonsson. "IDS on Raspberry Pi : A Performance Evaluation." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-43997.
Full textDen här rapporten behandlar möjligheten att använda en Raspberry Pi som ett intrångdetekteringssystem i en hemma miljö för att öka nätverkssäkerheten. Fokusen i den här studien ligger på hur väl de två senaste generationerna av Raspberry Pi skulle kunna hantera nätverkstrafik samtidigt som den undersöker nätverkstrafiken och söker efter hot. För att kontrollera hur väl en Raspberry Pi kan fungera som ett intrångdetekteringssystem har en laborationsmiljö upprättats bestående av två fysiska maskiner som vardera används för att virtualisera en virtuell maskin. Tester för att mäta datagenomströmning, processor och minnesbelastning utfördes på var och en av Raspberry Pi. Två modeller av Raspberry Pi användes; Raspberry Pi model b+ och Raspberry Pi 2 model b, både körde operativsystemet Arch Linux ARM. Resultatet av testerna visade att det går att använda båda enheterna för att upprätta ett intrångdetekteringssystem, men det finns vissa begränsningar i enheterna vilket kan begränsa implementationsmöjligheterna. Raspberry Pi 2 model B uppvisade bättre resultat i form av att den är lägre belastad och har en högre datagenomströmning till skillnad från Raspberry Pi model B+. Raspberry Pi 2 model B har nyare och snabbare hårdvara vilket är den troliga orsaken till att den presterar bättre.
Árva, Gábor. "Embedded zpracování videa pro dohledový systém." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316403.
Full textNáhlík, Ondřej. "Speciální bezpečnostní systém." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221221.
Full textPandiscia, Nicola. "Analisi di sequenze video per rilevazioni demografiche ed emotive da software su microcontroller." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textCHEN, YU-JEN, and 陳宥任. "Autopilot Model-car Implemented by Raspberry Pi 3 Model B Plus with Camera using CNN Deep Learning Model." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/nt6s73.
Full text國立臺北科技大學
車輛工程系
107
This paper study a monocular vision-based autopilot model-car prototype. It is based on python. Using machiane learning and computer vision on the embedded system, Raspberry Pi 3 B+ to apply deep learning to autopilot model-car. It uses a 1:12 RC model-car for the stage, Raspberry Pi calculation and front camera to construct platform. First, move on the driveway by operating the joystick. Collecting information on the image and the joystick. Take a large amount of data to train the CNN model. Transfer the model back to Raspberry Pi, and put the car into the test environment. Calculate the direction and speed of the current travel and then convert it into a PWM signal, send the direction signal to the servo motor, and send the speed signal to the electronic transmission to control the motor speed. Continuing to collect data, test and improve the model to improve the success rate.
Chuang, Chun-Wei, and 莊均維. "Paperless system Based on Raspberry Pi Model B." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/x2x59p.
Full text國立臺中科技大學
資訊工程系碩士班
102
Meeting is an activity in everyday work force to exchange face to face views and communications. A large number of supporting documents will be needed to support the meetings. Paperless purpose is decreased the amount of papers used in the process. However, systems which are developed in server are expensive to maintain for small units. In this paper, we proposed a paperless meeting system based on Raspberry Pi Model B. The main focus of the proposed system is to provide a paperless meeting service system which is low implementation costs. The service is design from Red5 and FreeSWITCH. The system is implemented in Raspberry Pi. Experimental results show that implementation costs of the proposed method can effectively reduce implementation costs in the existing meeting system, and the function of meeting can also be providing similar services of the server.
Book chapters on the topic "Raspberry Pi 3 Model B"
Flurry, Greg. "Raspberry Pi 3 Model B+ Setup." In Java on the Raspberry Pi, 21–48. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7264-0_2.
Full textSahni, Nishant, Kailash Srinivasan, Karan Vala, and Saurabh Malgaonkar. "Study and Research on Raspberry PI 2 Model B Game Design and Development." In Information and Communication Technology for Sustainable Development, 475–83. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3932-4_50.
Full textZubov, Dmytro. "A Case Study on the Spatial Cognition of Surrounding Objects by the B&VI People Using Sound Patterns and Ultrasonic Sensing." In Emerging Trends and Applications of the Internet of Things, 105–16. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2437-3.ch004.
Full textConference papers on the topic "Raspberry Pi 3 Model B"
Varghese, Levin, Gerard Deepak, and A. Santhanavijayan. "An IoT Analytics Approach for Weather Forecasting using Raspberry Pi 3 Model B+." In 2019 Fifteenth International Conference on Information Processing (ICINPRO). IEEE, 2019. http://dx.doi.org/10.1109/icinpro47689.2019.9092107.
Full textViola, Jairo, Sina Dehghan, and YangQuan Chen. "Embedded RIOTS: Model Predictive Control Towards Edge." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97046.
Full textLaluma, Riffa Haviani, Riofalzy Giantara, Bambang Sugiarto, Gunawan, Chandra Afriade Siregar, and Slamet Risnanto. "Automation System of Water Treatment Plant using Raspberry Pi.3 Model B+ Based on Internet of Things (IoT)." In 2019 IEEE 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA). IEEE, 2019. http://dx.doi.org/10.1109/tssa48701.2019.8985516.
Full textSarnin, Suzi Seroja, Aida Akbar, Wan Norsyafizan W. Mohamad, Azlina Idris, Nani fadzlina Naim, and Norsuzila Yaracob. "Maleficent Mirror with ALEXA Voice Services as an Internet of Things Implement Using Raspberry Pi 3 Model B." In TENCON 2018 - 2018 IEEE Region 10 Conference. IEEE, 2018. http://dx.doi.org/10.1109/tencon.2018.8650106.
Full textVira Yudha, Garand, and Rini Wisnu Wardhani. "Design of a Snort-based IDS on the Raspberry Pi 3 Model B+ Applying TaZmen Sniffer Protocol and Log Alert Integrity Assurance with SHA-3." In 2021 9th International Conference on Information and Communication Technology (ICoICT). IEEE, 2021. http://dx.doi.org/10.1109/icoict52021.2021.9527511.
Full textVavrenyuk, Aleksandr B., Darya V. Matveeva, Nikita M. Lukyantsev, and Victor V. Makarov. "Analysis of an Efficiency of Parallelization of Algorithms Running on Computing Cluster Based on Single-Board Diskless Computers Raspberry PI 3 Model B." In 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE, 2021. http://dx.doi.org/10.1109/elconrus51938.2021.9396277.
Full textZanella, Maicon, Maurício Santos, Rafael Piccoli, and Samuel Ferrigo. "Uso experimental de 6LowPAN em redes BLE." In Escola Regional de Alto Desempenho da Região Sul. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/eradrs.2020.10746.
Full textVavrenyuk, Aleksandr B., Dmitriy B. Shishov-Turchin, Alexey N. Alexeev, and Victor V. Makarov. "Multi-User System for Remote Access to the Resources of the Educational Computer Cluster Based on Single Board Diskless Computer Raspberry PI 3 Model B as a Service." In 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE, 2021. http://dx.doi.org/10.1109/elconrus51938.2021.9396374.
Full textSilvestre, Iago, and Leandro Becker. "Performance Analysis of Embedded Control Algorithms used in UAVs." In Simpósio Brasileiro de Engenharia de Sistemas Computacionais. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/sbesc_estendido.2020.13110.
Full textMagalhães, W. F., H. M. Gomes, L. B. Marinho, G. S. Aguiar, and P. Silveira. "Investigating Mobile Edge-Cloud Trade-Offs of Object Detection with YOLO." In VII Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/kdmile.2019.8788.
Full text