To see the other types of publications on this topic, follow the link: Reaction-diffusion waves.

Journal articles on the topic 'Reaction-diffusion waves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Reaction-diffusion waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sherratt, Jonathan A. "Irregular wakes in reaction-diffusion waves." Physica D: Nonlinear Phenomena 70, no. 4 (1994): 370–82. http://dx.doi.org/10.1016/0167-2789(94)90072-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McDermott, Sean, Anthony J. Mulholland, and Jagannathan Gomatam. "Knotted reaction—diffusion waves." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458, no. 2028 (2002): 2947–66. http://dx.doi.org/10.1098/rspa.2002.0997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Volpert, V., and S. Petrovskii. "Reaction–diffusion waves in biology." Physics of Life Reviews 6, no. 4 (2009): 267–310. http://dx.doi.org/10.1016/j.plrev.2009.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Clavin, P. "Flames and Reaction-Diffusion Waves (Abstract)." Materials Science Forum 155-156 (May 1994): 445–46. http://dx.doi.org/10.4028/www.scientific.net/msf.155-156.445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bland, J. A., and J. Smoller. "Shock Waves and Reaction-Diffusion Equations." Mathematical Gazette 69, no. 447 (1985): 70. http://dx.doi.org/10.2307/3616482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Keyfitz, Barbara Lee, and Joel Smoller. "Shock Waves and Reaction-Diffusion Equations." American Mathematical Monthly 93, no. 4 (1986): 315. http://dx.doi.org/10.2307/2323701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Galochkina, Tatiana, Anass Bouchnita, Polina Kurbatova, and Vitaly Volpert. "Reaction-diffusion waves of blood coagulation." Mathematical Biosciences 288 (June 2017): 130–39. http://dx.doi.org/10.1016/j.mbs.2017.03.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abe, Yotaro, and Ryo Yoshida. "Dancing Waves in Reaction−Diffusion Systems." Journal of Physical Chemistry A 109, no. 17 (2005): 3773–76. http://dx.doi.org/10.1021/jp050075v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saxena, R. K., A. M. Mathai, and H. J. Haubold. "Reaction-Diffusion Systems and Nonlinear Waves." Astrophysics and Space Science 305, no. 3 (2006): 297–303. http://dx.doi.org/10.1007/s10509-006-9190-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Apreutesei, Narcisa, and Vitaly Volpert. "Reaction-diffusion waves with nonlinear boundary conditions." Networks & Heterogeneous Media 8, no. 1 (2013): 23–35. http://dx.doi.org/10.3934/nhm.2013.8.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Panfilov, A. V., H. Dierckx, and V. Volpert. "(INVITED) Reaction–diffusion waves in cardiovascular diseases." Physica D: Nonlinear Phenomena 399 (December 2019): 1–34. http://dx.doi.org/10.1016/j.physd.2019.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Crooks, Elaine C. M., and John F. Toland. "Travelling waves for reaction-diffusion-convection systems." Topological Methods in Nonlinear Analysis 11, no. 1 (1998): 19. http://dx.doi.org/10.12775/tmna.1998.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Koga, S. "Obliquely Colliding Waves in Reaction-Diffusion Systems." Progress of Theoretical Physics 74, no. 5 (1985): 1022–32. http://dx.doi.org/10.1143/ptp.74.1022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Steele, Aaron J., Mark Tinsley, and Kenneth Showalter. "Collective behavior of stabilized reaction-diffusion waves." Chaos: An Interdisciplinary Journal of Nonlinear Science 18, no. 2 (2008): 026108. http://dx.doi.org/10.1063/1.2900386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Johnson, Barry R., Stephen K. Scott, and Annette F. Taylor. "Reaction-diffusion waves Homogeneous and inhomogeneous effects." Journal of the Chemical Society, Faraday Transactions 93, no. 20 (1997): 3733–36. http://dx.doi.org/10.1039/a704616b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tamemoto, Naoki, and Hiroshi Noguchi. "Reaction-diffusion waves coupled with membrane curvature." Soft Matter 17, no. 27 (2021): 6589–96. http://dx.doi.org/10.1039/d1sm00540e.

Full text
Abstract:
Reaction-diffusion waves coupled with membrane deformation are investigated using simulations combining a dynamically triangulated membrane model with the Brusselator model extended to include the effect of membrane curvature.
APA, Harvard, Vancouver, ISO, and other styles
17

SHERRATT, JONATHAN A. "TRANSITION WAVES THAT LEAVE BEHIND REGULAR OR IRREGULAR SPATIOTEMPORAL OSCILLATIONS IN A SYSTEM OF THREE REACTION–DIFFUSION EQUATIONS." International Journal of Bifurcation and Chaos 03, no. 05 (1993): 1269–79. http://dx.doi.org/10.1142/s021812749300101x.

Full text
Abstract:
Transition waves are widespread in the biological and chemical sciences, and have often been successfully modelled using reaction–diffusion systems. I consider a particular system of three reaction–diffusion equations, and I show that transition waves can destabilise as the kinetic ordinary differential equations pass through a Hopf bifurcation, giving rise to either regular or irregular spatiotemporal oscillations behind the advancing transition wave front. In the case of regular oscillations, I show that these are periodic plane waves that are induced by the way in which the transition wave
APA, Harvard, Vancouver, ISO, and other styles
18

Sherratt, Jonathan A., and Matthew J. Smith. "Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models." Journal of The Royal Society Interface 5, no. 22 (2008): 483–505. http://dx.doi.org/10.1098/rsif.2007.1327.

Full text
Abstract:
Periodic travelling waves have been reported in a number of recent spatio-temporal field studies of populations undergoing multi-year cycles. Mathematical modelling has a major role to play in understanding these results and informing future empirical studies. We review the relevant field data and summarize the statistical methods used to detect periodic waves. We then discuss the mathematical theory of periodic travelling waves in oscillatory reaction–diffusion equations. We describe the notion of a wave family, and various ecologically relevant scenarios in which periodic travelling waves oc
APA, Harvard, Vancouver, ISO, and other styles
19

Belk, M., B. Kazmierczak, and V. Volpert. "Existence of reaction-diffusion-convection waves in unbounded strips." International Journal of Mathematics and Mathematical Sciences 2005, no. 2 (2005): 169–93. http://dx.doi.org/10.1155/ijmms.2005.169.

Full text
Abstract:
Existence of reaction-diffusion-convection waves in unbounded strips is proved in the case of small Rayleigh numbers. In the bistable case the wave is unique, in the monostable case they exist for all speeds greater than the minimal one. The proof uses the implicit function theorem. Its application is based on the Fredholm property, index, and solvability conditions for elliptic problems in unbounded domains.
APA, Harvard, Vancouver, ISO, and other styles
20

Merkin, J. H., and M. A. Sadiq. "Reaction-diffusion travelling waves in the acidic nitrate-ferroin reaction." Journal of Mathematical Chemistry 17, no. 3 (1995): 357–75. http://dx.doi.org/10.1007/bf01165755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

DELLNITZ, MICHAEL, MARTIN GOLUBITSKY, ANDREAS HOHMANN, and IAN STEWART. "SPIRALS IN SCALAR REACTION–DIFFUSION EQUATIONS." International Journal of Bifurcation and Chaos 05, no. 06 (1995): 1487–501. http://dx.doi.org/10.1142/s0218127495001149.

Full text
Abstract:
Spiral patterns have been observed experimentally, numerically, and theoretically in a variety of systems. It is often believed that these spiral wave patterns can occur only in systems of reaction–diffusion equations. We show, both theoretically (using Hopf bifurcation techniques) and numerically (using both direct simulation and continuation of rotating waves) that spiral wave patterns can appear in a single reaction–diffusion equation [ in u(x, t)] on a disk, if one assumes "spiral" boundary conditions (ur = muθ). Spiral boundary conditions are motivated by assuming that a solution is infin
APA, Harvard, Vancouver, ISO, and other styles
22

HORSTHEMKE, WERNER. "EXTERNAL NOISE AND FRONT PROPAGATION IN REACTION-TRANSPORT SYSTEMS WITH INERTIA: THE MEAN SPEED OF FISHER WAVES." Fluctuation and Noise Letters 02, no. 04 (2002): R109—R124. http://dx.doi.org/10.1142/s0219477502000932.

Full text
Abstract:
We review the effect of spatiotemporal noise, white in time and colored in space, on front propagation in systems of reacting and dispersing particles, where the particle motion displays inertia or persistence. We discuss the three main approaches that have been developed to describe transport with inertia, namely hyperbolic reaction-diffusion equations, reaction-Cattaneo systems or reaction-telegraph equations, and reaction random walks. We focus on the mean speed of Fisher waves in these systems and study in particular reaction random walks, which are the most natural generalization of react
APA, Harvard, Vancouver, ISO, and other styles
23

Needham, D. J., and A. N. Barnes. "Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations." Nonlinearity 12, no. 1 (1999): 41–58. http://dx.doi.org/10.1088/0951-7715/12/1/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bramburger, Jason J., and David Goluskin. "Minimum wave speeds in monostable reaction–diffusion equations: sharp bounds by polynomial optimization." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2241 (2020): 20200450. http://dx.doi.org/10.1098/rspa.2020.0450.

Full text
Abstract:
Many monostable reaction–diffusion equations admit one-dimensional travelling waves if and only if the wave speed is sufficiently high. The values of these minimum wave speeds are not known exactly, except in a few simple cases. We present methods for finding upper and lower bounds on minimum wave speed. They rely on constructing trapping boundaries for dynamical systems whose heteroclinic connections correspond to the travelling waves. Simple versions of this approach can be carried out analytically but often give overly conservative bounds on minimum wave speed. When the reaction–diffusion e
APA, Harvard, Vancouver, ISO, and other styles
25

ABDULBAKE, JANAN, ANTHONY J. MULHOLLAND, and JAGANNATHAN GOMATAM. "A RENORMALIZATION APPROACH TO REACTION-DIFFUSION PROCESSES ON FRACTALS." Fractals 11, no. 04 (2003): 315–30. http://dx.doi.org/10.1142/s0218348x03002191.

Full text
Abstract:
Of fundamental importance to wave propagation in a wide range of physical phenomena is the structural geometry of the supporting medium. Recently, there have been several investigations on wave propagation in fractal media. We present here a renormalization approach to the study of reaction-diffusion (RD) wave propagation on finitely ramified fractal structures. In particular we will study a Rinzel-Keller (RK) type model, supporting travelling waves on a Sierpinski gasket (SG), lattice.
APA, Harvard, Vancouver, ISO, and other styles
26

Regenauer-Lieb, Klaus, Manman Hu, Christoph Schrank, et al. "Cross-diffusion waves resulting from multiscale, multiphysics instabilities: application to earthquakes." Solid Earth 12, no. 8 (2021): 1829–49. http://dx.doi.org/10.5194/se-12-1829-2021.

Full text
Abstract:
Abstract. Theoretical approaches to earthquake instabilities propose shear-dominated source mechanisms. Here we take a fresh look at the role of possible volumetric instabilities preceding a shear instability. We investigate the phenomena that may prepare earthquake instabilities using the coupling of thermo-hydro-mechano-chemical reaction–diffusion equations in a THMC diffusion matrix. We show that the off-diagonal cross-diffusivities can give rise to a new class of waves known as cross-diffusion or quasi-soliton waves. Their unique property is that for critical conditions cross-diffusion wav
APA, Harvard, Vancouver, ISO, and other styles
27

Xu, Tianyuan, Shanming Ji, Ming Mei, and Jingxue Yin. "Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion." Journal of Differential Equations 265, no. 9 (2018): 4442–85. http://dx.doi.org/10.1016/j.jde.2018.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Watt, S. D., and R. O. Weber. "Reaction waves and non-constant diffusivities." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 37, no. 4 (1996): 458–73. http://dx.doi.org/10.1017/s0334270000010808.

Full text
Abstract:
AbstractA reaction-diffusion equation with non-constant diffusivity,ut = (D(x, t)ux)x + F(u),is studied for D(x, t) a continuous function. The conditions under which the equation can be reduced to an equivalent constant diffusion equation are derived. Some exact forms for D(x, t) are given. For D(x, t) a stochastic function, an explicit finite difference method is used to numerically determine the effect of randomness in D(x, t) upon the speed of the reaction wave solution to Fisher's equation. The extension to two spatial dimensions is considered.
APA, Harvard, Vancouver, ISO, and other styles
29

Alfaro, Matthieu, Jérôme Coville, and Gaël Raoul. "Bistable travelling waves for nonlocal reaction diffusion equations." Discrete & Continuous Dynamical Systems - A 34, no. 5 (2014): 1775–91. http://dx.doi.org/10.3934/dcds.2014.34.1775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Matsuoka, C., K. Shimodoi, T. Iizuka, and T. Hasegawa. "Reflection of active waves in reaction-diffusion media." Physics Letters A 243, no. 1-2 (1998): 47–51. http://dx.doi.org/10.1016/s0375-9601(98)00172-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Galochkina, T., M. Marion, and V. Volpert. "Initiation of reaction–diffusion waves of blood coagulation." Physica D: Nonlinear Phenomena 376-377 (August 2018): 160–70. http://dx.doi.org/10.1016/j.physd.2017.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Keyfitz, Barbara Lee. "Shock Waves and Reaction-Diffusion Equations.By Joel Smoller." American Mathematical Monthly 93, no. 4 (1986): 315–18. http://dx.doi.org/10.1080/00029890.1986.11971816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yamada, Hiroyasu, Chihiro Matsuoka, and Akira Yoshimori. "Refraction of active waves in reaction—diffusion media." Physics Letters A 210, no. 3 (1996): 189–94. http://dx.doi.org/10.1016/s0375-9601(96)80008-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wu, Ezi, and Yanbin Tang. "Random perturbations of reaction–diffusion waves in biology." Wave Motion 49, no. 7 (2012): 632–37. http://dx.doi.org/10.1016/j.wavemoti.2012.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kneer, Frederike, Eckehard Schöll, and Markus A. Dahlem. "Nucleation of reaction-diffusion waves on curved surfaces." New Journal of Physics 16, no. 5 (2014): 053010. http://dx.doi.org/10.1088/1367-2630/16/5/053010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kazmierczak, B., and V. Volpert. "Travelling Waves in Partially Degenerate Reaction-Diffusion Systems." Mathematical Modelling of Natural Phenomena 2, no. 2 (2007): 106–25. http://dx.doi.org/10.1051/mmnp:2008021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yu-Fang, Liu, Wu Yan-Ning, Xu Hou-Ju, and Sun Jin-Feng. "Spiral and Antispiral Waves in Reaction-Diffusion Systems." Communications in Theoretical Physics 42, no. 4 (2004): 637–40. http://dx.doi.org/10.1088/0253-6102/42/4/637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kosek, Juraj, and Miloš Marek. "Collision-Stable Waves in Excitable Reaction-Diffusion Systems." Physical Review Letters 74, no. 11 (1995): 2134–37. http://dx.doi.org/10.1103/physrevlett.74.2134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vanag, V. K., and I. R. Epstein. "Segmented spiral waves in a reaction-diffusion system." Proceedings of the National Academy of Sciences 100, no. 25 (2003): 14635–38. http://dx.doi.org/10.1073/pnas.2534816100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

de Pablo, Arturo, and Ariel Sánchez. "Global Travelling Waves in Reaction–Convection–Diffusion Equations." Journal of Differential Equations 165, no. 2 (2000): 377–413. http://dx.doi.org/10.1006/jdeq.2000.3781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Scheel, Arnd. "Bifurcation to Spiral Waves in Reaction-Diffusion Systems." SIAM Journal on Mathematical Analysis 29, no. 6 (1998): 1399–418. http://dx.doi.org/10.1137/s0036141097318948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lansdell, Benjamin, Kevin Ford, and J. Nathan Kutz. "A Reaction-Diffusion Model of Cholinergic Retinal Waves." PLoS Computational Biology 10, no. 12 (2014): e1003953. http://dx.doi.org/10.1371/journal.pcbi.1003953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rossi, Federico, Marcello A. Budroni, Nadia Marchettini, and Jorge Carballido-Landeira. "Segmented waves in a reaction-diffusion-convection system." Chaos: An Interdisciplinary Journal of Nonlinear Science 22, no. 3 (2012): 037109. http://dx.doi.org/10.1063/1.4752194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Strunin, D. V., A. G. Strunina, E. N. Rumanov, and A. G. Merzhanov. "Chaotic reaction waves with fast diffusion of activator." Physics Letters A 192, no. 5-6 (1994): 361–63. http://dx.doi.org/10.1016/0375-9601(94)90219-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lü, GuangYing, and MingXin Wang. "Stability of planar waves in reaction-diffusion system." Science China Mathematics 54, no. 7 (2011): 1403–19. http://dx.doi.org/10.1007/s11425-011-4210-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Huang, Wenzhang. "Traveling Waves for a Biological Reaction-Diffusion Model." Journal of Dynamics and Differential Equations 16, no. 3 (2004): 745–65. http://dx.doi.org/10.1007/s10884-004-6115-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gomatam, Jagannathan, and Peter Grindrod. "Three-dimensional waves in excitable reaction-diffusion systems." Journal of Mathematical Biology 25, no. 6 (1987): 611–22. http://dx.doi.org/10.1007/bf00275497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Erneux, Thomas, and Grégoire Nicolis. "Propagating waves in discrete bistable reaction-diffusion systems." Physica D: Nonlinear Phenomena 67, no. 1-3 (1993): 237–44. http://dx.doi.org/10.1016/0167-2789(93)90208-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Caffarelli, L., A. Mellet, and Y. Sire. "Traveling waves for a boundary reaction–diffusion equation." Advances in Mathematics 230, no. 2 (2012): 433–57. http://dx.doi.org/10.1016/j.aim.2012.01.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dovzhenko, A. Yu, and É. N. Rumanov. "Behavior of reaction-diffusion waves with fast activator diffusion near propagation threshold." Journal of Experimental and Theoretical Physics 98, no. 2 (2004): 359–65. http://dx.doi.org/10.1134/1.1675905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!