Journal articles on the topic 'Rational Strain, Metabolic Engineering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rational Strain, Metabolic Engineering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tsouka, Sophia, Meric Ataman, Tuure Hameri, Ljubisa Miskovic, and Vassily Hatzimanikatis. "Constraint-based metabolic control analysis for rational strain engineering." Metabolic Engineering 66 (July 2021): 191–203. http://dx.doi.org/10.1016/j.ymben.2021.03.003.
Full textFreedman, Benjamin G., Parker W. Lee, and Ryan S. Senger. "Engineering the Metabolic Profile of Clostridium cellulolyticum with Genomic DNA Libraries." Fermentation 9, no. 7 (2023): 605. http://dx.doi.org/10.3390/fermentation9070605.
Full textBurgardt, Arthur, Ludovic Pelosi, Mahmoud Hajj Chehade, Volker F. Wendisch, and Fabien Pierrel. "Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production." Metabolites 12, no. 5 (2022): 428. http://dx.doi.org/10.3390/metabo12050428.
Full textZhu, Linghuan, Sha Xu, Youran Li, and Guiyang Shi. "Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering." PLOS ONE 16, no. 10 (2021): e0258180. http://dx.doi.org/10.1371/journal.pone.0258180.
Full textNevoigt, Elke. "Progress in Metabolic Engineering of Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 72, no. 3 (2008): 379–412. http://dx.doi.org/10.1128/mmbr.00025-07.
Full textNatarajan, Aravind, Thapakorn Jaroentomeechai, Mingji Li, Cameron J. Glasscock, and Matthew P. DeLisa. "Metabolic engineering of glycoprotein biosynthesis in bacteria." Emerging Topics in Life Sciences 2, no. 3 (2018): 419–32. http://dx.doi.org/10.1042/etls20180004.
Full textTafur Rangel, Albert E., Abel García Oviedo, Freddy Cabrera Mojica, Jorge M. Gómez, and Andrés Fernando Gónzalez Barrios. "Development of an integrating systems metabolic engineering and bioprocess modeling approach for rational strain improvement." Biochemical Engineering Journal 178 (January 2022): 108268. http://dx.doi.org/10.1016/j.bej.2021.108268.
Full textZhang, Xiaomei, Zhenhang Sun, Jinyu Bian, et al. "Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli." Fermentation 8, no. 7 (2022): 299. http://dx.doi.org/10.3390/fermentation8070299.
Full textIacometti, Camillo, Katharina Marx, Maria Hönick, et al. "Activating Silent Glycolysis Bypasses in Escherichia coli." BioDesign Research 2022 (May 12, 2022): 1–17. http://dx.doi.org/10.34133/2022/9859643.
Full textJeong, Sun-Wook, Jun-Ho Kim, Ji-Woong Kim, Chae Yeon Kim, Su Young Kim, and Yong Jun Choi. "Metabolic Engineering of Extremophilic Bacterium Deinococcus radiodurans for the Production of the Novel Carotenoid Deinoxanthin." Microorganisms 9, no. 1 (2020): 44. http://dx.doi.org/10.3390/microorganisms9010044.
Full textFuchino, Katsuya, Uldis Kalnenieks, Reinis Rutkis, Mara Grube, and Per Bruheim. "Metabolic Profiling of Glucose-Fed Metabolically Active Resting Zymomonas mobilis Strains." Metabolites 10, no. 3 (2020): 81. http://dx.doi.org/10.3390/metabo10030081.
Full textArora, Neha, Hong-Wei Yen, and George P. Philippidis. "Harnessing the Power of Mutagenesis and Adaptive Laboratory Evolution for High Lipid Production by Oleaginous Microalgae and Yeasts." Sustainability 12, no. 12 (2020): 5125. http://dx.doi.org/10.3390/su12125125.
Full textWang, Chenyang, Qinyu Li, Peng Zhou, Xiaojia Chen, Jiping Shi, and Zhijun Zhao. "Bioprocess Engineering, Transcriptome, and Intermediate Metabolite Analysis of L-Serine High-Yielding Escherichia coli W3110." Microorganisms 10, no. 10 (2022): 1927. http://dx.doi.org/10.3390/microorganisms10101927.
Full textXu, Feng, Xiang Ke, Ming Hong, et al. "Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via 13C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea." Biochemical and Biophysical Research Communications 542 (February 2021): 73–79. http://dx.doi.org/10.1016/j.bbrc.2021.01.024.
Full textWang, Xuan, Xianhao Xu, Jiaheng Liu, et al. "Metabolic Engineering of Saccharomyces cerevisiae for Efficient Retinol Synthesis." Journal of Fungi 9, no. 5 (2023): 512. http://dx.doi.org/10.3390/jof9050512.
Full textXu, Jian, Li Zhou та Zhemin Zhou. "Enhancement of β-Alanine Biosynthesis in Escherichia coli Based on Multivariate Modular Metabolic Engineering". Biology 10, № 10 (2021): 1017. http://dx.doi.org/10.3390/biology10101017.
Full textLee, Sang Jun, Dong-Yup Lee, Tae Yong Kim, Byung Hun Kim, Jinwon Lee, and Sang Yup Lee. "Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation." Applied and Environmental Microbiology 71, no. 12 (2005): 7880–87. http://dx.doi.org/10.1128/aem.71.12.7880-7887.2005.
Full textWang, Qingzhao, Mark S. Ou, Y. Kim, L. O. Ingram, and K. T. Shanmugam. "Metabolic Flux Control at the Pyruvate Node in an Anaerobic Escherichia coli Strain with an Active Pyruvate Dehydrogenase." Applied and Environmental Microbiology 76, no. 7 (2010): 2107–14. http://dx.doi.org/10.1128/aem.02545-09.
Full textDwijayanti, Ari, Marko Storch, Guy-Bart Stan, and Geoff S. Baldwin. "A modular RNA interference system for multiplexed gene regulation." Nucleic Acids Research 50, no. 3 (2022): 1783–93. http://dx.doi.org/10.1093/nar/gkab1301.
Full textSheremetieva, M. E., K. E. Anufriev, T. M. Khlebodarova, N. A. Kolchanov, and A. S. Yanenko. "Rational metabolic engineering of <i>Corynebacterium glutamicum</i> to create a producer of L-valine." Vavilov Journal of Genetics and Breeding 26, no. 8 (2023): 743–57. http://dx.doi.org/10.18699/vjgb-22-90.
Full textPyne, Michael E., Stanislav Sokolenko, Xuejia Liu, et al. "Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum." Applied and Environmental Microbiology 82, no. 17 (2016): 5375–88. http://dx.doi.org/10.1128/aem.01354-16.
Full textChoi, Bo Hyun, Hyun Joon Kang, Sun Chang Kim, and Pyung Cheon Lee. "Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae." Microorganisms 10, no. 3 (2022): 650. http://dx.doi.org/10.3390/microorganisms10030650.
Full textParamasivan, Kalaivani, Aneesha Abdulla, Nabarupa Gupta, and Sarma Mutturi. "In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement." Integrative Biology 14, no. 2 (2022): 25–36. http://dx.doi.org/10.1093/intbio/zyac003.
Full textPyne, Michael, Murray Moo-Young, Duane Chung, and C. Chou. "Antisense-RNA-Mediated Gene Downregulation in Clostridium pasteurianum." Fermentation 1, no. 1 (2015): 113–26. http://dx.doi.org/10.3390/fermentation1010113.
Full textDeeba, Farha, Kukkala Kiran Kumar, Girish H. Rajacharya, and Naseem A. Gaur. "Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides." Journal of Fungi 7, no. 11 (2021): 967. http://dx.doi.org/10.3390/jof7110967.
Full textNeves, Rui P. P., Bruno Araújo, Maria J. Ramos, and Pedro A. Fernandes. "Feedback Inhibition of DszC, a Crucial Enzyme for Crude Oil Biodessulfurization." Catalysts 13, no. 4 (2023): 736. http://dx.doi.org/10.3390/catal13040736.
Full textHuang, Mingtao, Yunpeng Bai, Staffan L. Sjostrom, et al. "Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast." Proceedings of the National Academy of Sciences 112, no. 34 (2015): E4689—E4696. http://dx.doi.org/10.1073/pnas.1506460112.
Full textPan, Guohui, Zhengren Xu, Zhikai Guo, et al. "Discovery of the leinamycin family of natural products by mining actinobacterial genomes." Proceedings of the National Academy of Sciences 114, no. 52 (2017): E11131—E11140. http://dx.doi.org/10.1073/pnas.1716245115.
Full textDarbani, Behrooz. "Genome Evolutionary Dynamics Meets Functional Genomics: A Case Story on the Identification of SLC25A44." International Journal of Molecular Sciences 22, no. 11 (2021): 5669. http://dx.doi.org/10.3390/ijms22115669.
Full textWiedemann, Beate, and Eckhard Boles. "Codon-Optimized Bacterial Genes Improve l-Arabinose Fermentation in Recombinant Saccharomyces cerevisiae." Applied and Environmental Microbiology 74, no. 7 (2008): 2043–50. http://dx.doi.org/10.1128/aem.02395-07.
Full textCarlson, Ross, David Fell, and Friedrich Srienc. "Metabolic pathway analysis of a recombinant yeast for rational strain development." Biotechnology and Bioengineering 79, no. 2 (2002): 121–34. http://dx.doi.org/10.1002/bit.10305.
Full textWu, Sijia, Wenjuan Chen, Sujuan Lu, Hailing Zhang, and Lianghong Yin. "Metabolic Engineering of Shikimic Acid Biosynthesis Pathway for the Production of Shikimic Acid and Its Branched Products in Microorganisms: Advances and Prospects." Molecules 27, no. 15 (2022): 4779. http://dx.doi.org/10.3390/molecules27154779.
Full textMichael, Drew G., Ezekiel J. Maier, Holly Brown, et al. "Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast." Proceedings of the National Academy of Sciences 113, no. 47 (2016): E7428—E7437. http://dx.doi.org/10.1073/pnas.1603577113.
Full textChen, Zhen, Rajesh Reddy Bommareddy, Doinita Frank, Sugima Rappert, and An-Ping Zeng. "Deregulation of Feedback Inhibition of Phosphoenolpyruvate Carboxylase for Improved Lysine Production in Corynebacterium glutamicum." Applied and Environmental Microbiology 80, no. 4 (2013): 1388–93. http://dx.doi.org/10.1128/aem.03535-13.
Full textLee, Sang Yup. "Metabolic Engineering and Synthetic Biology in Strain Development." ACS Synthetic Biology 1, no. 11 (2012): 491–92. http://dx.doi.org/10.1021/sb300109d.
Full textLong, Matthew R., Wai Kit Ong, and Jennifer L. Reed. "Computational methods in metabolic engineering for strain design." Current Opinion in Biotechnology 34 (August 2015): 135–41. http://dx.doi.org/10.1016/j.copbio.2014.12.019.
Full textBonk, Brian M., Yekaterina Tarasova, Michael A. Hicks, Bruce Tidor, and Kristala L. J. Prather. "Rational design of thiolase substrate specificity for metabolic engineering applications." Biotechnology and Bioengineering 115, no. 9 (2018): 2167–82. http://dx.doi.org/10.1002/bit.26737.
Full textWoodruff, Lauren B. A., Brian L. May, Joseph R. Warner, and Ryan T. Gill. "Towards a metabolic engineering strain “commons”: AnEscherichia coliplatform strain for ethanol production." Biotechnology and Bioengineering 110, no. 5 (2013): 1520–26. http://dx.doi.org/10.1002/bit.24840.
Full textDesai, Ruchir P., and Eleftherios T. Papoutsakis. "Antisense RNA Strategies for Metabolic Engineering of Clostridium acetobutylicum." Applied and Environmental Microbiology 65, no. 3 (1999): 936–45. http://dx.doi.org/10.1128/aem.65.3.936-945.1999.
Full textHendry, John I., Anindita Bandyopadhyay, Shyam Srinivasan, Himadri B. Pakrasi, and Costas D. Maranas. "Metabolic model guided strain design of cyanobacteria." Current Opinion in Biotechnology 64 (August 2020): 17–23. http://dx.doi.org/10.1016/j.copbio.2019.08.011.
Full textMukhopadhyay, N. K., K. N. Ishihara, S. Ranganathan, and K. Chattopadhyay. "Rational approximant structures and phason strain in icosahedral quasicrystalline phases." Acta Metallurgica et Materialia 39, no. 6 (1991): 1151–59. http://dx.doi.org/10.1016/0956-7151(91)90203-d.
Full textLibourel, Igor G. L., and Yair Shachar-Hill. "Metabolic Flux Analysis in Plants: From Intelligent Design to Rational Engineering." Annual Review of Plant Biology 59, no. 1 (2008): 625–50. http://dx.doi.org/10.1146/annurev.arplant.58.032806.103822.
Full textStafford, Daniel E., and Gregory Stephanopoulos. "Metabolic engineering as an integrating platform for strain development." Current Opinion in Microbiology 4, no. 3 (2001): 336–40. http://dx.doi.org/10.1016/s1369-5274(00)00214-9.
Full textBiggs, Bradley Walters, Brecht De Paepe, Christine Nicole S. Santos, Marjan De Mey, and Parayil Kumaran Ajikumar. "Multivariate modular metabolic engineering for pathway and strain optimization." Current Opinion in Biotechnology 29 (October 2014): 156–62. http://dx.doi.org/10.1016/j.copbio.2014.05.005.
Full textKawaguchi, Hideo, Alain A. Vert�s, Shohei Okino, Masayuki Inui, and Hideaki Yukawa. "Engineering of a Xylose Metabolic Pathway in Corynebacterium glutamicum." Applied and Environmental Microbiology 72, no. 5 (2006): 3418–28. http://dx.doi.org/10.1128/aem.72.5.3418-3428.2006.
Full textKroukamp, Heinrich, Riaan den Haan, John‐Henry van Zyl, and Willem Heber van Zyl. "Rational strain engineering interventions to enhance cellulase secretion by Saccharomyces cerevisiae." Biofuels, Bioproducts and Biorefining 12, no. 1 (2017): 108–24. http://dx.doi.org/10.1002/bbb.1824.
Full textTenhaef, Niklas, Robert Stella, Julia Frunzke, and Stephan Noack. "Automated Rational Strain Construction Based on High-Throughput Conjugation." ACS Synthetic Biology 10, no. 3 (2021): 589–99. http://dx.doi.org/10.1021/acssynbio.0c00599.
Full textYi, Xiunan, and Hal S. Alper. "Considering Strain Variation and Non-Type Strains for Yeast Metabolic Engineering Applications." Life 12, no. 4 (2022): 510. http://dx.doi.org/10.3390/life12040510.
Full textTilloy, Valentin, Anne Ortiz-Julien, and Sylvie Dequin. "Reduction of Ethanol Yield and Improvement of Glycerol Formation by Adaptive Evolution of the Wine Yeast Saccharomyces cerevisiae under Hyperosmotic Conditions." Applied and Environmental Microbiology 80, no. 8 (2014): 2623–32. http://dx.doi.org/10.1128/aem.03710-13.
Full textWei, Zeng, Xianai Shi, Rong Lian, Weibin Wang, Wenrong Hong, and Shaobin Guo. "Exclusive Production of Gentamicin C1a from Micromonospora purpurea by Metabolic Engineering." Antibiotics 8, no. 4 (2019): 267. http://dx.doi.org/10.3390/antibiotics8040267.
Full text