To see the other types of publications on this topic, follow the link: Rational Strain, Metabolic Engineering.

Dissertations / Theses on the topic 'Rational Strain, Metabolic Engineering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Rational Strain, Metabolic Engineering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Rajankar, M. P. "Rational strain design for value added products: a systems metabolic engineering and synthetic biology approach." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2018. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rajankar, M. P. "Rational strain design for value added products: a systems metabolic engineering and synthetic biology approach." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2018. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5199.

Full text
Abstract:
The grand challenge of metabolic engineering lies in the complexity and redundancy of cellular pathways and the evolutionary drive of a cell to maximize growth rather than a forced bioengineering objective. Engineering microorganisms to thus produce value added products from bulk chemicals as carbon source is now greatly accelerated by use of Synthetic Biology. The fast forwarding evolution has thus uncapped the limits of engineering biological systems. Rational strain design for production of value added products requires channeling of basic substrate molecules towards a desirable metab
APA, Harvard, Vancouver, ISO, and other styles
3

Carere, Robert Carlo. "Genomics of cellulolytic clostridia and development of rational metabolic engineering strategies." MPI Open Access Journals, 2008. http://hdl.handle.net/1993/21707.

Full text
Abstract:
Consolidated bioprocessing, a process in which cellulase production, substrate hydrolysis, and fermentation occur simultaneously, offers the potential for lower biofuel production costs than traditional approaches and is an economically attractive near-term goal for fermentative production of ethanol and/or hydrogen (H2) as biofuels. Current yields fall short of theoretical maxima, vary considerably between species, and are influenced by the highly branched metabolic pathways utilized by fermentative organisms. For fermentative ethanol/ H2 production to become practical, yields must be increas
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Lin [Verfasser]. "Rational Metabolic Engineering and Systematic Analysis of Escherichia coli for L-Tryptophan Bioproduction / Lin Chen." München : Verlag Dr. Hut, 2017. http://d-nb.info/1128466961/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schiefelbein, Sarah [Verfasser], and Christoph [Akademischer Betreuer] Wittmann. "Improved L-lysine production in Corynebacterium glutamicum by rational strain engineering / Sarah Schiefelbein ; Betreuer: Christoph Wittmann." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2015. http://d-nb.info/112757969X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hills, Christopher. "Acetate metabolism in Geobacillus thermoglucosidasius and strain engineering for enhanced bioethanol production." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665397.

Full text
Abstract:
Social, economic and political pressures have driven the development of renewable alternatives to fossil fuels. Biofuels, such as bioethanol, have proved to be successful alternatives. Mature technologies are crop-based, but this has brought criticism due to the conflicting use of land for fuel versus food production. Therefore, bioethanol production technologies have shifted to utilising the sugars that derive from the degradation of lignocellulosic biomass. The thermophilic, Gram-positive bacterium, Geobacillus thermoglucosidasius, can naturally utilise a large fraction of these sugars, and
APA, Harvard, Vancouver, ISO, and other styles
7

Gerebring, Linnéa. "Yeast Saccharomyces cerevisiae strain isolated from lager beer shows tolerance to isobutanol." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129066.

Full text
Abstract:
The development of biofuels has received much attention due to the global warming and limited resources associated with fossil fuels. Butanol has been identified as a potential option due to its advantages over ethanol, for example higher energy density, compatibility with current infrastructure and its possibility to be blended with gasoline at any ratio. Yeast Saccharomyces cerevisiae can be used as a producer of butanol. However, butanol toxicity to the host limits the yield produced. In this study, four strains of yeast isolated from the habitats of lager beer, ale, wine and baker ́s yeast
APA, Harvard, Vancouver, ISO, and other styles
8

Bi, Changhao. "Metabolic characterization and engineering of Enterobacter asburiae strain JDR-1 to develop microbial biocatalysts for efficient hemicellulose utilization." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kachel, Benjamin [Verfasser], and Michael [Akademischer Betreuer] Lanzer. "Metabolic engineering of Synechococcus sp. strain PCC 7002 for the photoautotrophic production of riboflavin (vitamin B2) / Benjamin Kachel ; Betreuer: Michael Lanzer." Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-305364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Freedman, Benjamin Gordon. "Degenerate oligonucleotide primed amplification of genomic DNA for combinatorial screening libraries and strain enrichment." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/71346.

Full text
Abstract:
Combinatorial approaches in metabolic engineering can make use of randomized mutations and/or overexpression of randomized DNA fragments. When DNA fragments are obtained from a common genome or metagenome and packaged into the same expression vector, this is referred to as a DNA library. Generating quality DNA libraries that incorporate broad genetic diversity is challenging, despite the availability of published protocols. In response, a novel, efficient, and reproducible technique for creating DNA libraries was created in this research based on whole genome amplification using degenerate oli
APA, Harvard, Vancouver, ISO, and other styles
11

Poblete, Castro Ignacio Andrés [Verfasser], and Christoph [Akademischer Betreuer] Wittmann. "Systems Biotechnology of Pseudomonas putida for the enhanced production of Polyhydroxyalkanoates: a rational approach for strain and bioprocess engineering / Ignacio Andrés Poblete Castro ; Betreuer: Christoph Wittmann." Braunschweig : Technische Universität Braunschweig, 2012. http://d-nb.info/1175823147/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Montoya, Solano José David [Verfasser]. "Metabolic engineering of the Colombian strain Clostridium sp. IBUN 158B in order to improve the bioconversion of glycerol into 1,3-propanediol / José David Montoya Solano." Ulm : Universität Ulm. Fakultät für Naturwissenschaften, 2013. http://d-nb.info/1030045755/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lange, Anna [Verfasser], and Christoph [Akademischer Betreuer] Wittmann. "Bio-based production of succinate from renewable resources : elucidation of Basfia succiniciproducens metabolism by 13C metabolic flux analysis for knowledge-based strain engineering / Anna Lange ; Betreuer: Christoph Wittmann." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2017. http://d-nb.info/118298908X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Brown, Steven Richard. "A design of experiments approach for engineering carbon metabolism in the yeast Saccharomyces cerevisiae." Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/26158.

Full text
Abstract:
The proven ability to ferment Saccharomyces cerevisiae on a large scale presents an attractive target for producing chemicals and fuels from sustainable sources. Efficient and predominant carbon flux through to ethanol is a significant engineering issue in the development of this yeast as a multi-product cell chassis used in biorefineries. In order to evaluate diversion of carbon flux away from ethanol, combinatorial deletions were investigated in genes encoding the six isozymes of alcohol dehydrogenase (ADH), which catalyse the terminal step in ethanol production. The scarless, dominant and c
APA, Harvard, Vancouver, ISO, and other styles
15

Pechacek, Janet. "Metabolic and evolutionary engineering of a xylose-fermenting strain of Saccharomyces cerevisiae." Thesis, 2011. http://spectrum.library.concordia.ca/36124/1/Pechacek_MSc_2012.pdf.

Full text
Abstract:
Lignocellulosic biomass waste is an abundant renewable resource of sugars for fermentation to biofuel. Due to its high fermentation capability and tolerance to ethanol and inhibitors, Saccharomyces cerevisiae was chosen to engineer a strain able to ferment xylose to ethanol. Wild-type S. cerevisiae is not able to grow on xylose as a sole carbon source. In xylose-fermenting yeasts, xylose reductase reduces the sugar to xylitol, which is then oxidized to xylulose by a xylitol dehydrogenase. These two enzymes require different cofactors, which leads to a cofactor imbalance in wild-type cells atte
APA, Harvard, Vancouver, ISO, and other styles
16

Ranganathan, Sridhar Cavalier Tom M. "A study of optimization and algorithms for metabolic engineering and strain design." 2008. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-3186/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dahn, Kristine M. "Strain selection and metabolic engineering or Pichia stipitis for increased ethanol production from xylose." 1998. http://catalog.hathitrust.org/api/volumes/oclc/42360615.html.

Full text
Abstract:
Thesis (Ph. D.)--University of Wisconsin--Madison, 1998.<br>Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 113-118).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!