Journal articles on the topic 'Ratiometric temperature measurement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ratiometric temperature measurement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mucignat, Claudio, Thomas Rösgen, and Ivan Lunati. "LIF Thermometry With A sCMOS Color Camera And Multiple Dyes." Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (July 8, 2024): 1–14. http://dx.doi.org/10.55037/lxlaser.21st.162.
Full textAntić, Željka, K. Prashanthi, Sanja Kuzman, et al. "Ratiometric temperature measurement using negative thermal quenching of intrinsic BiFeO3 semiconductor nanoparticles." RSC Adv. 10 (April 15, 2020): 16982. https://doi.org/10.5281/zenodo.3900972.
Full textXIN, Shi-jie, and Lei DING. "High-precision multi-reference ratiometric temperature measurement system." Optics and Precision Engineering 29, no. 5 (2021): 1115–26. http://dx.doi.org/10.37188/ope.20212905.1115.
Full textLi, Leipeng, Feng Qin, Yangdong Zheng, and Zhiguo Zhang. "Strategy for highly sensitive optical ratiometric temperature measurement." Optical Materials Express 9, no. 8 (2019): 3260. http://dx.doi.org/10.1364/ome.9.003260.
Full textAntić, Željka, K. Prashanthi, Sanja Kuzman, et al. "Ratiometric temperature measurement using negative thermal quenching of intrinsic BiFeO3 semiconductor nanoparticles." RSC Advances 10, no. 29 (2020): 16982–86. http://dx.doi.org/10.1039/d0ra01896a.
Full textĆirić, Aleksandar, Jelena Aleksić, Tanja Barudžija, et al. "Comparison of Three Ratiometric Temperature Readings from the Er3+ Upconversion Emission." Nanomaterials 10, no. 4 (2020): 627. http://dx.doi.org/10.3390/nano10040627.
Full textKashanj, Sina, and David Nobes. "Enhancing Sensitivity And Quantifying Uncertainty Of Volumetric Two-Colour Two-Dye Laser-Induced Fluorescence Thermometry Of Aqueous Solutions." Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (July 8, 2024): 1–9. http://dx.doi.org/10.55037/lxlaser.21st.137.
Full textKamimura, Masao, Taiki Matsumoto, Satoru Suyari, Masakazu Umezawa та Kohei Soga. "Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR II/III) biological window based on rare-earth doped β-NaYF4 nanoparticles". Journal of Materials Chemistry B 5, № 10 (2017): 1917–25. http://dx.doi.org/10.1039/c7tb00070g.
Full textLi, Hao, Esmaeil Heydari, Yinyan Li, et al. "Multi-Mode Lanthanide-Doped Ratiometric Luminescent Nanothermometer for Near-Infrared Imaging within Biological Windows." Nanomaterials 13, no. 1 (2023): 219. http://dx.doi.org/10.3390/nano13010219.
Full textĆirić, Aleksandar, Jelena Aleksić, Tanja Barudžija, et al. "Comparison of Three Ratiometric Temperature Readings from the Er3+ Upconversion Emission." Nanomaterials 10, no. 4 (2020): 627. https://doi.org/10.5281/zenodo.3899751.
Full textMuralidhara, Srinivasa, and Dilip Kothari. "Design, development, and qualification tests of prototype two-channel cryogenic temperature transmitter." AIP Advances 12, no. 3 (2022): 035213. http://dx.doi.org/10.1063/5.0055915.
Full textHuang, Haoying, Ruijuan Qiu, Hongchao Yang, et al. "Advanced NIR ratiometric probes for intravital biomedical imaging." Biomedical Materials 17, no. 1 (2021): 014107. http://dx.doi.org/10.1088/1748-605x/ac4147.
Full textWang, Chuanxi, Yijun Huang, Huihui Lin, et al. "Gold nanoclusters based dual-emission hollow TiO2 microsphere for ratiometric optical thermometry." RSC Advances 5, no. 76 (2015): 61586–92. http://dx.doi.org/10.1039/c5ra13475g.
Full textTang, Luping, Yangyang Zhang, Chen Liao, et al. "Eye-Resolvable Surface-Plasmon-Enhanced Fluorescence Temperature Sensor." Nanomaterials 12, no. 22 (2022): 4019. http://dx.doi.org/10.3390/nano12224019.
Full textYu, Dechao, Huaiyong Li, Dawei Zhang, Qinyuan Zhang, Andries Meijerink, and Markus Suta. "One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+." Light: Science & Applications 10 (November 22, 2021): 236. https://doi.org/10.1038/s41377-021-00677-5.
Full textTrejgis, K., K. Ledwa, A. Bednarkiewicz, and L. Marciniak. "A single-band ratiometric luminescent thermometer based on tetrafluorides operating entirely in the infrared region." Nanoscale Advances 4, no. 2 (2022): 437–46. http://dx.doi.org/10.1039/d1na00727k.
Full textMIKHAL, Aleksander A., Dmitro V. MELESHCHUK, and Zygmunt Lech WARSZA. "APPLICATION OF THE HYBRID BALANCED RATIOMETRIC MEASUREMENT METHOD IN THE HIGH-PRECISION AC THERMOMETRY BRIDGES." Physics for Economy 3, no. 1 (2019): 29–40. http://dx.doi.org/10.7862/rf.2019.pfe.3.
Full textDiehl, Brett, Alberto Castro, Lars Jaquemetton, and Darren Beckett. "Thermal Calibration of Ratiometric, On-Axis Melt Pool Monitoring Photodetector System Using Tungsten Strip Lamp." Materials Evaluation 80, no. 4 (2022): 64–73. http://dx.doi.org/10.32548/2022.me-04271.
Full textShilin, A. N., B. V. Mac, and I. A. Koptelova. "DIGITAL PYROMETER OF SPECTRAL RATIO." Kontrol'. Diagnostika, no. 285 (March 2022): 52–57. http://dx.doi.org/10.14489/td.2022.03.pp.052-057.
Full textHatta, A. M., Y. Semenova, G. Rajan, P. Wang, J. Zheng, and G. Farrell. "Analysis of temperature dependence for a ratiometric wavelength measurement system using SMS fiber structure based edge filters." Optics Communications 283, no. 7 (2010): 1291–95. http://dx.doi.org/10.1016/j.optcom.2009.11.020.
Full textDing, Jiong, Suijun Yang, and Shuliang Ye. "A Fast-Multi-Channel Sub-Millikelvin Precision Resistance Thermometer Readout Based on the Round-Robin Structure." Measurement Science Review 18, no. 4 (2018): 138–46. http://dx.doi.org/10.1515/msr-2017-0020.
Full textZhao, Yongkun, Hongxia Zhang, Qingwen Jin, Dagong Jia, and Tiegen Liu. "Ratiometric Optical Fiber Dissolved Oxygen Sensor Based on Fluorescence Quenching Principle." Sensors 22, no. 13 (2022): 4811. http://dx.doi.org/10.3390/s22134811.
Full textSzymczak, Maja, Marcin Runowski, Przemyslaw Wozny, and Lukasz Marciniak. "Thermally Invariant, Highly Sensitive, Ratiometric Luminescent Manometry Based on Cr3+ Emission." ECS Meeting Abstracts MA2024-02, no. 51 (2024): 3582. https://doi.org/10.1149/ma2024-02513582mtgabs.
Full textMcVicar, Nevin, Alex X. Li, Daniela F. Gonçalves, et al. "Quantitative Tissue Ph Measurement during Cerebral Ischemia Using Amine and Amide Concentration-Independent Detection (AACID) with MRI." Journal of Cerebral Blood Flow & Metabolism 34, no. 4 (2014): 690–98. http://dx.doi.org/10.1038/jcbfm.2014.12.
Full textZaschepkina, Natalia, and Maxim Svyta. "Development of a functional model of the temperature meter." Ukrainian Metrological Journal, no. 1 (March 31, 2021): 53–59. http://dx.doi.org/10.24027/2306-7039.1.2021.228239.
Full textUkhanov, K. Y., T. M. Flores, H. S. Hsiao, P. Mohapatra, C. H. Pitts, and R. Payne. "Measurement of cytosolic Ca2+ concentration in Limulus ventral photoreceptors using fluorescent dyes." Journal of General Physiology 105, no. 1 (1995): 95–116. http://dx.doi.org/10.1085/jgp.105.1.95.
Full textLi, Sheng, Wenlong Guo, Minmin Xiao, et al. "Rapid and Sensitive Diagnosis of COVID-19 Using an Electricity-Free Self-Testing System." Biosensors 13, no. 2 (2023): 180. http://dx.doi.org/10.3390/bios13020180.
Full textMay-Arrioja, Daniel A., Miguel A. Fuentes-Fuentes, Iván Hernández-Romano, Rodolfo Martínez-Manuel, and Natanael Cuando-Espitia. "Ratiometric Temperature Sensing Using Highly Coupled Seven-Core Fibers." Sensors 23, no. 1 (2023): 484. http://dx.doi.org/10.3390/s23010484.
Full textMazza, Mercedes M. A., and Françisco M. Raymo. "Structural designs for ratiometric temperature sensing with organic fluorophores." Journal of Materials Chemistry C 7, no. 18 (2019): 5333–42. http://dx.doi.org/10.1039/c9tc00993k.
Full textKnisley, Stephen B., Robert K. Justice, Wei Kong, and Philip L. Johnson. "Ratiometry of transmembrane voltage-sensitive fluorescent dye emission in hearts." American Journal of Physiology-Heart and Circulatory Physiology 279, no. 3 (2000): H1421—H1433. http://dx.doi.org/10.1152/ajpheart.2000.279.3.h1421.
Full textCuando-Espitia, Natanael, Andrés Camarillo-Avilés, Daniel A. May-Arrioja, Iván Hernández-Romano, and Miguel Torres-Cisneros. "Highly Coupled Seven-Core Fiber for Ratiometric Anti-Phase Sensing." Sensors 23, no. 16 (2023): 7241. http://dx.doi.org/10.3390/s23167241.
Full textIraniparast, Mahshid, Berney Peng, and Igor Sokolov. "Towards the Use of Individual Fluorescent Nanoparticles as Ratiometric Sensors: Spectral Robustness of Ultrabright Nanoporous Silica Nanoparticles." Sensors 23, no. 7 (2023): 3471. http://dx.doi.org/10.3390/s23073471.
Full textFanizza, Elisabetta, Haiguang Zhao, Simona De Zio, et al. "Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors." Applied Sciences 10, no. 8 (2020): 2767. http://dx.doi.org/10.3390/app10082767.
Full textPeerzade, Saquib, Nadezhda Makarova, and Igor Sokolov. "Ultrabright Fluorescent Silica Nanoparticles for Dual pH and Temperature Measurements." Nanomaterials 11, no. 6 (2021): 1524. http://dx.doi.org/10.3390/nano11061524.
Full textSorenson, Alanna E., and Patrick M. Schaeffer. "Real-Time Temperature Sensing Using a Ratiometric Dual Fluorescent Protein Biosensor." Biosensors 13, no. 3 (2023): 338. http://dx.doi.org/10.3390/bios13030338.
Full textNurtdinova, L. A., A. V. Leontyev, D. K. Zharkov, et al. "Temperature measurements based on a composite of nanosized phosphors [Ru(dipy)<sub>3</sub>]<sup>2+</sup>@SiO<sub>2</sub> and NaYF<sub>4</sub>:Eu,Gd." Известия Российской академии наук. Серия физическая 87, no. 12 (2023): 1730–34. http://dx.doi.org/10.31857/s0367676523702988.
Full textTaleb, Kaoutar, Guillaume Castanet, and Alexandre Labergue. "Characterization Of The Electrothermal Conversion Mechanisms Of A Plasma Actuator For Icing Control." Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (July 8, 2024): 1–15. http://dx.doi.org/10.55037/lxlaser.21st.207.
Full textMao, Deqi, Xiaogang Liu, Qinglong Qiao, et al. "Coumarin 545: an emission reference dye with a record-low temperature coefficient for ratiometric fluorescence based temperature measurements." Analyst 140, no. 4 (2015): 1008–13. http://dx.doi.org/10.1039/c4an02075h.
Full textSkwierczyńska, Małgorzata, Natalia Stopikowska, Piotr Kulpiński, Magdalena Kłonowska, Stefan Lis, and Marcin Runowski. "Ratiometric Upconversion Temperature Sensor Based on Cellulose Fibers Modified with Yttrium Fluoride Nanoparticles." Nanomaterials 12, no. 11 (2022): 1926. http://dx.doi.org/10.3390/nano12111926.
Full textZhang, Qixuan, Jumpei Ueda, and Setsuhisa Tanabe. "Double-Mode Thermometer Based on Photoluminescence of YbGd2Al2Ga3O12: Cr3+ Operating in the Biological Windows." Applied Sciences 14, no. 8 (2024): 3357. http://dx.doi.org/10.3390/app14083357.
Full textDantelle, Géraldine, Valérie Reita та Cécile Delacour. "Luminescent Yb3+,Er3+-Doped α-La(IO3)3 Nanocrystals for Neuronal Network Bio-Imaging and Nanothermometry". Nanomaterials 11, № 2 (2021): 479. http://dx.doi.org/10.3390/nano11020479.
Full textBucher, P., R. A. Yetter, F. L. Dryer, T. P. Parr, and D. M. Hanson-Parr. "PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2 and N2O oxidizers, and comparison with model calculations." Symposium (International) on Combustion 27, no. 2 (1998): 2421–29. http://dx.doi.org/10.1016/s0082-0784(98)80094-5.
Full textBuckens, Pierre F., Jan S. Iwanczyk, Yuzhong J. Wang, and Richard S. Marano. "Thickness Gauging of Organic Films on Large Plastic Body Parts With an Xrf Probe Based on a Roomtemperature Mercuric Iodide Detector." Advances in X-ray Analysis 37 (1993): 395–404. http://dx.doi.org/10.1154/s0376030800015913.
Full textSzymczak, Maja, Julia Jaśkielewicz, Marcin Runowski, Junpeng Xue, Sebastian Mahlik, and Lukasz Marciniak. "Multi-Modal Luminescence Manometer Based on Cr3+ Ions Luminescence in Doped Li3Sc2(PO4)3." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4774. https://doi.org/10.1149/ma2024-02674774mtgabs.
Full textPreston, Tom. "Existing and Emerging Technologies for Measuring Stable Isotope Labelled Retinol in Biological Samples: Isotope Dilution Analysis of Body Retinol Stores." International Journal for Vitamin and Nutrition Research 84, Supplement 1 (2014): 30–39. http://dx.doi.org/10.1024/0300-9831/a000186.
Full textKaruppiah, Krishnaveni, Iniya Murugan, Murugesan Sepperumal, and Siva Ayyanar. "A dual responsive probe based on bromo substituted salicylhydrazone moiety for the colorimetric detection of Cd2+ ions and fluorometric detection of F‒ ions: Applications in live cell imaging." International Journal of Bioorganic and Medicinal Chemistry 1, no. 1 (2021): 1–9. http://dx.doi.org/10.55124/bmc.v1i1.20.
Full textZhao, Suxin, Kaihang Sang, Ye Yang, et al. "Visible TADF and NIR Quenching Emission of Chromium Activated Zirconium‐Halide Perovskite Toward Ultra‐High‐Sensitive Ratiometric Fluorescent Thermometer." Advanced Optical Materials, April 19, 2024. http://dx.doi.org/10.1002/adom.202302979.
Full textLiu, Xuan, Jian Hou, Jingmei Ou, and Manling Yan. "Novel Single Emissive Component Tridurylboron‐TPU Solid Polymer Ratiometric Fluorescence Thermometers." Small, December 10, 2023. http://dx.doi.org/10.1002/smll.202308398.
Full textSong, Hao, Junheng Yuan, Lulu Han, Dedan Mu, Xuhui Xu, and Peng Zhang. "Te4+ doped zero-dimensional perovskite for dual-mode thermometry in electronic devices†." Journal of Materials Chemistry C, 2025. https://doi.org/10.1039/d4tc04517c.
Full textZhou, Yujiao, Gilles Ledoux, Laurence Bois, et al. "Er3+ Doped Nanoparticles as Upconversion Thermometer Probe in Confined Fluids." Physical Chemistry Chemical Physics, 2023. http://dx.doi.org/10.1039/d3cp02218h.
Full text