Journal articles on the topic 'Rational Strain, Metabolic Engineering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rational Strain, Metabolic Engineering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tsouka, Sophia, Meric Ataman, Tuure Hameri, Ljubisa Miskovic, and Vassily Hatzimanikatis. "Constraint-based metabolic control analysis for rational strain engineering." Metabolic Engineering 66 (July 2021): 191–203. http://dx.doi.org/10.1016/j.ymben.2021.03.003.
Full textDagariya, Sakshi, Janvi Bhatankar, Tikam Chand Dakal, Bhana Ram Gadi, and Paolo Giudici. "Metabolic and Evolutionary Engineering of Food Yeasts." Processes 13, no. 6 (2025): 1852. https://doi.org/10.3390/pr13061852.
Full textFreedman, Benjamin G., Parker W. Lee, and Ryan S. Senger. "Engineering the Metabolic Profile of Clostridium cellulolyticum with Genomic DNA Libraries." Fermentation 9, no. 7 (2023): 605. http://dx.doi.org/10.3390/fermentation9070605.
Full textBurgardt, Arthur, Ludovic Pelosi, Mahmoud Hajj Chehade, Volker F. Wendisch, and Fabien Pierrel. "Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production." Metabolites 12, no. 5 (2022): 428. http://dx.doi.org/10.3390/metabo12050428.
Full textLentsch, Verena, Aurore Woller, Andrea Rocker, et al. "Vaccine-enhanced competition permits rational bacterial strain replacement in the gut." Science 388, no. 6742 (2025): 74–81. https://doi.org/10.1126/science.adp5011.
Full textGao, Zhenghao, Fengli Wu, Zhidan Zhang, et al. "Improvement of L-Tryptophan Production in Escherichia coli Using Biosensor-Based, High-Throughput Screening and Metabolic Engineering." Fermentation 11, no. 5 (2025): 267. https://doi.org/10.3390/fermentation11050267.
Full textZhu, Linghuan, Sha Xu, Youran Li, and Guiyang Shi. "Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering." PLOS ONE 16, no. 10 (2021): e0258180. http://dx.doi.org/10.1371/journal.pone.0258180.
Full textNevoigt, Elke. "Progress in Metabolic Engineering of Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 72, no. 3 (2008): 379–412. http://dx.doi.org/10.1128/mmbr.00025-07.
Full textNatarajan, Aravind, Thapakorn Jaroentomeechai, Mingji Li, Cameron J. Glasscock, and Matthew P. DeLisa. "Metabolic engineering of glycoprotein biosynthesis in bacteria." Emerging Topics in Life Sciences 2, no. 3 (2018): 419–32. http://dx.doi.org/10.1042/etls20180004.
Full textHuang, Wei, Yongheng Liu, Xiaomei Ma, Cilang Ma, Yuting Jiang, and Jianyu Su. "Rational Design for the Complete Synthesis of Stevioside in Saccharomyces cerevisiae." Microorganisms 12, no. 6 (2024): 1125. http://dx.doi.org/10.3390/microorganisms12061125.
Full textZhang, Xiaomei, Zhenhang Sun, Jinyu Bian, et al. "Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli." Fermentation 8, no. 7 (2022): 299. http://dx.doi.org/10.3390/fermentation8070299.
Full textTafur Rangel, Albert E., Abel García Oviedo, Freddy Cabrera Mojica, Jorge M. Gómez, and Andrés Fernando Gónzalez Barrios. "Development of an integrating systems metabolic engineering and bioprocess modeling approach for rational strain improvement." Biochemical Engineering Journal 178 (January 2022): 108268. http://dx.doi.org/10.1016/j.bej.2021.108268.
Full textIacometti, Camillo, Katharina Marx, Maria Hönick, et al. "Activating Silent Glycolysis Bypasses in Escherichia coli." BioDesign Research 2022 (May 12, 2022): 1–17. http://dx.doi.org/10.34133/2022/9859643.
Full textJeong, Sun-Wook, Jun-Ho Kim, Ji-Woong Kim, Chae Yeon Kim, Su Young Kim, and Yong Jun Choi. "Metabolic Engineering of Extremophilic Bacterium Deinococcus radiodurans for the Production of the Novel Carotenoid Deinoxanthin." Microorganisms 9, no. 1 (2020): 44. http://dx.doi.org/10.3390/microorganisms9010044.
Full textFuchino, Katsuya, Uldis Kalnenieks, Reinis Rutkis, Mara Grube, and Per Bruheim. "Metabolic Profiling of Glucose-Fed Metabolically Active Resting Zymomonas mobilis Strains." Metabolites 10, no. 3 (2020): 81. http://dx.doi.org/10.3390/metabo10030081.
Full textArora, Neha, Hong-Wei Yen, and George P. Philippidis. "Harnessing the Power of Mutagenesis and Adaptive Laboratory Evolution for High Lipid Production by Oleaginous Microalgae and Yeasts." Sustainability 12, no. 12 (2020): 5125. http://dx.doi.org/10.3390/su12125125.
Full textStovicek, Vratislav, Laura Dato, Henrik Almqvist, et al. "Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate." Biotechnology for Biofuels and Bioproducts 15, no. 1 (2022): 22. https://doi.org/10.1186/s13068-022-02121-1.
Full textZhang, Chi, Zhongjie Yan, Xiufang Li, Junming Wang, Xidong Ren, and Xinli Liu. "Comprehensive Analysis of Catalytic Characteristics and Molecular Mechanisms in Mutant Trametes versicolor Strains with Enhanced Laccase Activities." Fermentation 9, no. 12 (2023): 995. http://dx.doi.org/10.3390/fermentation9120995.
Full textHofer, Katharina, Lynn S. Schwardmann, Jung-Won Youn, Volker F. Wendisch, and Ralf Takors. "Single Mutation in iolT1 in ptsG-Deficient Corynebacterium glutamicum Enables Growth Boost in Xylose-Containing Media." Microorganisms 13, no. 7 (2025): 1606. https://doi.org/10.3390/microorganisms13071606.
Full textXu, Feng, Xiang Ke, Ming Hong, et al. "Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via 13C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea." Biochemical and Biophysical Research Communications 542 (February 2021): 73–79. http://dx.doi.org/10.1016/j.bbrc.2021.01.024.
Full textTopaloğlu, Alican, Ömer Esen, Burcu Turanlı-Yıldız, Mevlüt Arslan, and Zeynep Petek Çakar. "From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications." Journal of Fungi 9, no. 10 (2023): 984. http://dx.doi.org/10.3390/jof9100984.
Full textWang, Qingzhao, Mark S. Ou, Y. Kim, L. O. Ingram, and K. T. Shanmugam. "Metabolic Flux Control at the Pyruvate Node in an Anaerobic Escherichia coli Strain with an Active Pyruvate Dehydrogenase." Applied and Environmental Microbiology 76, no. 7 (2010): 2107–14. http://dx.doi.org/10.1128/aem.02545-09.
Full textDwijayanti, Ari, Marko Storch, Guy-Bart Stan, and Geoff S. Baldwin. "A modular RNA interference system for multiplexed gene regulation." Nucleic Acids Research 50, no. 3 (2022): 1783–93. http://dx.doi.org/10.1093/nar/gkab1301.
Full textMiskovic, Ljubisa, Susanne Alff-Tuomala, Keng Cher Soh, et al. "A design–build–test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-scale kinetic models." Biotechnology for Biofuels 10, no. 1 (2017): 166. https://doi.org/10.1186/s13068-017-0838-5.
Full textSheremetieva, M. E., K. E. Anufriev, T. M. Khlebodarova, N. A. Kolchanov, and A. S. Yanenko. "Rational metabolic engineering of <i>Corynebacterium glutamicum</i> to create a producer of L-valine." Vavilov Journal of Genetics and Breeding 26, no. 8 (2023): 743–57. http://dx.doi.org/10.18699/vjgb-22-90.
Full textPyne, Michael E., Stanislav Sokolenko, Xuejia Liu, et al. "Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum." Applied and Environmental Microbiology 82, no. 17 (2016): 5375–88. http://dx.doi.org/10.1128/aem.01354-16.
Full textChoi, Bo Hyun, Hyun Joon Kang, Sun Chang Kim, and Pyung Cheon Lee. "Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae." Microorganisms 10, no. 3 (2022): 650. http://dx.doi.org/10.3390/microorganisms10030650.
Full textParamasivan, Kalaivani, Aneesha Abdulla, Nabarupa Gupta, and Sarma Mutturi. "In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement." Integrative Biology 14, no. 2 (2022): 25–36. http://dx.doi.org/10.1093/intbio/zyac003.
Full textPyne, Michael, Murray Moo-Young, Duane Chung, and C. Chou. "Antisense-RNA-Mediated Gene Downregulation in Clostridium pasteurianum." Fermentation 1, no. 1 (2015): 113–26. http://dx.doi.org/10.3390/fermentation1010113.
Full textDeeba, Farha, Kukkala Kiran Kumar, Girish H. Rajacharya, and Naseem A. Gaur. "Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides." Journal of Fungi 7, no. 11 (2021): 967. http://dx.doi.org/10.3390/jof7110967.
Full textNeves, Rui P. P., Bruno Araújo, Maria J. Ramos, and Pedro A. Fernandes. "Feedback Inhibition of DszC, a Crucial Enzyme for Crude Oil Biodessulfurization." Catalysts 13, no. 4 (2023): 736. http://dx.doi.org/10.3390/catal13040736.
Full textHuang, Mingtao, Yunpeng Bai, Staffan L. Sjostrom, et al. "Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast." Proceedings of the National Academy of Sciences 112, no. 34 (2015): E4689—E4696. http://dx.doi.org/10.1073/pnas.1506460112.
Full textPan, Guohui, Zhengren Xu, Zhikai Guo, et al. "Discovery of the leinamycin family of natural products by mining actinobacterial genomes." Proceedings of the National Academy of Sciences 114, no. 52 (2017): E11131—E11140. http://dx.doi.org/10.1073/pnas.1716245115.
Full textDarbani, Behrooz. "Genome Evolutionary Dynamics Meets Functional Genomics: A Case Story on the Identification of SLC25A44." International Journal of Molecular Sciences 22, no. 11 (2021): 5669. http://dx.doi.org/10.3390/ijms22115669.
Full textWiedemann, Beate, and Eckhard Boles. "Codon-Optimized Bacterial Genes Improve l-Arabinose Fermentation in Recombinant Saccharomyces cerevisiae." Applied and Environmental Microbiology 74, no. 7 (2008): 2043–50. http://dx.doi.org/10.1128/aem.02395-07.
Full textCarlson, Ross, David Fell, and Friedrich Srienc. "Metabolic pathway analysis of a recombinant yeast for rational strain development." Biotechnology and Bioengineering 79, no. 2 (2002): 121–34. http://dx.doi.org/10.1002/bit.10305.
Full textYe, Changchuan, Yuting Yang, Xi Chen, et al. "Metabolic engineering of Escherichia coli BW25113 for the production of 5-Aminolevulinic Acid based on CRISPR/Cas9 mediated gene knockout and metabolic pathway modification." Journal of Biological Engineering 16, no. 1 (2022). http://dx.doi.org/10.1186/s13036-022-00307-7.
Full textYang, Yuting, Yuhong Zou, Xi Chen, et al. "Metabolic engineering of Escherichia coli for the production of 5-aminolevulinic acid based on combined metabolic pathway modification and reporter-guided mutant selection (RGMS)." Biotechnology for Biofuels and Bioproducts 17, no. 1 (2024). http://dx.doi.org/10.1186/s13068-024-02530-4.
Full textYang, Qiang, Dongbo Cai, Wenshou Chen, Huiying Chen, and Wei Luo. "Combined metabolic analyses for the biosynthesis pathway of l-threonine in Escherichia coli." Frontiers in Bioengineering and Biotechnology 10 (September 9, 2022). http://dx.doi.org/10.3389/fbioe.2022.1010931.
Full textHerman, Nicolaus A., Jeffrey Li, Ripika Bedi, et al. "Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4." Applied and Environmental Microbiology 83, no. 2 (2016). http://dx.doi.org/10.1128/aem.02942-16.
Full textXiao, Yubei, Xuemei Tan, Qiaoning He та Shihui Yang. "Systematic metabolic engineering of Zymomonas mobilis for β-farnesene production". Frontiers in Bioengineering and Biotechnology 12 (17 травня 2024). http://dx.doi.org/10.3389/fbioe.2024.1392556.
Full textHao, Yanan, Xuewei Pan, Guomin Li, et al. "Construction of a plasmid-free l-leucine overproducing Escherichia coli strain through reprogramming of the metabolic flux." Biotechnology for Biofuels and Bioproducts 16, no. 1 (2023). http://dx.doi.org/10.1186/s13068-023-02397-x.
Full textLo, Jonathan, Chao Wu, Jonathan R. Humphreys, et al. "Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium." mSystems, March 27, 2023. http://dx.doi.org/10.1128/msystems.01274-22.
Full textRajacharya, Girish H., Ashima Sharma, and Syed Shams Yazdani. "Proteomics and metabolic burden analysis to understand the impact of recombinant protein production in E. coli." Scientific Reports 14, no. 1 (2024). http://dx.doi.org/10.1038/s41598-024-63148-y.
Full textLi, Zhongcai, Qian Liu, Jiahui Sun, et al. "Multivariate modular metabolic engineering for enhanced l-methionine biosynthesis in Escherichia coli." Biotechnology for Biofuels and Bioproducts 16, no. 1 (2023). http://dx.doi.org/10.1186/s13068-023-02347-7.
Full textWan, Yupeng, Hongchen Liu, Mo Xian, and Wei Huang. "Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18." Microbial Cell Factories 20, no. 1 (2021). http://dx.doi.org/10.1186/s12934-021-01731-y.
Full textLi, Zhenxin, Songbai Yang, Zhengyu Zhang, et al. "Enhancement of acarbose production by genetic engineering and fed-batch fermentation strategy in Actinoplanes sp. SIPI12-34." Microbial Cell Factories 21, no. 1 (2022). http://dx.doi.org/10.1186/s12934-022-01969-0.
Full textZhu, Zhijian, Manyu Zhang, Dandan Liu, et al. "Development of the thermophilic fungus Myceliophthora thermophila into glucoamylase hyperproduction system via the metabolic engineering using improved AsCas12a variants." Microbial Cell Factories 22, no. 1 (2023). http://dx.doi.org/10.1186/s12934-023-02149-4.
Full textBlázquez, Blas, and Juan Nogales. "Rational Design Assisted by Evolutionary Engineering Allows (De)Construction and Optimization of Complex Phenotypes in Pseudomonas putida KT2440." Microbial Biotechnology 18, no. 3 (2025). https://doi.org/10.1111/1751-7915.70132.
Full textHuang, Jia-jun, Tao Wei, Zhi-wei Ye, et al. "Microbial Cell Factory of Baccatin III Preparation in Escherichia coli by Increasing DBAT Thermostability and in vivo Acetyl-CoA Supply." Frontiers in Microbiology 12 (January 12, 2022). http://dx.doi.org/10.3389/fmicb.2021.803490.
Full text