Academic literature on the topic 'Raychaudhuri'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raychaudhuri.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Raychaudhuri"
Fenton, T. W. "Kunal Raychaudhuri." Psychiatric Bulletin 27, no. 10 (October 2003): 398. http://dx.doi.org/10.1017/s0955603600003299.
Full textFenton, T. W. "Kunal Raychaudhuri." BMJ 326, no. 7403 (June 19, 2003): 1401—c—1401. http://dx.doi.org/10.1136/bmj.326.7403.1401-c.
Full textFenton, T. W. "Kunal Raychaudhuri." Psychiatric Bulletin 27, no. 10 (October 2003): 398. http://dx.doi.org/10.1192/pb.27.10.398.
Full textRaychaudhuri, A. K. "Raychaudhuri Replies:." Physical Review Letters 81, no. 22 (November 30, 1998): 5033. http://dx.doi.org/10.1103/physrevlett.81.5033.
Full textCervantes, Aldrin. "Evolution of universe from Raychaudhuri equation for membranes." Modern Physics Letters A 34, no. 22 (July 20, 2019): 1950172. http://dx.doi.org/10.1142/s0217732319501724.
Full textPesci, Alessandro. "Effective Null Raychaudhuri Equation." Particles 1, no. 1 (October 23, 2018): 230–37. http://dx.doi.org/10.3390/particles1010017.
Full textKar, Sayan. "Generalized Raychaudhuri equations: Examples." Physical Review D 53, no. 4 (February 15, 1996): 2071–77. http://dx.doi.org/10.1103/physrevd.53.2071.
Full textGuo, Minyong, Yu Tian, Xiaoning Wu, and Hongbao Zhang. "From Prigogine to Raychaudhuri." Classical and Quantum Gravity 34, no. 3 (January 10, 2017): 035013. http://dx.doi.org/10.1088/1361-6382/aa54a0.
Full textEllis, George F. R. "On the Raychaudhuri equation." Pramana 69, no. 1 (July 2007): 15–22. http://dx.doi.org/10.1007/s12043-007-0107-4.
Full textWANAS, M. I., and M. A. BAKRY. "EFFECT OF SPIN–TORSION INTERACTION ON RAYCHAUDHURI EQUATION." International Journal of Modern Physics A 24, no. 27 (October 30, 2009): 5025–32. http://dx.doi.org/10.1142/s0217751x09046291.
Full textDissertations / Theses on the topic "Raychaudhuri"
Sebastianutti, Marco. "Geodesic motion and Raychaudhuri equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18755/.
Full textBorgman, Jacob. "Fluctuations of the expansion : the Langevin-Raychaudhuri equation /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.
Find full textAdviser: Larry H. Ford. Submitted to the Dept. of Physics. Includes bibliographical references (leaves 117-120). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Santos, Crislane de Souza. "Condi??es de energia de hawking e ellis e a equa??o de raychaudhuri." Universidade Federal do Rio Grande do Norte, 2011. http://repositorio.ufrn.br:8080/jspui/handle/123456789/16573.
Full textIn the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.
Na teoria da Relatividade Geral de Einstein as equa??es de campo relacionam a geometria do espa?o-tempo com o conte?do de mat?ria e de energia, fontes do campo gravitacional. Esse conte?do ? descrito por um tensor de segunda ordem, conhecido como tensor energia-momento. Por outro lado, os tensores energia-momento que possuem significado f?sico n?o s?o especificados por essa teoria. Na d?cada de 70, Hawking e Ellis estabeleceram algumas condi??es, consideradas plaus?veis do ponto de vista f?sico, com o intuito de limitar as arbitrariedades desses tensores. Essas condi??es ficaram conhecidas como condi??es de energia de Hawking-Ellis, desempenham pap?is importantes no cen?rio da gravita??o. Elas s?o largamente usadas como poderosas ferramentas de an?lise, desde a demonstra??o de importantes teoremas relativos ao comportamento de campos gravitacionais e geometrias associadas, comportamento qu?ntico da gravita??o, at? as an?lises de modelos cosmol?gicos. Nesta disserta??o apresentamos uma dedu??o rigorosa das v?rias condi??es de energia em voga atualmente na literatura cient?fica, tais como: Condi??o de Energia Nula (NEC), Condi??o de Energia Fraca (WEC), Condi??o de Energia Forte (SEC), Condi??o de Energia Dominante (DEC) e Condi??o de Energia Dominante Nula (NDEC). Tendo em mente as aplica??es mais corriqueiras em Gravita??o e Cosmologia, as dedu??es foram feitas inicialmente para um tensor energia-momento de um fluido perfeito generalizado e depois estendidas aos campos escalares com acoplamento m?nimo e n?o-m?nimo ao campo gravitacional. Apresentamos tamb?m um estudo sobre as poss?veis viola??es de algumas dessas condi??es de energia, visando o estudo da natureza singular de algumas solu??es exatas da Relatividade Geral de Einstein, em 1955, o f?sico indiano Raychaudhuri derivou uma equa??o que hoje ? considerada fundamental para o estudo da atra??o gravitacional da mat?ria, a qual ficou conhecida como equa??o de Raychaudhuri. Essa c?lebre equa??o ? considerada o alicerce da compreens?o da atra??o gravitacional em Astrof?sica e Cosmologia e dos teoremas de Singularidades, como por exemplo, o teorema de Hawking e Penrose sobre a singularidade do colapso gravitacional. Nesta disserta??o derivamos a equa??o de Raychaudhuri, o teorema de Frobenius e o teorema da Focaliza??o para congru?ncias tipo-tempo e tipo-nulas de uma variedade pseudo-riemanniana. Discutimos o significado geom?trico e f?sico dessa equa??o, sua conex?o com as condi??es de energia, e algumas de suas in?meras aplica??es.
Santos, Crislane de Souza. "A equa??o de Raychaudhuri e o car?ter n?o-atrativo da gravidade f(R)." PROGRAMA DE P?S-GRADUA??O EM F?SICA, 2017. https://repositorio.ufrn.br/jspui/handle/123456789/23654.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-07-18T14:28:54Z (GMT) No. of bitstreams: 1 CrislaneDeSouzaSantos_TESE.pdf: 859033 bytes, checksum: 6c4933c54ee1e77f0ea6be3839fc13c1 (MD5)
Made available in DSpace on 2017-07-18T14:28:54Z (GMT). No. of bitstreams: 1 CrislaneDeSouzaSantos_TESE.pdf: 859033 bytes, checksum: 6c4933c54ee1e77f0ea6be3839fc13c1 (MD5) Previous issue date: 2017-03-24
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES)
A evid?ncia observacional da expans?o acelerada do Universo tem sido a principal raz?o para uma revis?o da evolu??o cosmol?gica como previsto pela Relatividade Geral (RG). Atualmente existe duas principais abordagens para resolver este problema: pela introdu??o nas equa??es de Einstein de um termo o qual representa um novo tipo de fluido (a chamada energia escura) possuindo caracter?sticas ex?ticas ou pela modifica??o da teoria de gravita??o. Nesta tese n?s focamos na segunda abordagem, particularmente, as teorias conhecidas como teorias f(R) de gravidade as quais t?m recebido muita aten??o nos ?ltimos anos. Neste contexto, a equa??o de Raychaudhuri permite examinar a estrutura do espa?o-tempo como um todo sem solu??es espec?ficas das equa??es de Einstein, desempenhando assim um papel central para a compreens?o da atra??o gravitacional em Astrof?sica e Cosmologia. Na teoria da Relatividade Geral sem uma constante cosmol?gica, uma contribui??o n?o-positiva da geometria do espa?o-tempo a equa??o de Raychaudhuri ? usualmente interpretada como a manifesta??o do car?ter atrativo da gravidade. Neste caso, condi??es de energia espec?ficas - de fato a condi??o de energia forte - deve ser assumida, a fim de garantir o car?cter atrativo. No contexto das teorias f(R) de gravidade, no entanto, mesmo assumindo as condi??es de energia usuais pode-se ter uma contribui??o positiva para a equa??o de Raychaudhuri. Al?m de nos fornecer uma maneira simples de explicar a observada expans?o acelerada do Universo, este fato abre a possibilidade de um car?ter repulsivo deste tipo de gravidade. Nesta tese n?s abordamos o car?cter atrativo/n?o-atrativo da gravidade f(R) ? luz da equa??o de Raychaudhuri e fazemos uso da condi??o de energia forte, juntamente com estimativas recentes dos par?metros cosmogr?ficos, para colocar limites em uma classe paradigm?tica de teorias f(R) de gravidade.
The observational evidence of the accelerated expansion of the Universe has been the main reason for a revision of the cosmological evolution as predicted by General Relativity (GR). Currently there are two main approaches to solving this problem: by introducing in the Einstein?s equations a term which represent a new kind of fluid (the so-called dark energy possessing exotic features) or by the modification of the gravitation theory. In this thesis we focus on the second approach, particularly the theories know as f(R) theories of gravity, which have received many attention in the last years. In this framework, the Raychaudhuri equation makes possible to examine the whole of spacetime structures without specific solutions of Einstein?s equations, playing so a central role to the understanding of gravitational attraction in Astrophysics and Cosmology. In the general relativity theory of gravity without a cosmological constant, a non-positive contribution from the spacetime to Raychaudhuri?s equation is usually interpreted as manifestation of the attractive character of gravity. In this case, particular energy conditions - indeed the strong energy condition - must be assumed in order to guarantee this attractive character. In the context of f(R) theories of gravity however, even assuming the usual energy conditions we may have a positive contribution to Raychaudhuri?s equation. Besides giving us a simple way to explain the observed accelerated expansion of the Universe, this fact opens the possibility of a repulsive character of this kind of gravity. In this thesis we address the attractive/non-attractive character of f(R) theories of gravity at the light of Raychaudhuri?s equation and make use of the strong energy condition, jointly with recent estimated values for the cosmographic parameters, in order to put bounds on a paradigmatic class of f(R) theories of gravity.
Candeloro, Alessandro. "Equazioni di Raychaudhuri in un universo di Einstein - Cartan e effetti cosmologici dovuti ad un fluido di spin." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14090/.
Full textBooks on the topic "Raychaudhuri"
Penderel, Moon. Divide and quit: An eye-witness account of the partition of India ; [with contributions from Mark Tully and Tapan Raychaudhuri]. Delhi: Oxford University Press, 1998.
Find full textJ, Fennelly A., and United States. National Aeronautics and Space Administration., eds. Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density. [Washington DC: National Aeronautics and Space Administration, 1988.
Find full textK, Raychaudhuri A., Joshi Pankaj S, and Inter-University Centre for Astronomy and Astrophysics., eds. Singularities, black holes, and cosmic censorship: On the fortieth anniversary of the Raychaudhuri equation. Pune, India: Inter-University Centre for Astronomy and Astrophysics, 1996.
Find full textP. C. Vaidya (Other Contributor), A. K. Raychaudhuri (Other Contributor), and N. Dadhich (Other Contributor), eds. A Random walk in relativity and cosmology: Essays in honour of P.C. Vaidaya and A.K. Raychaudhuri. Wiley, 1985.
Find full text1918-, Vaidya P. C., Raychaudhuri A. K, and Dadhich N, eds. A Random walk in relativity and cosmology: Essays in honour of P.C. Vaidaya and A.K. Raychaudhuri. New York: Wiley, 1985.
Find full textRaychaudhuri, Soumya. Computational Text Analysis. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198567400.001.0001.
Full textAina Bhangte Bhangte: Conversations with R K Dasgupta, Badal Sircar, Tapan Raychaudhuri, Mrinal Sen, Sankha Ghosh, P.Lal, Father Detienne, Gayatri Chakravorty Spivak, Jyotibhushan Chaki, Alokeranjan Dasgupta, Sisir Kumar Das, Dipendu Chakraborty, Buddhadev Dasgupta and Adhir Biswas. Kolkata, India: Gangchil, 2011.
Find full textBook chapters on the topic "Raychaudhuri"
"Appendix B. From The Jacobi, To A Riccati, To The Raychaudhuri Equation." In Global Lorentzian Geometry, 573–86. Boca Raton \ London \ New York: Crc Press, 2017. http://dx.doi.org/10.1201/9780203753125-17.
Full textRaychaudhuri, Soumya. "Using text in Sequence Analysis." In Computational Text Analysis. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198567400.003.0011.
Full textConference papers on the topic "Raychaudhuri"
"Keynote Speaker - Prof. Dipankar Raychaudhuri." In 2007 2nd International Conference on Communication Systems Software and Middleware. IEEE, 2007. http://dx.doi.org/10.1109/comswa.2007.382547.
Full textBORGMAN, J., and L. H. FORD. "QUANTUM STRESS TENSOR FLUCTUATIONS AND RAYCHAUDHURI’S EQUATION." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0278.
Full text