To see the other types of publications on this topic, follow the link: Reaction-diffusion.

Journal articles on the topic 'Reaction-diffusion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Reaction-diffusion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139, no. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dalík, Josef. "A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems." Applications of Mathematics 36, no. 5 (1991): 329–54. http://dx.doi.org/10.21136/am.1991.104471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gurevich, Pavel, and Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139, no. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Drábek, Pavel, Milan Kučera, and Marta Míková. "Bifurcation points of reaction-diffusion systems with unilateral conditions." Czechoslovak Mathematical Journal 35, no. 4 (1985): 639–60. http://dx.doi.org/10.21136/cmj.1985.102055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mustafa, Alaa, Ehssan Omer, Nuha Alalam, and Safwa Yacoup. "Awavelet Methodologies for Solving Reaction-Diffusion Complications in Science." International Journal of Research Publication and Reviews 5, no. 8 (2024): 572–76. http://dx.doi.org/10.55248/gengpi.5.0824.2012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trimper, Steffen, Uwe C. Täuber, and Gunter M. Schütz. "Reaction-controlled diffusion." Physical Review E 62, no. 5 (2000): 6071–77. http://dx.doi.org/10.1103/physreve.62.6071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Witkin, Andrew, and Michael Kass. "Reaction-diffusion textures." ACM SIGGRAPH Computer Graphics 25, no. 4 (1991): 299–308. http://dx.doi.org/10.1145/127719.122750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Henry, B. I., and S. L. Wearne. "Fractional reaction–diffusion." Physica A: Statistical Mechanics and its Applications 276, no. 3-4 (2000): 448–55. http://dx.doi.org/10.1016/s0378-4371(99)00469-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nicolis, Gregoire, and Anne Wit. "Reaction-diffusion systems." Scholarpedia 2, no. 9 (2007): 1475. http://dx.doi.org/10.4249/scholarpedia.1475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Mufa. "Reaction-diffusion processes." Chinese Science Bulletin 43, no. 17 (1998): 1409–20. http://dx.doi.org/10.1007/bf02884118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Eisner, Jan. "Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions." Mathematica Bohemica 125, no. 4 (2000): 385–420. http://dx.doi.org/10.21136/mb.2000.126272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wang, Liancheng, and Michael Y. Li. "Diffusion-Driven Instability in Reaction–Diffusion Systems." Journal of Mathematical Analysis and Applications 254, no. 1 (2001): 138–53. http://dx.doi.org/10.1006/jmaa.2000.7220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aghamohammadi, A., A. H. Fatollahi, M. Khorrami, and A. Shariati. "Multispecies reaction-diffusion systems." Physical Review E 62, no. 4 (2000): 4642–49. http://dx.doi.org/10.1103/physreve.62.4642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wei, G. W. "Generalized reaction–diffusion equations." Chemical Physics Letters 303, no. 5-6 (1999): 531–36. http://dx.doi.org/10.1016/s0009-2614(99)00270-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Freidlin, Mark. "Coupled Reaction-Diffusion Equations." Annals of Probability 19, no. 1 (1991): 29–57. http://dx.doi.org/10.1214/aop/1176990535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

McGraw, Tim. "Generalized reaction–diffusion textures." Computers & Graphics 32, no. 1 (2008): 82–92. http://dx.doi.org/10.1016/j.cag.2007.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Singh, Rishi P., and Alan Lawley. "Discussion of “Diffusion reaction." Metallurgical Transactions A 23, S1 (1992): 3393. http://dx.doi.org/10.1007/bf03024547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Saxena, R. K., A. M. Mathai, and H. J. Haubold. "Fractional Reaction-Diffusion Equations." Astrophysics and Space Science 305, no. 3 (2006): 289–96. http://dx.doi.org/10.1007/s10509-006-9189-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

McDermott, Sean, Anthony J. Mulholland, and Jagannathan Gomatam. "Knotted reaction—diffusion waves." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458, no. 2028 (2002): 2947–66. http://dx.doi.org/10.1098/rspa.2002.0997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liang, Ping. "Neurocomputation by Reaction Diffusion." Physical Review Letters 75, no. 9 (1995): 1863–66. http://dx.doi.org/10.1103/physrevlett.75.1863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Seki, Kazuhiko, Mariusz Wojcik, and M. Tachiya. "Fractional reaction-diffusion equation." Journal of Chemical Physics 119, no. 4 (2003): 2165–70. http://dx.doi.org/10.1063/1.1587126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

ASAI, TETSUYA. "Reaction-Diffusion Systems: Nonlinear Dynamics in Nature and Life. Reaction Diffusion Chips." Journal of the Institute of Electrical Engineers of Japan 121, no. 4 (2001): 253–57. http://dx.doi.org/10.1541/ieejjournal.121.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bothe, Dieter, Michel Pierre, and Guillaume Rolland. "Cross-Diffusion Limit for a Reaction-Diffusion System with Fast Reversible Reaction." Communications in Partial Differential Equations 37, no. 11 (2012): 1940–66. http://dx.doi.org/10.1080/03605302.2012.715706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Manthey, Ralf, and Katrin Mittmann. "Stochastic reaction-diffusion equations with continuous reaction." Stochastics and Stochastic Reports 48, no. 1-2 (1994): 61–82. http://dx.doi.org/10.1080/17442509408833898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lindenberg, Katja, Panos Argyrakis, and Raoul Kopelman. "Reaction-Diffusion Model for A + A Reaction." Journal of Physical Chemistry 99, no. 19 (1995): 7542–56. http://dx.doi.org/10.1021/j100019a041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Dúzs, Brigitta, and István Szalai. "Reaction–diffusion phenomena in antagonistic bipolar diffusion fields." Physical Chemistry Chemical Physics 24, no. 3 (2022): 1814–20. http://dx.doi.org/10.1039/d1cp04662d.

Full text
Abstract:
The bipolar antagonistic diffusion field spatially localizes the intermediates of a reaction. This bipolar spatial control results in localized wave phenomena in a nonlinear activatory–inhibitory reaction.
APA, Harvard, Vancouver, ISO, and other styles
27

Borina, Maria Yur'evna, and A. A. Polezhaev. "Diffusion instability in a threevariable reaction-diffusion model." Computer Research and Modeling 3, no. 2 (2011): 135–46. http://dx.doi.org/10.20537/2076-7633-2011-3-2-135-146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Murakawa, Hideki. "A relation between cross-diffusion and reaction-diffusion." Discrete & Continuous Dynamical Systems - S 5, no. 1 (2012): 147–58. http://dx.doi.org/10.3934/dcdss.2012.5.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pomeau, Yves. "Diffusion and reaction–diffusion in fast cellular flows." Chaos: An Interdisciplinary Journal of Nonlinear Science 14, no. 3 (2004): 903–9. http://dx.doi.org/10.1063/1.1772191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Einav, Amit, Jeffrey J. Morgan, and Bao Q. Tang. "Indirect Diffusion Effect in Degenerate Reaction-Diffusion Systems." SIAM Journal on Mathematical Analysis 52, no. 5 (2020): 4314–61. http://dx.doi.org/10.1137/20m1319930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Doremus, Robert H. "Diffusion of hydrogen in silicon: Diffusion-reaction model." Materials Research Innovations 4, no. 1 (2000): 49–59. http://dx.doi.org/10.1007/s100190000068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ma, Man-jun, Jia-jia Hu, Jun-jie Zhang, and Ji-cheng Tao. "A reaction-diffusion model with nonlinearity driven diffusion." Applied Mathematics-A Journal of Chinese Universities 28, no. 3 (2013): 290–302. http://dx.doi.org/10.1007/s11766-013-2966-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bueno-Orovio, Alfonso, and Kevin Burrage. "Complex-order fractional diffusion in reaction-diffusion systems." Communications in Nonlinear Science and Numerical Simulation 119 (May 2023): 107120. http://dx.doi.org/10.1016/j.cnsns.2023.107120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

M. Rasheed, Shaker. "Travelling wave solutions of a Reaction-Diffusion System: Slow Reaction and Slow Diffusion." IOSR Journal of Engineering 4, no. 1 (2014): 40–45. http://dx.doi.org/10.9790/3021-04144045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kostré, Margarita, Christof Schütte, Frank Noé, and Mauricio J. del Razo. "Coupling Particle-Based Reaction-Diffusion Simulations with Reservoirs Mediated by Reaction-Diffusion PDEs." Multiscale Modeling & Simulation 19, no. 4 (2021): 1659–83. http://dx.doi.org/10.1137/20m1352739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rodríguez-Bernal, Aníbal, and Silvia Sastre-Gómez. "Nonlinear nonlocal reaction-diffusion problem with local reaction." Discrete & Continuous Dynamical Systems 42, no. 4 (2022): 1731. http://dx.doi.org/10.3934/dcds.2021170.

Full text
Abstract:
<p style='text-indent:20px;'>In this paper we analyse the asymptotic behaviour of some nonlocal diffusion problems with local reaction term in general metric measure spaces. We find certain classes of nonlinear terms, including logistic type terms, for which solutions are globally defined with initial data in Lebesgue spaces. We prove solutions satisfy maximum and comparison principles and give sign conditions to ensure global asymptotic bounds for large times. We also prove that these problems possess extremal ordered equilibria and solutions, asymptotically, enter in between these equi
APA, Harvard, Vancouver, ISO, and other styles
37

Nałęcz-Jawecki, Paweł, Paulina Szymańska, Marek Kochańczyk, Jacek Miękisz, and Tomasz Lipniacki. "Effective reaction rates for diffusion-limited reaction cycles." Journal of Chemical Physics 143, no. 21 (2015): 215102. http://dx.doi.org/10.1063/1.4936131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bothe, D., and D. Hilhorst. "A reaction–diffusion system with fast reversible reaction." Journal of Mathematical Analysis and Applications 286, no. 1 (2003): 125–35. http://dx.doi.org/10.1016/s0022-247x(03)00457-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vannini, Endrio. "A reaction-diffusion problem with a reaction front." Mathematical Methods in the Applied Sciences 21, no. 5 (1998): 417–32. http://dx.doi.org/10.1002/(sici)1099-1476(19980325)21:5<417::aid-mma959>3.0.co;2-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Balding, David. "Diffusion-reaction in one dimension." Journal of Applied Probability 25, no. 4 (1988): 733–43. http://dx.doi.org/10.2307/3214294.

Full text
Abstract:
One-dimensional, periodic and annihilating systems of Brownian motions and random walks are defined and interpreted in terms of sizeless particles which vanish on contact. The generating function and moments of the number pairs of particles which have vanished, given an arbitrary initial arrangement, are derived in terms of known two-particle survival probabilities. Three important special cases are considered: Brownian motion with the particles initially (i) uniformly distributed and (ii) equally spaced on a circle and (iii) random walk on a lattice with initially each site occupied. Results
APA, Harvard, Vancouver, ISO, and other styles
41

d'Heurle, François M., Patrick Gas, and Jean Philibert. "Diffusion-Reaction: Growth and Nucleation." Defect and Diffusion Forum 143-147 (January 1997): 529–40. http://dx.doi.org/10.4028/www.scientific.net/ddf.143-147.529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gusak, Andriy, A. O. Kovalchuk, and King Ning Tu. "Diffusion in Point Contact Reaction." Defect and Diffusion Forum 309-310 (March 2011): 143–48. http://dx.doi.org/10.4028/www.scientific.net/ddf.309-310.143.

Full text
Abstract:
Recently) the point contact reactions between silicon nanowires (covered by natural oxide) and nanowires or nanodots of metals (nickel, cobalt, platinum) were discovered and studied. These reactions have at least three remarkable characteristics: (1) the reaction product phase is quite different from thin film or bulk reactions (for example, in Ni-Si reaction the appearing phase is Ni1Si1 or Ni1Si2, depending on the orientation of Si, instead of common Ni2Si phase); (2) Phase is formed not in the contact zone but, instead, near the wire tip or between two point contacts; (3) Subsequent phase g
APA, Harvard, Vancouver, ISO, and other styles
43

Polyanin, A. D., A. I. Zhurov, and A. V. Vyazmin. "Time-Delayed Reaction-Diffusion Equations." Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 21, no. 1 (2015): 071–77. http://dx.doi.org/10.17277/vestnik.2015.01.pp.071-077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ozaki, J., M. Hirata, and S. Kondo. "Reaction-diffusion control in somitogenesis." Seibutsu Butsuri 41, supplement (2001): S186. http://dx.doi.org/10.2142/biophys.41.s186_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shamseldeen, Samir A. "Instabilities in reaction-diffusion systems." Applied Mathematical Sciences 8 (2014): 7703–13. http://dx.doi.org/10.12988/ams.2014.49762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Adamatzky, Andrew. "Topics in Reaction-Diffusion Computers." Journal of Computational and Theoretical Nanoscience 8, no. 3 (2011): 295–303. http://dx.doi.org/10.1166/jctn.2011.1693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Hutson, V., and W. Moran. "Repellers in reaction–diffusion systems." Rocky Mountain Journal of Mathematics 17, no. 2 (1987): 301–14. http://dx.doi.org/10.1216/rmj-1987-17-2-301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bobisud, L. E. "Steady-state reaction-diffusion systems." Applicable Analysis 20, no. 1-2 (1985): 151–64. http://dx.doi.org/10.1080/00036818508839566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Allena, R., J. J. Muñoz, and D. Aubry. "Diffusion-reaction model forDrosophilaembryo development." Computer Methods in Biomechanics and Biomedical Engineering 16, no. 3 (2013): 235–48. http://dx.doi.org/10.1080/10255842.2011.616944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Elderfield, D., and M. Wilby. "Scaling in reaction-diffusion systems." Journal of Physics A: Mathematical and General 20, no. 2 (1987): L77—L83. http://dx.doi.org/10.1088/0305-4470/20/2/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!