Academic literature on the topic 'Reaction cross sections'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reaction cross sections.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reaction cross sections"

1

Kubodera, K. "Neutrino-nucleus reaction cross sections." Nuclear Physics B - Proceedings Supplements 100, no. 1-3 (May 2001): 30–35. http://dx.doi.org/10.1016/s0920-5632(01)01403-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dietrich, F. S., and J. E. Escher. "Compound-nuclear reaction cross sections via surrogate reactions." Nuclear Physics A 787, no. 1-4 (May 2007): 237–42. http://dx.doi.org/10.1016/j.nuclphysa.2006.12.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, J., R. Liu, L. Jiang, Z. Liu, G. Sun, and S. Ge. "Cross-sections of 45Sc(n, 2n)44m,gSc reaction from the reaction threshold to 20 MeV." Radiochimica Acta 101, no. 10 (October 2013): 607–12. http://dx.doi.org/10.1524/ract.2013.2065.

Full text
Abstract:
Summary Cross sections of 45Sc(n, 2n)44m,g Sc reactions and their isomeric cross section ratios σm/σg have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the 3H(d, n)4He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature.
APA, Harvard, Vancouver, ISO, and other styles
4

DESCOUVEMONT, PIERRE. "CROSS SECTIONS FOR NUCLEAR ASTROPHYSICS." International Journal of Modern Physics E 17, no. 10 (November 2008): 2165–70. http://dx.doi.org/10.1142/s0218301308011288.

Full text
Abstract:
General properties of low-energy cross sections and of reaction rates are presented. We describe different models used in nuclear astrophysics: microscopic models, the potential model, and the R-matrix method. Two important reactions, 7 Be ( p ,γ)8 B and 12 C (α,γ)16 O , are then briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

SHEN, PENGNIAN, HANTAO JING, and HUANQING CHIANG. "Λ-HYPERNUCLEUS PRODUCTION IN PROTON-INDUCED REACTION." International Journal of Modern Physics E 18, no. 02 (February 2009): 302–8. http://dx.doi.org/10.1142/s021830130901232x.

Full text
Abstract:
The Λ-hypernucleus (LHN) production in the proton-induced reaction is studied in the distorted wave impulse approximation(DWIA). The cross sections for the LHN production in the reactions where the proton bombards the 6Li, 12C and 16O targets, respectively, are calculated. It is shown that the reaction cross sections are of the order of μb, and the distortion effects tend to reduce the cross sections by a factor of 3~10. For the sΛ–LHN production, the differential cross section is decreased with the increasing mass of the target nucleus. The pΛ–LHN production cross section is normally higher than that for the sΛ–LHN production. The double differential cross sections (DDXS) with respect to the momenta of the outgoing proton and kaon are also demonstrated. The missing mass spectra of the inclusive reaction p+A → p+K++X for the 6Li, 12C and 16O targets, an alternative way to study hypernuclear physics, are proposed. From these spectra, the masses of LHN can accurately be extracted. Moreover, the exotic LHN production in the same type of reaction is also studied . The same physical quantities are calculated. It is shown that the magnitude of the cross section is also in the order of μb. The halo effect of the core nucleus that locates at a place far away from the stable line would make the wave function broader, and consequently reduces the production cross section.
APA, Harvard, Vancouver, ISO, and other styles
6

Spyrou, A., H. W. Becker, A. Lagoyannis, S. Harissopulos, and C. Rolfs. "A 4π γ-summing method for cross-section measurements of capture reactions." HNPS Proceedings 15 (January 1, 2020): 111. http://dx.doi.org/10.12681/hnps.2627.

Full text
Abstract:
Capture reaction cross sections at energies far below the Coulomb barrier are of major importance for the understanding of stellar nucleosynthesis. Since the cross sections of the majority of these reactions are very small, the use of high efficiency detectors is essential. In this work, a new method for capture reaction cross section measurements based on a large volume 4π NaI detector is presented.
APA, Harvard, Vancouver, ISO, and other styles
7

SAJJAD ATHAR, M., S. CHAUHAN, S. K. SINGH, and M. J. VICENTE VACAS. "NEUTRINO NUCLEUS CROSS-SECTIONS." International Journal of Modern Physics E 18, no. 07 (August 2009): 1469–81. http://dx.doi.org/10.1142/s0218301309013774.

Full text
Abstract:
We present the results of our calculation which has been performed to study the nuclear effects in the quasielastic, inelastic and deep inelastic scattering of neutrinos(antineutrinos) from nuclear targets. These calculations are done in the local density approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reaction. The inelastic reaction leading to production of pions is calculated in a Δ-dominance model taking into account the renormalization of Δ properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We discuss the nuclear effects in the [Formula: see text] structure function in the deep inelastic neutrino(antineutrino) reaction using a relativistic framework to describe the nucleon spectral function in the nucleus.
APA, Harvard, Vancouver, ISO, and other styles
8

Mintz, S. L., G. M. Gerstner, M. A. Barnett, and M. Pourkaviani. "The Neutrino Reaction in 3H." International Journal of Modern Physics E 07, no. 02 (April 1998): 275–85. http://dx.doi.org/10.1142/s0218301398000117.

Full text
Abstract:
We calculate the cross sections for the reactions, νe+3 H → e-+3 He , and νμ+3 H → μ-+3 He from threshold to 1 GeV. We obtain typical contributions of the individual form factors as well as the interference terms to the cross sections. We find that the cross sections for these processes are extremely large for a number of reasons, making them worthy of consideration for possible experiments. We also obtain a typical differential cross section and note the presence of sharp minima for high neutrino energies.
APA, Harvard, Vancouver, ISO, and other styles
9

Ozawa, A. "Reaction cross-sections for carbon isotopes." Nuclear Physics A 738 (June 2004): 38–44. http://dx.doi.org/10.1016/j.nuclphysa.2004.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mukhamedzhanov, A. M., R. Yarmukhamedov, and Sh Yarmukhamedov. "Analytic continuation of reaction cross sections." Theoretical and Mathematical Physics 74, no. 2 (February 1988): 178–86. http://dx.doi.org/10.1007/bf01886490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Reaction cross sections"

1

Lantz, Mattias. "Investigations of Reaction Cross Sections for Protons and 3He." Doctoral thesis, Uppsala universitet, Institutionen för kärn- och partikelfysik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5813.

Full text
Abstract:
The reaction cross section gives the probability that a particle will undergo a nonelastic process when passing through a nuclear medium. Therefore reaction cross section data are of importance both for theoretical studies and for applications in such diverse fields as medicine, biology, astrophysics and accelerator-driven transmutation of nuclear waste. There exist many data sets with angular distributions of elastic scattering, but very few measurements of the complementary reaction cross section have been performed. The measurement is in principle simple but has in practice proved to be very difficult to perform, and the relatively limited amount of experimental data displays some serious inconsistencies. Results from measurements of reaction cross sections are presented for: • 3He on 9Be, 12C, 16O, 28Si, 40Ca, 58,60Ni, 112,116,118,120,124Sn and 208Pb at 96, 138 and 167 MeV • protons on 12C, 40Ca, 90Zr and 208Pb at six energies in the energy range 80-180 MeV, and on 58Ni at 81 MeV. Experimental uncertainties were 3-9% for 3He and 1.5-8% for protons. The apparatus and the experimental method used for the measurements of reaction cross sections, using a modified attenuation technique, is described. The detection method enables simultaneous measurements of reaction cross sections for five different sizes of the solid angles in steps from 99.0 to 99.8% of the total solid angle. The final results are obtained by extrapolation to the full solid angle. Experimental results are compared with predictions from optical model calculations using phenomenological global optical potentials. Phenomenological parametrizations of reaction cross sections for scattering of projectiles on targets are presented. The parametrizations show that reaction cross sections are very sensitive to matter distributions at very large radii of both the projectile and the target. For protons the derived relations makes it possible to predict the reaction cross sections on targets for which no experimental data exist.
APA, Harvard, Vancouver, ISO, and other styles
2

Lantz, Mattias. "Investigations of Reaction Cross Sections for Protons and 3He." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hankel, Marlies. "Time-dependent wavepacket methods for the calculation of state-to-state molecular reactive cross sections." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sawada, Shinya. "Differential Cross Sections for the np→dX Reaction at 1.0 and 2.0 GeV." 京都大学 (Kyoto University), 1997. http://hdl.handle.net/2433/157147.

Full text
Abstract:
本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第6934号
理博第1860号
新制||理||1012(附属図書館)
UT51-97-L155
京都大学大学院理学研究科物理学第二専攻
(主査)教授 今井 憲一, 教授 政池 明, 教授 笹尾 登
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
5

Carnahan, Brian. "Strangeness Photoproduction in the {gamma}p {yields} K{sup 0} {Sigma}{sup +} Reaction." Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Research ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2003. http://www.osti.gov/servlets/purl/824935-CL5ICZ/native/.

Full text
Abstract:
Thesis (Ph.D.); Submitted to the Catholic Univ. of America, Washington, DC (US); 1 May 2003.
Published through the Information Bridge: DOE Scientific and Technical Information. "JLAB-PHY-03-40" "DOE/ER/40150-2764" Brian Carnahan. 05/01/2003. Report is also available in paper and microfiche from NTIS.
APA, Harvard, Vancouver, ISO, and other styles
6

Prokofiev, Alexander. "Nucleon-Induced Fission Cross Sections of Heavy Nuclei in the Intermediate Energy Region." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5009-1/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thiry, Jean-Claude. "Measurement of (n,xng) reaction cross sections of interest for the Generation IV reactors." Strasbourg, 2010. http://www.theses.fr/2010STRA6144.

Full text
Abstract:
Le développement de réacteurs de quatrième génération demande la connaissance de sections efficaces de différentes réactions nucléaires. Les recherches du groupe GRACE concernent principalement la détermination des sections efficaces des réactions (n,xn) sur des isotopes intervenant dans les processus de transmutation et de régénération dans ces réacteurs. Le but de ces investigations est d’obtenir des sections efficaces inconnues et de réduire les incertitudes sur des données existantes. Le présent travail consiste dans l'optimisation du dispositif expérimental développé pour les mesures sur des noyaux radioactifs. Les expériences sont réalisées auprès de l’installation GELINA (IRMM, Geel, Belgique) qui produit un faisceau de neutrons blanc pulsé. Ce faisceau pulsé permet de déterminer les énergies des neutrons par la méthode du temps de vol et la spectroscopie gamme prompte est utilisée pour identifier les différents noyaux formés par les réactions (n,xnγ). L'objectif de ce travail est d'aboutir à un dispositif expérimental permettant la mesure des sections efficaces de la réaction 233U(n,xnγ), d’une très grande importance pour le processus de régénération du cycle 232Th
The presented work consists of studying 232Th(n,xnγ) and 235U(n,xnγ) reactions in the fast neutron energy domain (up to 20 MeV) with the best precision possible. The experiments are performed at GELINA which delivers a pulsed, white neutron beam at IRMM, Belgium. The time characteristics of the beam enable us to measure neutron energies with the time-of-flight (TOF) technique. The neutron induced reactions (in this case inelastic scattering, (n,2n) and (n,3n) reactions) are identified by online prompt γ spectroscopy with an experimental setup including four HPGe detectors. A double layered fission chamber is used to monitor the incident neutron flux. The obtained results are presented and a comparison between the measured cross sections and the TALYS code predictions will be discussed. In order to achieve a very high precision on the reaction cross sections, an extensive work has been realised on the detection efficiencies of the counters used in the experiment. These quantities were in fact the largest sources of uncertainty in foregoing campaigns. After important efforts including high precision measurements together with Geant4 simulations, the efficiency of the fission chambers as well as of the HPGe detectors could be determined with accuracies below 3 %, accomplishing the final goal of a cross section determination with a precision of 5 %. This work is a further step in the preparation of the measurement of 233U(n,xnγ) reactions, which are completely unknown at this stage although of very high importance in the 232Th regeneration process. For this reason, a new, segmented HPGe detector was conceived, which will complete the current experimental setup
APA, Harvard, Vancouver, ISO, and other styles
8

Ralston, James. "The 10B(n, α) and 10B(n, p) Cross-Sections in the MeV Energy Range." Ohio University Honors Tutorial College / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1315160730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Urdabayev, Nurtay. "Development of Photoreactive Organic Compounds with Large Two-Photon Absorption Cross Sections." Bowling Green State University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1148914562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Latacz, Barbara Maria. "Study of the antihydrogen atom and ion production via charge exchange reaction on positronium." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS266/document.

Full text
Abstract:
Le but principal de la collaboration GBAR est de mesurer le comportement d'atomes d'antihydrogène sous l'effet de la gravité terrestre. Ceci est fait en mesurant la chute libre classique d'atomes d'antihydrogène, qui est un test direct du principe d'équivalence faible pour l'antimatière. La première étape de l'expérience est de produire des ions d'antihydrogène et de les amener dans un piège de Paul, où ils peuvent être refroidis à une température de l'ordre du μK en utilisant la technique du refroidissement sympathique avec des ions Be⁺ eux-mêmes mis dans leur état fondamental par la technique Raman à bande latérale. Une température de l'ordre du μK correspond à une vitesse de la particule de l'ordre de 1 m/s. Une fois cette vitesse atteinte, l'ion antihydrogène peut être neutralisé et commence sa chute. Ceci permet une précision de 1 % sur la mesure de l’accélération gravitationnelle g pour l’antimatière avec environ 1500 événements. Cependant, pour mesurer la chute libre, il faut d'abord produire l'ion antihydrogène. Celui-ci est formé dans les réactions d'échange de charge entre des antiprotons et des antihydrogènes avec du positronium. Positronium et atomes d'antihydrogène peut se trouver soit à l’état fondamental, soit dans un état excité. Une étude expérimentale de la mesure de la section efficace de ces deux réactions est décrite dans cette thèse. La production de l'atome d'antihydrogène ainsi que de l'ion se passe à l’intérieur d'une cavité. La formation d'un antihydrogène ion lors d'une interaction entre faisceaux requiert environ 5x10⁶ antiprotons/paquet et quelques 10¹¹ Ps/cm⁻³ de densité de positronium à l’intérieur d'une cavité. Celle-ci est produite par un faisceau contenant 5x10¹⁰ positrons par paquet. La production de faisceaux aussi intenses avec les propriétés requises est en soi un challenge. Le développement de la source de positrons de GBAR est décrite. Celle-ci est basée sur un accélérateur linéaire à électrons de 9 MeV. Le faisceau d’électrons est incident sur une cible de tungstène où les positrons sont créés par rayonnement de freinage (gammas) et création de paires. Une partie des positrons ainsi créés diffusent à nouveau dans un modérateur de tungstène en réduisant leur énergie à environ 3 eV. Ces particules sont re-accélérées à une énergie d'environ 53 eV. Aujourd'hui, le flux mesuré de positrons est au niveau de 6x10⁷ e⁺/s, soit quelques fois. Puis la thèse comporte une courte description des préparatifs pour les faisceaux d'antiprotons ou de protons, terminée par un chapitre sur le taux de production attendu d'atomes et d'ions d'antihydrogène. En aval de la réaction, les faisceaux d'antiprotons, d'atomes et d'ions d'antihydrogène sont guidés vers leur système de détection. Ceux-ci ont été conçus de façon à permettre la détection d'un à plusieurs milliers d'atomes d'antihydrogène, un seul ion antihydrogène et tous les 5x10⁶ antiprotons. Ceci est particulièrement difficile parce que l'annihilation des antiprotons crée beaucoup de particules secondaires qui peuvent perturber la mesure d'un atome ou ion. La majeure partie de la thèse consiste en la description des bruits de fond attendus pour la détection des atomes et ions d'antihydrogène. De plus, le système de détection permet de mesurer les sections efficaces pour les réactions symétriques de production d'atomes et d'ions hydrogèene par échange de charge entre protons et positronium. La partie production d’antihydrogène ions de l’expérience a été complètement installée au CERN en 2018. Les premiers tests avec des antiprotons provenant du décélérateur ELENA ont été effectués. Actuellement, l’expérience est testée avec des positrons et des protons, de façon à former des atomes et ions hydrogène. Une optimisation de la production de ces ions de matière aidera à se préparer pour la prochaine période de faisceau d'antiprotons en 2021
The main goal of the GBAR collaboration is to measure the Gravitational Behaviour of Antihydrogen at Rest. It is done by measuring the classical free fall of neutral antihydrogen, which is a direct test of the weak equivalence principle for antimatter. The first step of the experiment is to produce the antihydrogen ion and catch it in a Paul trap, where it can be cooled to μK temperature using ground state Raman sideband sympathetic cooling. The μK temperature corresponds to particle velocity in the order of 1 m/s. Once such velocity is reached, the antihydrogen ion can be neutralised and starts to fall. This allows reaching 1 % precision on the measurement of the gravitational acceleration g for antimatter with about 1500 events. Later, it would be possible to reach 10⁻⁵ - 10⁻⁶ precision by measuring the gravitational quantum states of cold antihydrogen. However, in order to measure the free fall, firstly the antihydrogen ion has to be produced. It is formed in the charge exchange reactions between antiproton/antihydrogen and positronium. Positronium and antihydrogen atoms can be either in a ground state or in an excited state. An experimental study of the cross section measurement for these two reactions is described in the presented thesis. The antihydrogen atom and ion production takes place in a cavity. The formation of one antihydrogen ion in one beam crossing requires about 5x10⁶ antiprotons/bunch and a few 10¹¹ Ps/cm⁻³ positronium density inside the cavity, which is produced with a beam containing 5x10¹⁰ positrons per bunch. The production of such intense beams with required properties is a challenging task. First, the development of the positron source is described. The GBAR positron source is based on a 9 MeV linear electron accelerator. The relatively low energy was chosen to avoid activation of the environment. The electron beam is incident on a tungsten target where positrons are created from Bremsstrahlung radiation (gammas) through the pair creation process. Some of the created positrons undergo a further diffusion in the tungsten moderator reducing their energy to about 3 eV. The particles are re-accelerated to about 53 eV energy and are adiabatically transported to the next stage of the experiment. Presently, the measured positron flux is at the level of 6x10⁷ e⁺/s, which is a few times higher than intensities reached with radioactive sources. Then, the thesis features a short description of the antiproton/proton beam preparations, finalised with a chapter about the expected antihydrogen atom and ion production yield. After the reaction, antiproton, antihydrogen atom, and ion beams are guided to the detection system. It is made to allow for detection from 1 to a few thousand antihydrogen atoms, a single antihydrogen ion and all 5x10⁶ antiprotons. It is especially challenging because antiproton annihilation creates a lot of secondary particles which may disturb measurements of single antihydrogen atoms and ions. The main part of the Thesis is the description of the expected background for the antihydrogen atom and ion detection. Additionally, the detection system allows measuring the cross sections for the symmetric reactions of a hydrogen atom and ion production through charge exchange between protons and positronium. The antihydrogen ion production part of the experiment was fully installed at CERN in 2018. The first tests with antiprotons from the ELENA decelerator were done. Currently, the experiment is being commissioned with positrons and protons, in order to perform the hydrogen atom and ion formation. The optimisation of the ion production with matter will help to be fully prepared for the next antiproton beam time in 2021
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Reaction cross sections"

1

Janev, Ratko K. Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cucinotta, Francis A. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies. Hampton, Va: Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maung, Khin Maung. Radiation transport and shielding for space exploration and high speed flight transportation: Final report on NAG1-1789. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1939-, Janev R. K., ed. Elementary processes in hydrogen-helium plasmas: Cross sections and reaction rate coefficients. Berlin: Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Henriksen, Niels E., and Flemming Y. Hansen. Theories of Molecular Reaction Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.001.0001.

Full text
Abstract:
This book deals with a central topic at the interface of chemistry and physics—the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics or, as an approximation, classical mechanics, the dynamics of uni- and bimolecular elementary reactions are described. The first part of the book is on gas-phase dynamics and it features a detailed presentation of reaction cross-sections and their relation to a quasi-classical as well as a quantum mechanical description of the reaction dynamics on a potential energy surface. Direct approaches to the calculation of the rate constant that bypasses the detailed state-to-state reaction cross-sections are presented, including transition-state theory, which plays an important role in practice. The second part gives a comprehensive discussion of basic theories of reaction dynamics in condensed phases, including Kramers and Grote–Hynes theory for dynamical solvent effects. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems. The book has ten appendices with useful details, for example, on adiabatic and non-adiabatic electron-nuclear dynamics, statistical mechanics including the Boltzmann distribution, quantum mechanics, stochastic dynamics and various coordinate transformations including normal-mode and Jacobi coordinates.
APA, Harvard, Vancouver, ISO, and other styles
6

Henriksen, Niels Engholm, and Flemming Yssing Hansen. Bimolecular Reactions, Dynamics of Collisions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0004.

Full text
Abstract:
This chapter discusses the dynamics of bimolecular collisions within the framework of (quasi-)classical mechanics as well as quantum mechanics. The relation between the cross-section and the reaction probability, which can be calculated theoretically from a (quasi-)classical or quantum mechanical description of the collision, is described in terms of classical trajectories and wave packets, respectively. As an introduction to reactive scattering, classical two-body scattering is described and used to formulate simple models for chemical reactions, based on reasonable assumptions for the reaction probability. Three-body (and many-body) quasi-classical scattering is formulated and the numerical evaluation of the reaction probability is described. The relation between scattering angles and differential cross-sections in various frames is emphasized. The chapter concludes with a brief description of non-adiabatic dynamics, that is, situations beyond the Born–Oppenheimer approximation where more than one electronic state is in play. A discussion of the so-called Landau–Zener model is included.
APA, Harvard, Vancouver, ISO, and other styles
7

Janev, R. K., W. D. Langer, K. Jr Evans, and D. E. Post. Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Springer Series on Atoms & Plasmas, Vol 4). Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Henriksen, Niels Engholm, and Flemming Yssing Hansen. From Microscopic to Macroscopic Descriptions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0002.

Full text
Abstract:
This chapter discusses bimolecular reactions from both a microscopic and macroscopic point of view. The outcome of an isolated reactive scattering event can be specified in terms of an intrinsic fundamental quantity, the reaction cross-section that can be measured in a molecular beam experiment. It depends on the quantum states of the molecules as well as the relative velocity of reactants and products. The relation between the cross-section and the macroscopic rate constant is derived. The rate constant is a weighted average of the product between the relative speed of the reactants and the reaction cross-section. The chapter concludes with the special case of thermal equilibrium, where the velocity distributions for the molecules are the Maxwell–Boltzmann distribution. The expression for the rate constant at temperature T is reduced to a one-dimensional integral over the relative speed of the reactants.
APA, Harvard, Vancouver, ISO, and other styles
9

M, Wagner, ed. Evaluation of cross sections for 14 important neutron-dosimetry reactions. Eggenstein-Leopoldshafen: Fachinformationszentrum Karlsruhe, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henriksen, Niels Engholm, and Flemming Yssing Hansen. Rate Constants, Reactive Flux. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0005.

Full text
Abstract:
This chapter discusses a direct approach to the calculation of the rate constant k(T) that bypasses the detailed state-to-state reaction cross-sections. The method is based on the calculation of the reactive flux across a dividing surface on the potential energy surface. Versions based on classical as well as quantum mechanics are described. The classical version and its relation to Wigner’s variational theorem and recrossings of the dividing surface is discussed. Neglecting recrossings, an approximate result based on the calculation of the classical one-way flux from reactants to products is considered. Recrossings can subsequently be included via a transmission coefficient. An alternative exact expression is formulated based on a canonical average of the flux time-correlation function. It concludes with the quantum mechanical definition of the flux operator and the derivation of a relation between the rate constant and a flux correlation function.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Reaction cross sections"

1

Masterson, Robert E. "Nuclear Cross Sections, Reaction Probabilities, and Reaction Rates." In Introduction to Nuclear Reactor Physics, 167–205. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315118055-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peterson, R. J. "Pion-Nucleus Total and Reaction Cross Sections." In Mesons and Light Nuclei ’95, 17–28. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-9453-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murata, Toru. "Analysis of O-16 Photo-Reaction Cross Sections." In Nuclear Data for Science and Technology, 955–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58113-7_267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baer, M., H. Szichman, E. Rosenman, S. Hochman-Kowal, and A. Persky. "Cross Sections and Rate Constants for Triatomic and Tetraatomic Reactions: Three-Dimensional Quantum Mechanical Calculations." In Gas Phase Chemical Reaction Systems, 125–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80299-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Herman, M. G., L. L. Lee, R. J. Vojtech, S. B. Gazes, M. Satteson, and J. Boyle. "Measurements of 180° sub-barrier transfer reaction cross sections in S + Mo, Nb systems." In Heavy Ion Interactions Around the Coulomb Barrier, 137–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-50578-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hertzog, David W. "Total and Differential Cross Sections for the Reaction $$ \overline p $$ p → $$ \overline \Lambda $$ Λ." In Antiproton-Nucleon and Antiproton-Nucleus Interactions, 193–98. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0595-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paetz gen. Schieck, Hans. "Cross Sections." In Nuclear Reactions, 61–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53986-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zenoni, Aldo. "Analysys of $$ \overline P $$ -Nucleus Elastic Scattering and Reaction Cross Sections with a Glauber Model." In Antiproton-Nucleon and Antiproton-Nucleus Interactions, 279–84. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0595-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gorton, Oliver, and Jutta E. Escher. "Neutron Capture Cross Sections from Surrogate Reaction Data and Theory: Connecting the Pieces with a Markov-Chain Monte Carlo Approach." In Compound-Nuclear Reactions, 229–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58082-7_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Paetz gen. Schieck, Hans. "Unpolarized Cross Sections." In Nuclear Reactions, 131–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53986-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reaction cross sections"

1

Ozawa, Akira. "Reaction cross sections of unstable nuclei." In NUCLEAR PHYSICS TRENDS: 6th China-Japan Joint Nuclear Physics Symposium. AIP, 2006. http://dx.doi.org/10.1063/1.2398828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Erdemchimeg, B., A. G. Artukh, S. Davaa, S. A. Klygin, G. A. Kononenko, G. Khuukhenkhuu, S. M. Lukyanov, et al. "TOTAL NUCLEAR REACTION CROSS SECTIONS MEASUREMENT." In International Symposium on Exotic Nuclei EXON-2016. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226548_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nishizuka, Kenji, Maya Takechi, Takashi Ohtsubo, Daiki Nishimura, Mitsunori Fukuda, Kazuya Aoki, Keijiro Abe, et al. "Measurements of Reaction Cross Sections for 9–11C." In Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016). Journal of the Physical Society of Japan, 2017. http://dx.doi.org/10.7566/jpscp.14.021015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Forssén, Christian, Frank S. Dietrich, Jutta ESCHER, Vesselin G. Gueorguiev, Robert Hoffman, and Kevin Kelly. "Compound-nuclear reaction cross sections via Surrogate measurements." In International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.028.0224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zamrun, Muhammad. "Sub-barrier Fusion Cross Sections with Energy Density Formalism." In FUSION06: Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier. AIP, 2006. http://dx.doi.org/10.1063/1.2338395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shorto, J. M. B., P. R. S. Gomes, J. Lubian, L. F. Canto, L. C. Chamon, Ricardo Alarcon, Phil Cole, Andres J. Kreiner, and Hugo F. Arellano. "A New Technique To Investigate Total Reaction Cross Sections." In VIII LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS. AIP, 2010. http://dx.doi.org/10.1063/1.3480263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

IWATA, YORITAKA. "REACTION CROSS SECTIONS FOR TIME-DEPENDENT DENSITY FUNCTIONAL CALCULATIONS." In Proceedings of the Fifth International Conference on ICFN5. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814525435_0077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Resler, David A. "Advanced modeling of reaction cross sections for light nuclei." In Strong, weak, and electromagnetic interactions in nuclei, atoms, and astrophysics. AIP, 1991. http://dx.doi.org/10.1063/1.41440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Farget, F., J. Benlliure, T. Enqvist, J. Taieb, K. H. Schmidt, P. Armbruster, M. Bernas, et al. "Spallation-reaction cross sections relevant for accelerator-driven systems." In The second international workshop on nuclear fission and fission-product spectroscopy. AIP, 1998. http://dx.doi.org/10.1063/1.56728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Casarejos, E., J. Benlliure, P. Armbruster, M. Bernas, A. Boudard, S. Czajkowski, T. Enqvist, et al. "Spallation-reaction cross sections relevant for accelerator-driven systems." In Experimental nuclear physics in europe: Facing the next millennium. AIP, 1999. http://dx.doi.org/10.1063/1.1301847.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Reaction cross sections"

1

Younes, W. Estimating Reaction Cross Sections from Measured (Gamma)-Ray Yields: The 238U(n,2n) and 239Pu(n,2n) Cross Sections. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/15002344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burman, R. L., and E. S. Smith. Parameterization of pion production and reaction cross sections at LAMPF energies. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/6167579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vrakking, M. J. J. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6708261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vrakking, Marcus Johannes Jacobus. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10133468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kalbach, C. PRECO-D2: program for calculating preequilibrium and direct reaction double differential cross sections. Office of Scientific and Technical Information (OSTI), February 1985. http://dx.doi.org/10.2172/5772617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McCollam, K. Analysis of Fe(n,x[gamma]) cross sections using the TNG nuclear reaction model code. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/6549441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Continetti, R. E. Vibrational state-resolved differential cross sections for the D + H sub 2 yields DH + H reaction. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7142992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hoffman, R., F. Dietrich, K. Kelley, J. Escher, R. Bauer, and M. Mustafa. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/944367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hoffman, R. Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the Region of Thallium, Lead, and Bismuth. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1773242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kawano, Toshihiko. Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1222671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography