Academic literature on the topic 'Raychaudhuri equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raychaudhuri equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Raychaudhuri equation"
Pesci, Alessandro. "Effective Null Raychaudhuri Equation." Particles 1, no. 1 (October 23, 2018): 230–37. http://dx.doi.org/10.3390/particles1010017.
Full textEllis, George F. R. "On the Raychaudhuri equation." Pramana 69, no. 1 (July 2007): 15–22. http://dx.doi.org/10.1007/s12043-007-0107-4.
Full textCervantes, Aldrin. "Evolution of universe from Raychaudhuri equation for membranes." Modern Physics Letters A 34, no. 22 (July 20, 2019): 1950172. http://dx.doi.org/10.1142/s0217732319501724.
Full textDadhich, Naresh. "Singularity: Raychaudhuri equation once again." Pramana 69, no. 1 (July 2007): 23–29. http://dx.doi.org/10.1007/s12043-007-0108-3.
Full textWANAS, M. I., and M. A. BAKRY. "EFFECT OF SPIN–TORSION INTERACTION ON RAYCHAUDHURI EQUATION." International Journal of Modern Physics A 24, no. 27 (October 30, 2009): 5025–32. http://dx.doi.org/10.1142/s0217751x09046291.
Full textStepanov, Sergey E., and Josef Mikeš. "The generalized Landau–Raychaudhuri equation and its applications." International Journal of Geometric Methods in Modern Physics 12, no. 08 (September 2015): 1560026. http://dx.doi.org/10.1142/s0219887815600269.
Full textStavrinos, Panayiotis C., and Maria Alexiou. "Raychaudhuri equation in the Finsler–Randers space-time and generalized scalar-tensor theories." International Journal of Geometric Methods in Modern Physics 15, no. 03 (February 20, 2018): 1850039. http://dx.doi.org/10.1142/s0219887818500391.
Full textVagenas, Elias C., Lina Alasfar, Salwa M. Alsaleh, and Ahmed Farag Ali. "The GUP and quantum Raychaudhuri equation." Nuclear Physics B 931 (June 2018): 72–78. http://dx.doi.org/10.1016/j.nuclphysb.2018.04.004.
Full textChakraborty, Sumanta, Dawood Kothawala, and Alessandro Pesci. "Raychaudhuri equation with zero point length." Physics Letters B 797 (October 2019): 134877. http://dx.doi.org/10.1016/j.physletb.2019.134877.
Full textFennelly, A. J., Jean P. Krisch, John R. Ray, and Larry L. Smalley. "Including spin in the Raychaudhuri equation." Journal of Mathematical Physics 32, no. 2 (February 1991): 485–87. http://dx.doi.org/10.1063/1.529439.
Full textDissertations / Theses on the topic "Raychaudhuri equation"
Borgman, Jacob. "Fluctuations of the expansion : the Langevin-Raychaudhuri equation /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.
Find full textAdviser: Larry H. Ford. Submitted to the Dept. of Physics. Includes bibliographical references (leaves 117-120). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Sebastianutti, Marco. "Geodesic motion and Raychaudhuri equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18755/.
Full textSantos, Crislane de Souza. "Condi??es de energia de hawking e ellis e a equa??o de raychaudhuri." Universidade Federal do Rio Grande do Norte, 2011. http://repositorio.ufrn.br:8080/jspui/handle/123456789/16573.
Full textIn the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.
Na teoria da Relatividade Geral de Einstein as equa??es de campo relacionam a geometria do espa?o-tempo com o conte?do de mat?ria e de energia, fontes do campo gravitacional. Esse conte?do ? descrito por um tensor de segunda ordem, conhecido como tensor energia-momento. Por outro lado, os tensores energia-momento que possuem significado f?sico n?o s?o especificados por essa teoria. Na d?cada de 70, Hawking e Ellis estabeleceram algumas condi??es, consideradas plaus?veis do ponto de vista f?sico, com o intuito de limitar as arbitrariedades desses tensores. Essas condi??es ficaram conhecidas como condi??es de energia de Hawking-Ellis, desempenham pap?is importantes no cen?rio da gravita??o. Elas s?o largamente usadas como poderosas ferramentas de an?lise, desde a demonstra??o de importantes teoremas relativos ao comportamento de campos gravitacionais e geometrias associadas, comportamento qu?ntico da gravita??o, at? as an?lises de modelos cosmol?gicos. Nesta disserta??o apresentamos uma dedu??o rigorosa das v?rias condi??es de energia em voga atualmente na literatura cient?fica, tais como: Condi??o de Energia Nula (NEC), Condi??o de Energia Fraca (WEC), Condi??o de Energia Forte (SEC), Condi??o de Energia Dominante (DEC) e Condi??o de Energia Dominante Nula (NDEC). Tendo em mente as aplica??es mais corriqueiras em Gravita??o e Cosmologia, as dedu??es foram feitas inicialmente para um tensor energia-momento de um fluido perfeito generalizado e depois estendidas aos campos escalares com acoplamento m?nimo e n?o-m?nimo ao campo gravitacional. Apresentamos tamb?m um estudo sobre as poss?veis viola??es de algumas dessas condi??es de energia, visando o estudo da natureza singular de algumas solu??es exatas da Relatividade Geral de Einstein, em 1955, o f?sico indiano Raychaudhuri derivou uma equa??o que hoje ? considerada fundamental para o estudo da atra??o gravitacional da mat?ria, a qual ficou conhecida como equa??o de Raychaudhuri. Essa c?lebre equa??o ? considerada o alicerce da compreens?o da atra??o gravitacional em Astrof?sica e Cosmologia e dos teoremas de Singularidades, como por exemplo, o teorema de Hawking e Penrose sobre a singularidade do colapso gravitacional. Nesta disserta??o derivamos a equa??o de Raychaudhuri, o teorema de Frobenius e o teorema da Focaliza??o para congru?ncias tipo-tempo e tipo-nulas de uma variedade pseudo-riemanniana. Discutimos o significado geom?trico e f?sico dessa equa??o, sua conex?o com as condi??es de energia, e algumas de suas in?meras aplica??es.
Books on the topic "Raychaudhuri equation"
J, Fennelly A., and United States. National Aeronautics and Space Administration., eds. Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density. [Washington DC: National Aeronautics and Space Administration, 1988.
Find full textK, Raychaudhuri A., Joshi Pankaj S, and Inter-University Centre for Astronomy and Astrophysics., eds. Singularities, black holes, and cosmic censorship: On the fortieth anniversary of the Raychaudhuri equation. Pune, India: Inter-University Centre for Astronomy and Astrophysics, 1996.
Find full textBook chapters on the topic "Raychaudhuri equation"
"Appendix B. From The Jacobi, To A Riccati, To The Raychaudhuri Equation." In Global Lorentzian Geometry, 573–86. Boca Raton \ London \ New York: Crc Press, 2017. http://dx.doi.org/10.1201/9780203753125-17.
Full textConference papers on the topic "Raychaudhuri equation"
BORGMAN, J., and L. H. FORD. "QUANTUM STRESS TENSOR FLUCTUATIONS AND RAYCHAUDHURI’S EQUATION." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0278.
Full text