Dissertations / Theses on the topic 'Rayon des fibres'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Rayon des fibres.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Freeman, John James. "Studies in the development and modification of pore structure in activated viscose rayon chars." Thesis, Brunel University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235895.
Full textShodjaie, Afsané. "Contribution à l'étude de la propagation de la lumière dans les fibres optiques application, étude de l'influence du rayon de courbure sur le mode de propagation d'une fibre optique monomode /." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb376011884.
Full textSHODJAIE, GHAZAIE AFSANE. "Contribution a l'etude de la propagation de la lumiere dans les fibres optiques : application, etude de l'influence du rayon de courbure sur le mode de propagation d'une fibre optique monomode." Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR13186.
Full textDassi, Carhel. "La fibrinographie : une méthode multi-longueurs d’ondes pour la détermination de la structure du caillot en plasma." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAS028.
Full textThe physiological role of the clot is to avoid excessive bleeding in the presence of a vascular breach. Once this function is filled, the clot must be able to be easily destroyed, so that it is not transported in the venous system and does not hamper blood circulation. The formation of a fibrin clot and its lysis are key processes of hemostasis, implying simultaneously the polymerization of the fibrinogen monomers in a fibrin fibers network, and the destruction of this constituted network.Although this network controls the physical and mechanical properties of the clot, its structure at scales smaller than the micron is poorly characterized. The main problem in the physical characterization of clot in clinical settings is the current absence of a quantitative, sensitive and reproducible measurement method.We demonstrated in this work, thanks to our method using several wavelengths, that the analysis of the visible spectra of light transmitted through a clot allows to determine simultaneously, quantitatively and in quasi-physiological conditions, several essential parameters of structure of the fibrin clot, namely the number of protofibrils per fibrin fibers, the radius and the density of fibers, and various times of clotting and lysis of the clot. This method was validated by the results with CV inferior to 6 % under all test conditions and various plasmatic profiles: normal, hypo / hyper coagulant and hypo / hyper fibrinolytic. This demonstrates the robustness and reliability of the measurement method when measuring both clotting and clot lysis.This spectrophotometric method was implemented on a modified automaton dedicated to diagnosis of patients presenting hemostatic disorders. The clinical information and the interests expected from this new test concern at the same time the quality of the fibrin network, its accelerated lysis or its resistance to fibrinolysis, and the resultant of the coagulo-lytic balance
Modh, Haresh A. "Chemical treatment and adhesion in internally reinforced rayon fibers." Ohio : Ohio University, 1988. http://www.ohiolink.edu/etd/view.cgi?ohiou1182867766.
Full textValle, Orero Jessica. "Dynamics and thermal behaviour of films of oriented DNA fibres investigated using neutron scattering and calorimetry techniques." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00734670.
Full textGirard, Sylvain. "Analyse de la réponse des fibres optiques soumises à divers environnements radiatifs." Saint-Etienne, 2003. http://www.theses.fr/2003STET4004.
Full textThis thesis presents a study of the radiation responses of optical fibers under different radiative environments (pulsed X rays, steady state g rays, cw UV). The first chapter describes the possible applications for the fibers in different nuclear fields and the radiation-induced losses phenomenon. In the second one, we describe our experimental set-up used to characterize the fiber radiation responses and the radiation-induced defects. In the third chapter, the radiation responses at 1. 31 and 1. 55 æm of the fibers are classified with respect to their core and cladding dopants and process parameters. The following chapter gives an analysis of the different mechanisms related to the origin of the radiation-induced losses. The last part of the thesis presents the comparison between the effects of g-rays and UV exposure on the optical fibers. From our whole study, we propose some rules for the design of radiation-hardened fibers
Naouar, Naïm. "Analyse mésoscopique par éléments finis de la déformation de renforts fibreux 2D et 3D à partir de microtomographies X." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0088/document.
Full textThe simulation at meso-scale of textile composite reinforcement deformation provides important information. In particular, it gives the direction and density of the fibres that condition the permeability of the textile reinforcement and the mechanical properties of the final composite. These meso FE analyses are highly dependent on the quality of the initial geometry of the model. Some software have been developed to describe composite reinforcement geometries. The obtained geometries imply simplification that can disrupt the reinforcement deformation computation. The present work presents a direct method using computed microtomography to determine finite element models based on the real geometry of the textile reinforcement. The FE model is obtained for any specificity or variability of the textile reinforcement, more or less complex. The yarns interpenetration problems are avoided. These models are used with two constitutive laws : a hypoelastic law and a hyperelastic one. An analysis of their properties is presented and their implementation in the software ABAQUS is detailed. Finally, an identification method is presented and the results of forming simulations are compared to experimental tests, which shows a good fit between the both
Delfosse, Caroline. "Propriétés physico-chimiques et biologiques de fibres carbonées expérimentales." Lille 2, 2000. http://www.theses.fr/2000LIL2D001.
Full textMartinez, Valérie. "Influence des effets thermiques et mécaniques sur la relaxation des préformes et des fibres optiques à base de silice : étude par diffusion de la lumière et par diffusion des rayons X." Lyon 1, 2004. http://www.theses.fr/2004LYO10181.
Full textBusson, Bertrand. "Structure moléculaire et supramoléculaire des fibres de kératine : analyse par diffraction des rayons X et modélisation." Paris 11, 1998. http://www.theses.fr/1998PA112072.
Full textLe, Marec Nathalie. "Influence de l'irradiation précoce du cervelet aux rayons X sur l'apprentissage et la mémorisation chez le rat." Rouen, 1995. http://www.theses.fr/1995ROUES030.
Full textChelaghma, Saber Ayoub. "Fonctionnalisation de composites C/PEKK pour application aérospatiale : caractérisation, modélisation et influence sur les propriétés du composite." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30362.
Full textReducing aircraft weight is one of the major challenges facing the aerospace industry. In order to achieve the ambitious goals of fuel consumption and emission reduction, carbon-fiber reinforced composites have been introduced to the market. These materials are attracting increasing interest, however, they have low electrical conductivity to ensure protection against lightning strike. For this reason, composites filled with conductive particles are the subject of ongoing research activities. The objective is the development of multifunctional composites with enhanced electrical properties. Actually, the most used thermoplastic matrix is PEEK, but this polymer remains expensive, and its processing temperature is high. For this purpose, thermoplastic matrices, such as PEKK, are again studied. Between the raw material and the final part, the thermoplastic matrix undergoes several thermal steps with high temperature exposure (impregnation, consolidation, forming and assembly processes) during which its ability to crystallize evolves continuously. In order to evaluate the impact of the process and the composite constituents on its properties, crystallization has been the subject of particular attention. Two complementary experimental devices were used to characterize the crystallization. The heating stage, allows to apply a thermal cycle and observe the crystallization in optical microscopy and differential scanning calorimetry. The influence of carbon fibers and conductive fillers on the crystallization kinetics was evaluated. A decrease in crystallization times was observed through the increase of the nucleation rate. The collected data were used to develop a kinetic model identified through an original approach based on microscopic data. This model makes it possible to predict the crystallization kinetics of PEKK composites. Nevertheless, it does not make it possible to predict the final microstructure. However, the microstructure has a significant impact on mechanical properties as it has been proven through nano-indentation tests. To predict the final microstructure, a model based on the pixel coloring approach has been developed. The influence of carbon fibers has been introduced through the formation of a transcrystalline phase. A good correlation is found between the analytical approach, the simulation and the experimental data in terms of crystallization kinetics. Mechanical and electrical characterizations were performed to evaluate the performance of these new materials. On the studied materials, the mechanical response is not homogeneous as observed on tensile tests followed in stereo-correlation. The study of matter health shows the existence of defects, in particular, at the microstructure level. In order to take this particularity into account, it is thus necessary to describe the microstructure more finely. For this, X-ray tomography was used to characterize the composite. Recent developments in this technique allow, in combination with segmentation tools, to reconstruct a representative geometry of the material. This geometry is used to simulate the mechanical behaviour as well as the crystallization. The numerical simulations of an RVE are able to calculate the properties of a ply, then those of a laminate. This multi-scale modelling could reduce the number and cost of experimental campaigns. Thus, determining the properties of the final structure based on characterizations and simulation at the microstructure scale is a strategic scientific and industrial issue. This work is a contribution towards this approach
Blanchet, Thomas. "Influence des radiations (X, gamma, protons et électrons) sur les mesures par réseaux de Bragg à fibres optiques en environnement haute température." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSES045.
Full textOptical fiber temperature sensors have numerous advantages such as their small sizes, low weights and their immunity to a large band of the electromagnetic spectrum. The fiber Bragg gratings technology has the same advantages than the other optical sensors and is also characterized with an ultra-fast time response with a temperature accuracy better than 0.5°C. For nuclear environments such as near-Earth space or a nuclear reactor core the radiation – and the temperature – influence the performances of Bragg gratings. In this manuscript, we studied the behaviors of three gratings types: type I gratings are photo-inscribed with continuum or pulsed laser. They cannot resist to temperature higher than 400°C. Type R – Regenerated – gratings are done as type I with a further high-temperature treatment (> 600°C) to create a new grating resistant to temperatures exceeding 1000°C. Type II gratings are inscribed with femtosecond laser and are well-known to have a thermal stability as good as type R gratings. Regarding their responses to radiation and thermal constraints, type I gratings are unstable under radiations even with pre-thermal annealing (300°C). In addition, larger is the dose-rate or the accumulated dose larger the grating degradation is. Type R gratings are unstable under radiations at room temperature. However for the irradiation temperature above 150°C these gratings present an equivalent temperature error due to radiations of less than 1°C. After a thermal treatment at a temperature above 450°C, type II gratings are stable under radiations at room temperature (less than 1°C of radiation induced error)
Courtois, Loïc. "Monofilament entangled materials : relationship between microstructural properties and macroscopic behaviour." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0138.
Full textPlaying with the architecture of a material is a clever way of tailoring its properties for multi-functional applications. A lot of research have been made, in the past few years, on what is now referred to as “architectured materials” (metal foams, entangled materials, steel wool, etc), mostly for their capacity to be engineered in order to present specific properties, inherent to their architecture. In this context, some studies have been carried out concerning entangled materials but only a few on monofilament entangled materials. Such a material, with no filament ends, could exhibit interesting properties for shock absorption, vibration damping and ductility. In this study, entanglements were manually produced, using different types of wire, and submitted to constrained (inside a PTFE die) in-situ compressive tests within the laboratory tomograph. This technique enabled a 3D, non destructive, microstructural characterization of the complex architecture of these materials, along with the analysis of their macroscopic mechanical properties. The stiffness of this material was found to be in a 20-200 MPa range and homogeneous samples could be obtained, while lowering their stiffness, by pre-deforming the initial wire as a spring. Damping measurements were performed using different types of entanglements (constitutive materials, volume fraction, wire diameter, wire shape) under both monotonic and dynamic loadings and directly linked to the measurements of the number of contacts. The Dynamic Mechanical Analysis underlined the great capacity of this material to absorb energy with a loss factor of about 0.25 and damping was found to decrease with the stiffness of the entanglement. The mechanical properties of this material were first modeled using an analytical “beam” model based on the experimental evolution of the mean distance between contacts and a good agreement was found with the experimental results. In parallel, a Discrete Element Method was used in order to model the compressive behaviour of Monofilament Entangled Materials. Although purely elastic properties were taken into account in the model, a very good agreement with the experimental results was obtained by adjusting the friction coefficients of the model. This tends to prove that the plasticity of these entangled materials is rather due to the structure (friction) than to the constitutive material itself
Brichard, Benoît. "Systèmes à fibres optiques pour infrastructures nucléaires : du durcissement aux radiations à l'application." Montpellier 2, 2008. http://www.theses.fr/2008MON20182.
Full textThomas, Jérémie. "Impact de la nanostructuration des fibres dopées Erbium sur leurs performances : application aux contraintes du spatial." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20178/document.
Full textThis thesis focuses on the impact of nanostructuration on the performance of Erbium Doped Fiber in severe environment like Space. This study is motivated by the fact that no on-the-shell Erbium Doped Fiber can satisfy the space requirement, disabling the availability of the AOFD and stongly limiting the interest of the WDM technology for satellites. Several fiber based on different technologies have been tested in order to check their behavior under gamma radiations. We have defined an objective criterion for the selection of erbium doped fibers, and showed elements for hardening aluminum co-doped fibers, based solely on design parameters. In this way, we brought to the fore a radiation hardened fiber, based on silica nanoparticles, exhibiting a power decrease of 1 dB after a typical space mission. We also focused on EDFA modeling by proposing an evolved model taking into account non-linear effects due to the complex spectroscopy of Erbium. This model is completed by including irradiation effects thanks to a model such as Chen's one. The photobleaching effect that has been found to be strong is also considered
Herranz-Trillo, Fatima. "Disentangling structural complexity in proteins by decomposing SAXS data with chemometric approaches." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT044/document.
Full textMany biological systems are inherently polydisperse, presenting multiple coexisting species differing in size, shape or conformation (i.e. oligomeric mixtures, weakly bound complexes, and species appearing along amyloidogenic processes). The study of such complex systems is challenging due to the instability of the species involved, their low and interdependent relative concentrations, and the difficulties to isolate the pure components. In this thesis, I have developed methodological approaches to apply Small-Angle X-ray Scattering (SAXS), a low-resolution structural biology technique, to the study of polydisperse systems. As an additive technique, the SAXS pattern measured for a polydisperse sample corresponds to the concentration-weighted sum of the contributions from each of the individual components. However, decomposition of SAXS data into species-specific spectra and relative concentrations is laborious and burdened by ambiguity. In this thesis, I present an approach to decompose SAXS datasets into the individual components. This approach adapts the chemometrics Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) method to the specificities of SAXS data. Our method enables the rigorous and robust decomposition of SAXS data by simultaneously introducing different representations of these data and, consequently, emphasizing molecular changes at different time and structural resolution ranges. We have applied this approach, which we name COSMiCS (Complex Objective Structural analysis of Multi-Component Systems), to study two polydisperse systems: amyloid fibrillation by analysing time-dependent SAXSdata, and conformational fluctuations through the analysis of data obtained using on-line size-exclusion chromatography coupled to SAXS (SEC-SAXS). The importance of studying fibrillation processes lies in their implication in amyloidogenic pathologies such as Parkinson’s or Alzheimer’s diseases. There exist strong indications that soluble oligomeric species, and not mature fibrils, are the main cause of cytotoxicity and neuronal damage emphasizing the importance of characterizing early stages of fibrillation. The first application of our COSMiCS approach has allowed the study of the amyloidogenic mechanisms of insulin and the familial mutant E46K of ↵-synuclein, a Parkinson’s disease related protein. The analysis enables the structural characterization of all the species present as well as their kinetic transformations. The second part of the thesis is dedicated to the use of COSMiCS to analyze on-line SEC-SAXS experiments. Using synthetic data, I demonstrate the capacity of chemometric approaches to decompose complex chromatographic profiles. Using this approach, I have studied the conformational fluctuations in prolyl oligopeptidase (POP), a protein related to synaptic functions and neuronal development. In summary, this thesis presents a novel chemometrics approach that can be generally applied to any macromolecular mixture with a tuneable equilibrium that is amenableto SAXS. Transient biomolecular complexes, folding processes, or ligand-dependent structural rearrangements can be probed structurally using COSMiCS
Coda, Ryan. "A Study of Cellulose Based Biodegradable Foams and Sponges." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6961.
Full textLaurencin, Tanguy. "Étude de la rhéologie des suspensions de fibres non-newtoniennes par imagerie et simulation numérique 3D à l'échelle des fibres." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI013/document.
Full textThis study focuses on the processing of short fibre-reinforced polymer composites. The physical and mechanical properties of these materials are mainly affected by the position and orientation distribution of fibres induced during their forming. Thus, we analysed the flow-induced micro-mechanisms that arose at the fibre scale during the forming stage of these complex systems which behave as non-Newtonian fibre suspensions. For that purpose, an original approach was developed by combining 3D imaging technique and direct numerical simulation, both performed at the fibre scale. Hence, several model fibre suspensions with a non-Newtonian suspending fluid and with a concentration regime that ranged from dilute to concentrated were prepared . They were subjected to confined lubricated compression loadings using a rheometer mounted on a synchrotron X-ray microtomograph. Thanks to very short scanning times, 3D images of the evolving fibrous microstructures at high spatial resolution were recorded in real-time. These experiments were also simulated using a dedicated Finite Element library enabling an accurate description of fibre kinematics in complex suspending fluids thanks to high performance computation, level sets and adaptive anisotropic meshing. The efficiency of the numerical simulation from the dilute to semi-dilute concentration regimes was assessed through experimental and numerical comparisons.Then, we showed that the confinement effect and the non-Newtonian rheology of the suspending fluid had a weak effect on the fibre kinematics, if the fibres were sufficiently far from the compression platens, typically the fibre-platen distance should be larger than twice the fibre diameter. Otherwise, confinement effects occurred. Some extensions of the dumbbell model were proposed to correct the fibre kinematics in this flow conditions. In semi-dilute concentration, deviations of the fibre kinematics compared to the Jeffery’s predictions were also observed and related to hydrodynamic interactions between fibres. In this case, the predictions of Jeffery’s model and the related assumption of affine fibre motions are less relevant. In the concentrated regime, even if the overall orientation of fibre suspension could be astonishingly well described by using the Jeffery’s model, strong fluctuations on each fibre motion and rotation were observed. These deviations were induced by the numerous fibre-fibre contacts, which could be correctly predicted by the tube model
Harry, I. D. "Modification and characterisation of carbon fibre ion exchange media." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/14123.
Full textLe, Parc Rozenn. "Diffusion de rayonnements et relaxation structurale dans les verres de silice et préformes de fibres optiques." Lyon 1, 2002. http://www.theses.fr/2002LYO10109.
Full textPichot, Vincent. "Etudes structurales par diffusion des rayons X d'assemblées de nanotubes de carbone alignés : relation avec les mécanismes de croissance et les propriétés physiques." Paris 11, 2005. http://www.theses.fr/2005PA112187.
Full textThe present work shows how X-ray scattering technique allows one to get structural information on carbon nanotube macroscopic assemblies. Carpets of multi-wall nanotubes (nanotubes aligned perpendicularly to a substrate synthesized by catalytic chemical vapor deposition, at Laboratoire Francis Perrin at Saclay), fibers of nanotubes (synthesized by wet spinning process in a coagulating polymer bath, at Centre de Recherche Paul Pascal at Bordeaux) and “peapods” samples (fullerene molecules encapsulated inside the nanotubes) were studied. We show that for nanotube carpets, the growth mechanism of the nanotubes is a root growth mechanism and the nature of the catalytic particles responsible of the nucleation of the nanotubes are iron oxide: magnetite or maghemite. Quantitative study of the nanotubes orientational distribution allows us to show that very good alignments can be obtained in carpets. A preferential crystallographic growth axis is determined for the metallic nanowires encapsulated inside the nanotubes. For nanotube fibers, post-synthesis stretching treatments allow one to get better alignment of the nanotubes along the fiber axis : we quantify and model the improvement of alignment. The improvement of mechanical properties such as Young modulus and tensile strength with nanotube alignment is studied. In peapods samples, modeling of the experimental results allows one to determine the filling rate and the distance between fullerene molecules. The advantages of aligned peapods samples are underlined
Gillet, Pierre. "Validation d'un dosimètre patient temps réel basé sur fibre optique pour la tomodensitométrie X à l'aide de simulations Monte Carlo." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAE025.
Full textThis work focuses on the simulation of CT exam, and aims to validate a new real-time patient dose measurement method that uses a scintillating optical fiber. First, we studied our dosimeter’s energy response, and we showed that it was close to the response of the ion chambers currently used. Then, we successfully modeled a scanner, and found that during the exam, patient dose and measured dose were affected differently by parameters such as the table height, the patients positioning or the patients morphology. However, when accounting for such parameters, it was possible to compute the dose delivered to the patient during an exam using the scintillating fiber measurement. We consider that when coupled with monte-carlo simulations, this measurement could be used to estimate accurately the organ dose delivered during an exam
Albiser, Guy. "Etude des conformations et des transitions de forme de l'ADN et des polynucléotides par la diffraction RX de fibres et la modélisation moléculaire." Nancy 1, 1992. http://docnum.univ-lorraine.fr/public/SCD_T_1992_0017_ALBISER.pdf.
Full textAbou, El Kassimi Abderrahim. "Etude par diffraction R. X. : microscope optique et microsonde électronique des transitions conformationnelles du poly d(a-t)#2 et de l'intercalation de composes dans l'ADN en fibres." Nancy 1, 1992. http://www.theses.fr/1992NAN10038.
Full textLi, Jian-xing. "Coupling agent effects on the interfacial adhesion in a sheath/core type bicomponent fiber." Ohio : Ohio University, 1989. http://www.ohiolink.edu/etd/view.cgi?ohiou1182441608.
Full textAyadi, Abderrahmane. "Modélisation et analyses expérimentales basées sur la caractérisation microstructurale par imageries à rayons X : application aux composites thermoplastiques renforcés par des fibres de verre courtes." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10063.
Full textShort glass fibre reinforced thermoplastic composites have become widely used in the automotive sector. However, the operating conditions of these materials require accurate design modelling to prevent premature damage. In this context, designers rely on integrative computer simulations to consider the local microstructural effects induced by fibre orientations. However, the numerical results are not always in good agreement with the experimental measurements especially in places where the microstructure shows strong heterogeneity at different length scales. These heterogeneities correspond firstly to complex orientation and density distributions of fibres and secondly to the presence of microstructural defects such as weld lines or micrometric pores. These defects are difficult to integrate into the numerical simulations based on integrative approaches. This thesis presents two main contributions. The first is to characterize the influence of heterogeneities in a micrometric scale on the macroscopic properties in the vicinity of critical areas. The considered cases of application concern structural testing samples of polyamide 66 reinforced with 35% by weight of short glass fibres. The second contribution is to evaluate the effect of the fibre orientation and humidity conditioning level on damage mechanisms of damage and their evolution laws. The objective is to formulate a three-phase micromechanical damage model for predicting the cracking sites and simulate their propagation
Haji, Oussama. "Modèles de comportement de structures textiles : développement, identification, implémentation." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE3007.
Full textThe fibrous textile undergoes different mechanical loads, which induce strains and damage to the fabric at different scales. As a result, the mechanical properties of the final parts are drastically impacted. It is therefore essential topredict the feasibility of composite parts by the modelization and the simulation of the fabric preforming process.This task requires an appropriate mechanical behaviour of the fibrous textile. This behaviour is mainly a structural effect that depends essentially on the yarn interlacing and secondly on the yarn behaviour. Each yarn is composedof thousands of fibers; therefore, the objective of the present thesis is to establish a reliable numerical model ofslightly entangled and quasi-parallel fibers. The present work presents mainly: (i) a realistic representation of the fiber network geometry and (ii) a reliable simulation strategy to model the main phenomena at the fiber scale. To feed this approach, compaction tests were conducted on fiber network specimens of 40 polyester fibres. The experiments were combined with X-ray tomography image analysis. Using these tools, simulations of confined compaction on the same microstructure of the used specimen were performed on Abaqus®/Explicit. Beam finite elements were chosen to model the fibers and optimise the calculation cost. The normal contact behaviour between the fibers were was accurately modelled using the contact stiffness scaling and referring to Hertz contact model. The simulation strategy has been validated by comparing the mechanical response of the compaction experiment with the numerical one. The proposed model offers encouraging results in accordance with the real compaction test. More loading trajectories will be performed on a bundle of hundreds of fibers to gather more information on the microscopic scale (fiber scale), and then formulate a mechanical behaviour at the mesoscopic scale (yarn scale)
Cangialosi, Chiara. "Performances of Raman and Brillouin fiber-based sensing of temperature and strain in harsh environments." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES018/document.
Full textThis PhD thesis is conducted in the joint supervision of both the University Jean Monnet of Saint Etienne (France) and the University of Palermo (Italy) in collaboration with the French national agency for the management of radioactive wastes (ANDRA). The aim of the Thesis is to evaluate the performances of distributed optical fiber sensors (based on Raman and Brillouin scattering technologies) that will be employed for monitoring industrial site for deep geological disposal for high and long-lived intermediate level activity radioactive waste (HL-W and LL/IL-W, respectively), called Cigéo. In this context, the distributed optical fiber sensors will provide a time and spatial cartography of the strain and temperature inside the disposal cell. The severe environment of Cigéo requires the sensor evaluation taking into account the resulting degradation of the sensing optical fiber. The sensor response is affected by y-rays and hydrogen presences inside the storage cells. In both cases a decrease of the optical fiber transmission, due to the radiation or hydrogen induced attenuation (RIA or HIA) is observed and limits the sensing distance range of the sensor. Moreover, the two different environment constraints lead to errors in the temperature or strain evaluation for both sensor technologies. This Thesis work establishes the guidelines to select and design distributed optical fiber sensors suitable to operate in radiation environment such as Cigéo one
Bigler, Emmanuel. "Détecteurs d'images X grand champ : applications à la microscopie X de contact et à la microanalyse d'absorption avec le rayonnement synchrotron." Paris 11, 1986. http://www.theses.fr/1986PA112100.
Full textThis thesis presents an application of synchrotron radiation (ORSAY/DCI storage ring) to X-ray contact microscopy and X-ray absorption chemical microanalysis near an absorption edge. In a first part, high resolution photographic plates are used as images detectors. Two microradioqraphs of the sample are recorded at two different X-ray wavelengths chosen on each side of an absorption edge of the analysed element. The images are digitalised with a microdensitometer. Subsequent computer processing gives analytical charts of this element showing 5 to 10 μm spatial resolution and 2-3 cm2 field. The second part presents an X-ray image detector based on guided scintillation. The detector is designed to improve the limited performances of photographic detection for high flux quantitative X-ray image detection over keV. X-ray to visible image conversion is performed in an array of optical fibers with a scintillating liquid core. A spatial resolution close to the pitch of the fiber array (10 μm) is experimentally obtained. Applications of the detector to X-ray microscopy, X-ray micro-analysis and medical imaging with synchrotron radiation are described
Wilen, Linda, Daniel Norin, and Anna Eriksson. "Bomullens nya ansikte : Kan man finna ett material som kan agera substitut till bomullen för producenter inom yrkeskläder?" Thesis, Högskolan i Borås, Institutionen Textilhögskolan, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-20830.
Full textProgram: Textil produktutveckling med entreprenörs- och affärsinriktning
Lessard, François. "Validation d'un détecteur à fibre scintillante plastique pour la dosimétrie de photons aux énergies diagnostiques." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29448/29448.pdf.
Full textEl, Nabout Rita. "Modifications en fonction du vieillissement du phénotype collagénique de fibroblastes issus de fibrose sous cutanée induite par radiations gamma chez le porc : modulation par les fragments d'héparine." Paris 12, 1989. http://www.theses.fr/1989PA120039.
Full textLe, Thai Hung. "Rhéologie et microstructures des matériaux composites à matrice polymère thermodurcissable chargée minéralement et renforcée par des fibres de verre." Phd thesis, Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00369701.
Full textMarulier, Cyril. "Etudes multi-échelles des couplages entre les propriétés hygroélastiques des papiers et leur microstructure." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENI090/document.
Full textThe objective of this work is to study the coupling between the hygroelastic properties ofpapers and their microstructure. The use of images of models acquired by X-ray microtomographypapers allowed the characterization in an unprecedentedmanner of the evolutionofmicrostructural properties of thesematerials according to their production conditions andduring tests where they were placed in atmosphere at controlled relative humidity. These resultsprovide a new contribution to the knowledge of the statistical nature of the descriptorsof fibre properties (size and orientation) and their contacts (surface, bonding degree ratio), ofthe architecture of fibrous networks that papers constitute (number of fibre-to-fibre bonds)as well as of the size of the representative elementary volumes of microstructural and elasticproperties. Based on this information, various models, more or less sophisticated, were developedin the framework of the theory of homogenisation of discrete periodic structures todescribe the mechanical properties of paper. This approach sheds new light on the role offibre-to-fibre bonds on themechanical behaviour of thesematerials
Pierre, Philippe. "Dispositif optoélectronique utilisant une fibre optique en polymère pour la détection des rayons X. Application au diagnostic des états de surface des électrodes d'un dispositif haute tension sous vide." Toulouse 3, 1996. http://www.theses.fr/1996TOU30045.
Full textJauzein, Vincent. "Étude de la microstructure et du comportement mécanique de la fibre de soie." Phd thesis, École Nationale Supérieure des Mines de Paris, 2010. http://pastel.archives-ouvertes.fr/pastel-00540941.
Full textMofakhami, Eeva. "Effets du soudage par vibration sur la microstructure et le comportement en traction de polymères semi-cristallins renforcés par des fibres de verre." Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE006.
Full textVibration welding is a common process used in automotive industry to assembly polymer parts. For pristine polymers, welding ratio, defined as the ratio between weld strength and tensile strength of non-welded material, is close to 1. However, for glass-fiber reinforced polymers, welding ratios are around 0.6 at best. In order to understand this discrepancy, several grades of polyamide (PA) 6 and 66 reinforced with 30% glass fibers as well as polypropylene (PP) with 0, 20, 35 and 50 % glass fibers have been injected in plates and vibration welded. A linear relationship was obtained between tensile strength of welded and non-welded PA specimens and their glass fiber orientation. Correlations were also found when plotting weld strength of samples regarding their welded zone thickness. In addition, voids are present only in the welded zone of glass fiber reinforced specimens, indicating that these voids are due to reorientation of fibers during the welding process. Finally, finite element modeling of mechanical behavior up to failure has been applied on a meshed specimen with a welded zone. Results show an amplification and distribution of stresses in the three directions inside the welded zone due to geometrical confinement. This generated triaxiality promotes growth and coalescence of cavities in the welded zone, explaining the weakening of the macroscopic uniaxial stress at failure
Saad, Mohamed. "Études structurales à basse résolution par diffraction de rayons X synchrotron des fibres de collagène dans le tendon : Détermination des facteurs de structure, évaluation des méthodes du remplacement isomorphe et autres modélisations." Grenoble 1, 1994. http://www.theses.fr/1994GRE10187.
Full textMorana, Adriana. "Gamma-rays and neutrons effects on optical fibers and Bragg gratings for temperature sensors." Phd thesis, Université Jean Monnet - Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-01064993.
Full textQuinaud, Manuelle. "Étude structurale et fonctionnelle de PscE : PscF : PscG? un hétérotimère nécessaire à la biogenèse de l'aiguille de sécretion de type III de Pseudomonas aeruginosa." Grenoble 1, 2007. http://www.theses.fr/2007GRE10138.
Full textType III secretion systems are found in several Gram-negative bacteria. These nanomachines are involved in the transport of virulence effectors directly into the cytoplasm of Target cells. Pseudomonas aeruginosa, whose type III secretion needle is studied here, is the causative agent of a large number of nosocomial and chronic infections in cystic fibrosis patients. This system is composed of a base anchored in the double bacterial membrane and a hollow needle formed by a single polymerized protein (PscF in Pseudomonas aeruginosa). Within the bacterial cytoplasm, PscF requires two distinct chaperones for stabilisation before its secretion, without which the entire system is nonfunctionnal. The 2. 0 A X-ray crystal structure orthe PscE:PscF55-85 :PscG ternary complex reveals that the C-terminus of the needle protein PscF, which is essential for needle polymerisation, is engulfed within the hydrophobic groove of the TPR-like molecule PscG. This indicates that the macromolecular scaffold necessary to stabilize the needle protein is totally distinct from T chaperoned complexes between pilus- or flagellum- forming molecules. Disruption of specific PscG:PscF interactions leads to impairement of bacterial cytotoxicity toward macrophages, indicating that This essential heterotrimer, which possesses homologs in a wide variety of pathogens, is an attractive therapeutic Target for the development of novel drugs
Harmouchi, Mohamed. "Étude des transitions de formes A-B et B-C dans les ADN en fibres et effets de tensions mécaniques : Diffraction des RX et microscopie optique." Nancy 1, 1989. http://www.theses.fr/1989NAN10178.
Full textBaradi, Mohamed Besher. "Prédiction des propriétés mécaniques des lignes de soudure des pièces en thermoplastique renforcé par des fibres courtes moulées par injection." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0027/document.
Full textWeld Lines frequently appear by injection molding when separate polymer melt fronts meet. They induce a significant reduction in the failure strength and strain, especially for composites. It is therefore essential to predict reliably their mechanical properties during the product design phase, but current simulation tools are still not able to do it. Literature points to two main reasons of WL weakness: an incomplete polymer matrix healing and a change in the fiber orientation distribution. The objective of this work is to characterize and quantify the contribution of these factors and to contribute to improving the prediction of the mechanical properties of injection molded short-fiber reinforced polymers.Samples of 30 % wt. glass fiber-reinforced PBT were injection molded with frontal and flowing weld lines. The deformations in the mechanical tests were measured by of digital image correlation to quantify the location of deformation in the weld lines. The microstructure was quantified using X-ray computed tomography scans. In particular, we were able to show that the flowing weld lines were fading very slowly and that the material fronts behave towards each other like walls. A physical model based on reptation theory was implemented to determine a criterion for interface healing. Using the measured orientation distribution and an appropriate homogenization scheme for each element of a finite elements simulation, the mechanical properties up to the failure of the composite could be calculated and explain the reduction in mechanical properties at the weld lines, knowing that the interfaces were fully healed for the study material. Finally, for this semi-crystalline polymer, we have shown the need to use an elastoplastic constitutive law with a damage threshold depending on the orientation of the fibers
Madra, Anna. "Analyse et visualisation de la géométrie des matériaux composites à partir de données d’imagerie 3D." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2387/document.
Full textThe subject of the thesis project between Laboratoire Roberval at Université de Technologie Compiègne and Center for High-Performance Composites at Ecole Polytechnique de Montréal considered the design of a deep learning architecture with semantics for automatic generation of models of composite materials microstructure based on X-ray microtomographic imagery. The thesis consists of three major parts. Firstly, the methods of microtomographic image processing are presented, with an emphasis on phase segmentation. Then, the geometric features of phase elements are extracted and used to classify and identify new morphologies. The method is presented for composites filled with short natural fibers. The classification approach is also demonstrated for the study of defects in composites, but with spatial features added to the process. A high-level descriptor "defect genome" is proposed, that permits comparison of the state o defects between specimens. The second part of the thesis introduces structural segmentation on the example of woven reinforcement in a composite. The method relies on dual kriging, calibrated by the segmentation error from learning algorithms. In the final part, a stochastic formulation of the kriging model is presented based on Gaussian Processes, and distribution of physical properties of a composite microstructure is retrieved, ready for numerical simulation of the manufacturing process or of mechanical behavior
Labaye, François. "Amplification passive d'un laser à fibre optique dans une cavité Fabry-Perot : application à la production de rayonnement gamma par diffusion Compton inverse." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00837822.
Full textYou, Yan. "Pulsed Laser Injected Enhancement Cavity for Laser-electron Interaction." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01011958.
Full textSabatier, Laura. "Étude des conséquences de traitements physiques sur le cheveu, de l’échelle moléculaire à celle de la fibre." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS076.
Full textThermomechanical hair styling is preferred by users for easy and temporary reshaping of hair. However, the result is not always up to expectations, particularly due to poor shape stability over time and possible hair damage. In this work, we aim to improve hairstyling devices. To this end, we need to understand the effects of such treatments on hair in order to determine conditions which allow the best shape holding while minimizing hair damage. To achieve this, we use tensile testing, X-ray diffraction and infrared spectroscopy experiments. First, we studied the structural organization of natural hair. We highlighted a “core-skin” distribution of structures with a regular core which is all the more off-centered as curvature is high. Subsequently, we identified the main parameters of thermomechanical reshaping: temperature, stress and application time. Then, we evaluated the effects of these parameters on mechanical behavior and hair nanostructure. Our study shows that applied stress is a key factor: we defined stresses range allowing preservation of hair structure and its mechanical properties and the one leading to degradation or even driving to beta-sheets transition. Efficiency of the different treatment conditions in producing long-lasting shape over time was then evaluated. In addition, we analyzed the structural mechanisms that occur during stretching for native and pretreated hair: we used X-ray microdiffraction coupled with continuous stretching of hair. Consequently, we were able to monitor a beta sheet structure in hair during stretching. The original results obtained during this work, bridging internal molecular mechanisms and macroscopic behavior of hair, will allow to develop new thermomechanical treatments at industrial scale
Holmström, Marcus. "Design of a Carbon Fiber Thermocouple for Elevated Temperature Measurements." Thesis, KTH, Materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279105.
Full textTermoelement är ett av de mest använda instrumenten för temperaturavläsning vid upphöjda temperaturer. Idag finns det bara några få typer av termoelement som är byggda för temperaturer över 1600 ℃, däremot innehar dom vanligtvis en temperaturmätnings osäkerhet på cirka 1% vid dessa höga temperaturer. Över 1600 ℃ temperaturintervallet har de flesta högtemperatur termoelement en tendens att skifta i mätningarna vilket orsakar en felaktig och inexakt mätning av den faktiska temperaturen. Denna avhandling undersöker användningen av kolfiber som ett material för användning i termoelement, genom kombinationen av två olika grafitfibrer. Polyacrylonitrile- (PAN) och Rayon-baserade fibrer användes i en sammansatt kombination upp till en temperatur av 200 ℃, där spänningen mättes mot temperaturen. Studien visar en lovande och stabil linjär effekt av dess elektromotoriska spänning för denna typ av termoelement med kommersiellt tillgängliga kolfibrer vid lägre temperaturer. En jämförelse görs mellan de vanliga termoelementen av typ K och S vid rumstemperaturer, resultaten visar att grafittermoelementen har cirka 21% av den termoelektriska effektiviteten hos den för en typ K eller S termoelement vid 25 ℃. När det gäller dess funktionalitet vid högre temperaturer har liknande grafitmaterial studerats och funnit en potentiell ökning av den termoelektriska stabiliteten vid högre temperaturer över 2000 ℃, vilket visar att grafitbaserade termoelement gör sig väl lämpade för högtemperaturmätningar.
Laffont, Lydia. "Structure et propriétés physiques de matériaux polyaromatiques par MET, EELS, et RX." Toulouse 3, 2002. http://www.theses.fr/2002TOU30129.
Full text