Academic literature on the topic 'Reaction-diffusion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reaction-diffusion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reaction-diffusion"

1

Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139, no. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dalík, Josef. "A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems." Applications of Mathematics 36, no. 5 (1991): 329–54. http://dx.doi.org/10.21136/am.1991.104471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gurevich, Pavel, and Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139, no. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Drábek, Pavel, Milan Kučera, and Marta Míková. "Bifurcation points of reaction-diffusion systems with unilateral conditions." Czechoslovak Mathematical Journal 35, no. 4 (1985): 639–60. http://dx.doi.org/10.21136/cmj.1985.102055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mustafa, Alaa, Ehssan Omer, Nuha Alalam, and Safwa Yacoup. "Awavelet Methodologies for Solving Reaction-Diffusion Complications in Science." International Journal of Research Publication and Reviews 5, no. 8 (2024): 572–76. http://dx.doi.org/10.55248/gengpi.5.0824.2012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trimper, Steffen, Uwe C. Täuber, and Gunter M. Schütz. "Reaction-controlled diffusion." Physical Review E 62, no. 5 (2000): 6071–77. http://dx.doi.org/10.1103/physreve.62.6071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Witkin, Andrew, and Michael Kass. "Reaction-diffusion textures." ACM SIGGRAPH Computer Graphics 25, no. 4 (1991): 299–308. http://dx.doi.org/10.1145/127719.122750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Henry, B. I., and S. L. Wearne. "Fractional reaction–diffusion." Physica A: Statistical Mechanics and its Applications 276, no. 3-4 (2000): 448–55. http://dx.doi.org/10.1016/s0378-4371(99)00469-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nicolis, Gregoire, and Anne Wit. "Reaction-diffusion systems." Scholarpedia 2, no. 9 (2007): 1475. http://dx.doi.org/10.4249/scholarpedia.1475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Mufa. "Reaction-diffusion processes." Chinese Science Bulletin 43, no. 17 (1998): 1409–20. http://dx.doi.org/10.1007/bf02884118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Reaction-diffusion"

1

He, Taiping. "Reaction-Diffusion Systems with Discontinuous Reaction Functions." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-03192005-101102/.

Full text
Abstract:
This dissertation studies coupled reaction diffusion systems with discontinuous reaction functions. It includes three parts: The first part is concerned with the existence of solutions for a coupled system of two parabolic equations and the second part is devoted to the monotone iterative methods for monotone and mixed quasimonotone functions. Various monotone iterative schemes are presented and each of these schemes leads to an existence-comparison theorem and the monotone convergence of the maximal and minimal sequences. In the third part, the monotone iterative schemes are applied to comput
APA, Harvard, Vancouver, ISO, and other styles
2

Yangari, Sosa Miguel Ángel. "Fractional reaction-diffusion problems." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/115538.

Full text
Abstract:
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática<br>This thesis deals with two different problems: in the first one, we study the large-time behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion equations, when the initial condition is asymptotically front-like and it decays at infinity more slowly than a power x^b, where b < 2\alpha and \alpha\in (0,1) is the order of the fractional Laplacian (Chapter 2); in the second problem, we study the time asymptotic propagation of solutions to the fractional reaction diffusion cooperative systems (Chapter 3
APA, Harvard, Vancouver, ISO, and other styles
3

Yangari, Sosa Miguel Angel. "Fractional reaction-diffusion problems." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2270/.

Full text
Abstract:
Cette thèse porte sur deux problèmes différents : dans le premier, nous étudions le comportement en temps long des solutions des équations de réaction diffusion 1d-fractionnaire de type Fisher-KPP lorsque la condition initiale est asymptotiquement de type front et décroît à l'infini plus lentement que, où et est l'indice du laplacien fractionnaire (Chapitre 2). Dans le second problème, nous étudions la propagation asymptotique en temps des solutions de systèmes coopératifs de réaction-diffusion (Chapitre 3). Dans le premier problème, nous démontrons que les ensembles de niveau des solutions se
APA, Harvard, Vancouver, ISO, and other styles
4

Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.

Full text
Abstract:
This thesis focuses on the long time behaviour of solutions to Fisher-KPP reaction-diffusion equations involving fractional diffusion. This type of equation arises, for example, in spatial propagation or spreading of biological species (rats, insects,...). In population dynamics, the quantity under study stands for the density of the population. It is well-known that, under some specific assumptions, the solution tends to a stable state of the evolution problem, as time goes to infinity. In other words, the population invades the medium, which corresponds to the survival of the species,
APA, Harvard, Vancouver, ISO, and other styles
5

Benson, Debbie Lisa. "Reaction diffusion models with spatially inhomogeneous diffusion coefficients." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fei, Ning Fei. "Studies in reaction-diffusion equations." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grant, Koryn. "Symmetries and reaction-diffusion equations." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frömberg, Daniela. "Reaction Kinetics under Anomalous Diffusion." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16374.

Full text
Abstract:
Die vorliegende Arbeit befasst sich mit der Verallgemeinerung von Reaktions-Diffusions-Systemen auf Subdiffusion. Die subdiffusive Dynamik auf mesoskopischer Skala wurde mittels Continuous-Time Random Walks mit breiten Wartezeitverteilungen modelliert. Die Reaktion findet auf mikroskopischer Skala, d.h. während der Wartezeiten, statt und unterliegt dem Massenwirkungsgesetz. Die resultierenden Integro-Differentialgleichungen weisen im Integralkern des Transportterms eine Abhängigkeit von der Reaktion auf. Im Falle der Degradation A->0 wurde ein allgemeiner Ausdruck für die Lösungen beliebiger D
APA, Harvard, Vancouver, ISO, and other styles
9

Coulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.

Full text
Abstract:
Cette thèse est consacrée à l'étude du comportement en temps long, et plus précisément de phénomènes de propagation rapide, des équations de réaction-diffusion de type Kisher-KPP avec diffusion fractionnaire. Ces équations modélisent, par exemple, la propagation d'espèces biologiques. Sous certaines hypothèses, la population envahit le milieu et nous voulons comprendre à quelle vitesse cette invasion a lieu. Pour répondre à cette question, nous avons mis en place une nouvelle méthode et nous l'appliquons à différents modèles. Dans une première partie, nous étudions deux problèmes d'évolution c
APA, Harvard, Vancouver, ISO, and other styles
10

Coville, Jerome. "Equations de reaction diffusion non-locale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.

Full text
Abstract:
Cette thèse est consacrée à l'étude des équations de réaction diffusion non-locale du type $u_(t)-(\int_(\R)J(x-y)[u(y)-u(x)]dy)=f(u)$. Ces équations non-linéaires apparaissent naturellement en physique et en biologie. On s'intéresse plus particulièrement aux propriétés (existence, unicité, monotonie) des solutions du type front progressif. Trois classes de non-linéarités $f$ (bistable, ignition, monostable) sont étudiées. L'existence dans les cas bistable et ignition est obtenue via une technique d'homotopie. Le cas monostable nécessite une autre approche. L'existence est obtenue via une appr
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Reaction-diffusion"

1

1955-, Caristi Gabriella, and Mitidieri Enzo, eds. Reaction diffusion systems. Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ben, De Lacy Costello, and Asai Tetsuya, eds. Reaction-diffusion computers. Elsevier, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cherniha, Roman, and Vasyl' Davydovych. Nonlinear Reaction-Diffusion Systems. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65467-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lam, King-Yeung, and Yuan Lou. Introduction to Reaction-Diffusion Equations. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

J, Brown K., Lacey A. A, and Heriot-Watt University. Dept. of Mathematics., eds. Reaction-diffusion equations: The proceedings of a symposium year on reaction-diffusion equations. Clarendon Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Viehland, Larry A. Gaseous Ion Mobility, Diffusion, and Reaction. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04494-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smoller, Joel. Shock Waves and Reaction—Diffusion Equations. Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0873-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adamatzky, Andrew. Reaction-Diffusion Automata: Phenomenology, Localisations, Computation. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31078-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liehr, Andreas W. Dissipative Solitons in Reaction Diffusion Systems. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31251-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hemming, Christopher John. Resonantly forced inhomogeneous reaction-diffusion systems. National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Reaction-diffusion"

1

Gilding, Brian H., and Robert Kersner. "Reaction-diffusion." In Travelling Waves in Nonlinear Diffusion-Convection Reaction. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7964-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adamatzky, Andrew, and Benjamin De Lacy Costello. "Reaction–Diffusion Computing." In Handbook of Natural Computing. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-92910-9_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scherer, Philipp, and Sighart F. Fischer. "Reaction–Diffusion Systems." In Biological and Medical Physics, Biomedical Engineering. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-85610-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deng, Yansha. "Reaction-Diffusion Channels." In Encyclopedia of Wireless Networks. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mei, Zhen. "Reaction-Diffusion Equations." In Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tomé, Tânia, and Mário J. de Oliveira. "Reaction-Diffusion Processes." In Graduate Texts in Physics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11770-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adamatzky, Andrew, and Benjamin De Lacy Costello. "Reaction-Diffusion Computing." In Encyclopedia of Complexity and Systems Science. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-27737-5_446-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deng, Yansha. "Reaction-Diffusion Channels." In Encyclopedia of Wireless Networks. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_216-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Da Prato, Giuseppe. "Reaction-Diffusion Equations." In Kolmogorov Equations for Stochastic PDEs. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7909-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Salsa, Sandro, Federico M. G. Vegni, Anna Zaretti, and Paolo Zunino. "Reaction-diffusion models." In UNITEXT. Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2862-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reaction-diffusion"

1

Mesquita, D., and M. Walter. "Reaction-diffusion Woodcuts." In 14th International Conference on Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007385900002108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Witkin, Andrew, and Michael Kass. "Reaction-diffusion textures." In the 18th annual conference. ACM Press, 1991. http://dx.doi.org/10.1145/122718.122750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mesquita, D., and M. Walter. "Reaction-diffusion Woodcuts." In 14th International Conference on Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007385900890099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Chao-Nien, Tzyy-Leng Horng, Daniel Lee, and Chen-Hsing Tsai. "A NOTE ON REACTION-DIFFUSION SYSTEMS WITH SKEW-GRADIENT STRUCTURE." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamada, Yoshio. "GLOBAL SOLUTIONS FOR THE SHIGESADA-KAWASAKI-TERAMOTO MODEL WITH CROSS-DIFFUSION." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ackermann, Nils. "LONG-TIME DYNAMICS IN SEMILINEAR PARABOLIC PROBLEMS WITH AUTOCATALYSIS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Du, Yihong. "CHANGE OF ENVIRONMENT IN MODEL ECOSYSTEMS: EFFECT OF A PROTECTION ZONE IN DIFFUSIVE POPULATION MODELS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Farina, Alberto, and Enrico Valdinoci. "THE STATE OF THE ART FOR A CONJECTURE OF DE GIORGI AND RELATED PROBLEMS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ISHII, HITOSHI, and HIROYOSHI MITAKE. "TWO REMARKS ON PERIODIC SOLUTIONS OF HAMILTON-JACOBI EQUATIONS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ISHIMURA, N., and K. NISHIDA. "ASYMPTOTIC EXPANSION METHOD FOR LOCAL VOLATILITY MODELS." In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Reaction-diffusion"

1

Pope, S. B. Reaction and diffusion in turbulent combustion. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/6922826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pope, S. B. Reaction and diffusion in turbulent combustion. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5833755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rehm, Ronald G., Howard R. Baum, and Daniel W. Lozier. Diffusion-controlled reaction in a vortex field. National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barles, G., L. C. Evans, and P. E. Souganidis. Wavefront Propagation for Reaction-Diffusion Systems of PDE. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada210862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10165611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hale, Jack K., and Kunimochi Sakamoto. Shadow Systems and Attractors in Reaction-Diffusion Equations,. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada185804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rehm, Ronald R., Howard R. Baum, Hai C. Tang, and Daniel W. Lozier. Finite-rate diffusion-controlled reaction in a vortex:. National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10110970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/10117797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turk, Greg. Generating Textures for Arbitrary Surfaces Using Reaction-Diffusion. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada236706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!