Academic literature on the topic 'Reaction-transport model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reaction-transport model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reaction-transport model"

1

Karapiperis, T., and B. Blankleider. "Cellular automation model of reaction-transport porcesses." Physica D: Nonlinear Phenomena 78, no. 1-2 (November 1994): 30–64. http://dx.doi.org/10.1016/0167-2789(94)00093-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lao, Liangfeng, Matthew Ellis, and Panagiotis D. Christofides. "Economic Model Predictive Control of Transport-Reaction Processes." Industrial & Engineering Chemistry Research 53, no. 18 (June 24, 2013): 7382–96. http://dx.doi.org/10.1021/ie401016a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mihopoulos, Theodoros G., Vijay Gupta, and Klavs F. Jensen. "A reaction-transport model for AlGaN MOVPE growth." Journal of Crystal Growth 195, no. 1-4 (December 1998): 733–39. http://dx.doi.org/10.1016/s0022-0248(98)00649-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Qingqing, and Stevan Dubljevic. "Linear model predictive control for transport-reaction processes." AIChE Journal 63, no. 7 (January 25, 2017): 2644–59. http://dx.doi.org/10.1002/aic.15592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bendersky, Eugene, and Panagiotis D. Christofides. "Optimization of transport-reaction processes using nonlinear model reduction." Chemical Engineering Science 55, no. 19 (October 2000): 4349–66. http://dx.doi.org/10.1016/s0009-2509(00)00037-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bressloff, P. C. "Multi-spike solutions of a hybrid reaction–transport model." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2247 (March 2021): 20200829. http://dx.doi.org/10.1098/rspa.2020.0829.

Full text
Abstract:
Simulations of classical pattern-forming reaction–diffusion systems indicate that they often operate in the strongly nonlinear regime, with the final steady state consisting of a spatially repeating pattern of localized spikes. In activator–inhibitor systems such as the two-component Gierer–Meinhardt (GM) model, one can consider the singular limit D a ≪ D h , where D a and D h are the diffusivities of the activator and inhibitor, respectively. Asymptotic analysis can then be used to analyse the existence and linear stability of multi-spike solutions. In this paper, we analyse multi-spike solutions in a hybrid reaction–transport model, consisting of a slowly diffusing activator and an actively transported inhibitor that switches at a rate α between right-moving and left-moving velocity states. Such a model was recently introduced to account for the formation and homeostatic regulation of synaptic puncta during larval development in Caenorhabditis elegans . We exploit the fact that the hybrid model can be mapped onto the classical GM model in the fast switching limit α → ∞, which establishes the existence of multi-spike solutions. Linearization about the multi-spike solution yields a non-local eigenvalue problem that is used to investigate stability of the multi-spike solution by combining analytical results for α → ∞ with a graphical construction for finite α .
APA, Harvard, Vancouver, ISO, and other styles
7

Rugonyi, Sandra, Erik Tucker, Ulla Marzec, Andras Gruber, and Stephen Hanson. "Transport-Reaction Model of Mural Thrombogenesis: Comparisons of Mathematical Model Predictions and Results from Baboon Models." Annals of Biomedical Engineering 38, no. 8 (March 30, 2010): 2660–75. http://dx.doi.org/10.1007/s10439-010-0016-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Janacova, Dagmar, Karel Kolomaznik, Pavel Mokrejs, Vladimir Vasek, Jiri Krenek, and Ondrej Liska. "The balance model for heat transport from hydrolytic reaction mixture." MATEC Web of Conferences 125 (2017): 02060. http://dx.doi.org/10.1051/matecconf/201712502060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MOMII, Kazuro, Tomohisa YANO, Kenji JINNO, Takushi YOKOYAMA, Ryuichi ITOI, and Yoshinari HIROSHIRO. "Solute Transport Model in Groundwater Including Multicomponent Chemical Reaction Processes." PROCEEDINGS OF HYDRAULIC ENGINEERING 35 (1991): 641–46. http://dx.doi.org/10.2208/prohe.35.641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Houssa, M., M. Aoulaiche, S. De Gendt, G. Groeseneken, M. M. Heyns, and A. Stesmans. "Reaction-dispersive proton transport model for negative bias temperature instabilities." Applied Physics Letters 86, no. 9 (February 28, 2005): 093506. http://dx.doi.org/10.1063/1.1871357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Reaction-transport model"

1

Stojanovic, Severin. "Numerical Reaction-transport Model of Lake Dynamics and Their Eutrophication Processes." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20231.

Full text
Abstract:
A 1D numerical reaction-transport model (RTM) that is a coupled system of partial differential equations is created to simulate prominent physical and biogeochemical processes and interactions in limnological environments. The prognostic variables considered are temperature, horizontal velocity, salinity, and turbulent kinetic energy of the water column, and the concentrations of phytoplankton, zooplankton, detritus, phosphate (H3PO4), nitrate (NO3-), ammonium (NH4+), ferrous iron (Fe2+), iron(III) hydroxide (Fe(OH)3(s)), and oxygen (O2) suspended within the water column. Turbulence is modelled using the k-e closure scheme as implemented by Gaspar et al. (1990) for oceanic environments. The RTM is used to demonstrate how it is possible to investigate limnological trophic states by considering the problem of eutrophication as an example. A phenomenological investigation of processes leading to and sustaining eutrophication is carried out. A new indexing system that identifies different trophic states, the so-called Self-Consistent Trophic State Index (SCTSI), is proposed. This index does not rely on empirical measurements that are then compared to existing tables for classifying limnological environments into particular trophic states, for example, the concentrations of certain species at certain depths to indicate the trophic state, as is commonly done in the literature. Rather, the index is calculated using dynamic properties of only the limnological environment being considered and examines how those properties affect the sustainability of the ecosystem. Specifically, the index is calculated from a ratio of light attenuation by the ecosystem’s primary biomass to that of total light attenuation by all particulate species and molecular scattering throughout the entire water column. The index is used to probe various simulated scenarios that are believed to be relevant to eutrophication: nutrient loading, nutrient limitation, overabundance of phytoplankton, solar-induced turbulence, and wind-induced turbulence.
APA, Harvard, Vancouver, ISO, and other styles
2

Schankat, Mirko. "DiaTrans a multi-component model for density-driven flow, transport and biogeochemical reaction processes in the subsurface." Aachen Shaker, 2009. http://d-nb.info/1003412742/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Molins, Rafa Sergi. "Using the Dusty Gas Model to investigate reaction-induced multicomponent gas and solute transport in the vadose zone." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/431.

Full text
Abstract:
Biogeochemical reactions and vadose zone transport, in particular gas phase transport, are inherently coupled processes. To explore feedback mechanisms between these processes in a quantitative manner, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described based on the Dusty Gas Model, which provides the most generally applicable description for gas diffusion. Gas advection is described by Darcy's Law, which in the current formulation, is directly substituted into the transport equations. The model is used to investigate the interactions between geochemical reactions and transport processes with an emphasis to quantify reaction-induced gas migration in the vadose zone. Simulations of pyrite oxidation in mine tailings, gas attenuation in partially saturated landfill soil covers, and methane production and oxidation in aquifers contaminated by organic compounds demonstrate how biogeochemical reactions drive diffusive and advective transport of reactive and non-reactive gases. Pyrite oxidation in mine tailings causes a pressure reduction in the reaction zone and drives advective gas flow into the sediment column, enhancing the oxidation process. Release of carbon dioxide by carbonate mineral dissolution partly offsets pressure reduction, and illustrates the role of water-rock interaction on gas transport. Microbially mediated methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, both generation of CH4 in the methanogenic zone and oxidation of CH4 in the methanotrophic zone contribute to drive advective and diffusive fluxes. The model confirmed that non-reactive gases tend to accumulate in zones of gas consumption and become depleted in zones of gas production. In most cases, the model was able to quantify existing conceptual models, but also proved useful to identify data gaps, sensitivity, and inconsistencies in conceptual models. The formulation of the model is general and can be applied to other vadose zone systems in which reaction-induced gas transport is of importance.
APA, Harvard, Vancouver, ISO, and other styles
4

Schankat, Mirko [Verfasser]. "DiaTrans – A Multi-Component Model for Density-Driven Flow, Transport and Biogeochemical Reaction Processes in the Subsurface / Mirko Schankat." Aachen : Shaker, 2010. http://d-nb.info/1124364145/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wei, Chao. "Modeling the effects of heterogeneous reactions on atmospheric chemistry and aerosol properties." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/903.

Full text
Abstract:
In this thesis, a new aerosol module is developed for the STEM model (the Sulfur Transport and dEposition Model) to better understand the chemical aging of dust during long range transport and assess the impact of heterogeneous reactions on tropospheric chemistry. The new aerosol module is verified and first applied in a box model, and then coupled into the 3-Dimentional STEM model. In the new aerosol model, a non-equilibrium (dynamic or kinetic) approach to treat gas-to-particular conversion is employed to replace the equilibrium method in STEM model. Meanwhile, a new numerical method solving the aerosol dynamics equation is introduced into the dynamic aerosol model for its improved computational efficiency and high accuracy. Compared with the equilibrium method, the new dynamic approach is found to provide better results on predicating the different hygroscopicity and chemical aging patterns as a function of size. The current modeling study also takes advantage of new findings from laboratory experiments about heterogeneous reactions on mineral oxides and dust particles, in order to consider the complexity of surface chemistry (such as surface saturation, coating and relative humidity). Modeling results show that the impacts of mineralogy and relative humidity on heterogeneous reactions are significant and should be considered in atmospheric chemistry modeling with first priority. Finally, the upgraded 3-D STEM model is utilized to explore the observations from the Intercontinental Chemical Transport Experiment - Phase B (INTEX-B). The new dynamic approach for gas-to-particular conversion and RH-dependent heterogeneous uptake of HNO3 improve the model performance in term of aerosol predictions under different conditions. It is shown that these improvements change the modeled nitrate and sulfate concentrations, but also modify their size distributions significantly.
APA, Harvard, Vancouver, ISO, and other styles
6

Pika, Philip. "Exploring the regional and global patterns in organic matter reactivity and its influence on benthic biogeochemical dynamics." Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/305204.

Full text
Abstract:
Marine sediments are a key component of the global carbon cycle and climate system. They host one of the largest carbon reservoirs on Earth, provide the only long-term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Early diagenetic pro- cesses in marine sediments are thus central to our understanding of past, present and future biogeochemical cycling and climate. Because all early diagenetic processes can be directly or indirectly linked back to the degradation of organic matter (OM), advancing this understand- ing requires disentangling the different factors that control the fate of OM (sedimentation, degradation and burial) on different spatial and temporal scales. In general, the heterotrophic degradation of OM in marine sediments is controlled by the quantity and, in particular, by the ap- parent reactivity of OM that settles onto marine sediments. While the potential ((micro)biological, chemical and physical) controls on OM reactivity are increasingly well understood, their relative significance remains difficult to quantify. Traditionally, integrated data-model approaches are used to quantify apparent OM reactivity (i.e. OM degradation rate constants) at well-studied drill-sites. These approaches rely on Reaction-Transport Models (RTMs) that typically account for transport (advection, molecular diffusion, bioturbation, and bioirrigation) and reaction (pro- duction, consumption, equilibrium) processes, but vary in complexity. Apparent OM reactivity (i.e. the OM degradation rate constant) is generally considered as a free parameter that is used to fit observed depth-profiles, reaction rates or benthic-pelagic exchange fluxes. Currently, no quantitative framework exists to predict apparent OM reactivity in areas where comprehensive benthic data sets are not available.To evaluate the impact of this knowledge gap, the sensitivity of benthic biogeochemical reaction rates, as well as benthic-pelagic exchange fluxes to variations in apparent OM reactivity (i.e. reactive continuum model parameters a and ν) is explored by means of a complex, numerical diagenetic model for shelf, slope and deep sea depositional environments. Model results show that apparent OM reactivity exerts a dominant control on the magnitude of biogeochemical reaction rates and benthic-pelagic exchange fluxes across different environments. The lack of a general framework to quantify OM reactivity thus complicates the parametrization of regional and global scale diagenetic models and, thus, compromises our ability to quantify global benthic-pelagic coupling in general and OM degradation dynamics in particular.To make a first step towards an improved systematic and quantitative knowledge of OM reac- tivity, apparent OM reactivity (i.e. reactive continuum model parameters a and ν) is quantified by inverse modelling of organic carbon, sulfate (and methane) sediment profiles, as well as the location of the sulfate-methane transition zone using a complex, numerical diagenetic model for 14 individual sites across different depositional environments. Model results highlight again the dominant control of OM reactivity on biogeochemical reaction rates and benthic exchange fluxes. In addition, results show that, inversely determined ν-values fall within a narrow range (0.1 < ν < 0.2). In contrast, determined a-values span ten orders of magnitude (1 · 10−3 < a < 1·107) and are, thus, the main driver of the global variability in OM reactivity. Exploring these trends in their environmental context reveals that apparent OM reactivity is determined by a dynamic set of environmental controls rather than traditionally proposed single environmental controls (e.g. water depth, sedimentation rate, OM fluxes). However, the high computational demand associated with such a multi-species inverse model approach, as well as the limited availability of comprehensive pore water data, limits the number of apparent OM reactivity estimates. Therefore, while providing important primers for a quantification of OM reactivity on the global scale, inverse model results fall short of providing a predictive framework.To overcome the computational limitations and expand the inverse modelling of apparent OM reactivity to the global scale, the analytical model OMEN-SED is extended by integrating a nG- approximation of the reactive continuum model that is fully consistent with the general structure of OMEN-SED. The new version OMEN-SED-RCM thus provides the computational efficiency required for the inverse determination of apparent OM reactivity (i.e. reactive continuum model parameters a and ν) on the global scale. The abilities of the new model OMEN-SED-RCM in capturing observed local, as well as global patterns of diagenetic dynamics are rigorously tested by model-data, as well as model-model comparison.OMEN-SED-RCM is then used to inversely determine apparent OM reactivity by inverse modelling of 394 individual dissolved oxygen utilisation (DOU) rate measurements. DOU is commonly used as a proxy for OM reactivity, it is more widely available than comprehensive porewater data sets and global/regional benthic maps of dissolved oxygen utilisation rates (DOU) have been derived based on the growing DOU data set. Sensitivity test show that, while inverse modelling of DOU rates fails to provide a robust estimate of RCM parameter ν, it is a good indicator for RCM parameter a. Based on previous findings, parameter ν was thus assumed to be globally constant. Inversely determined a-values vary over order of magnitudes from a = 0.6 years in the South Polar region to a = 5.6 · 106 in the oligotrophic, central South Pacific. Despite a high intra- as well as interregional heterogeneity in apparent benthic OM reactivity, a number of clear regional patterns that broadly agree with previous observations emerge. High apparent OM reactivities are generally observed in regions dominated by marine OM sources and characterized by efficient sinking of OM and a limited degradation during sinking. In contrast, the lowest apparent OM reactivities are observed for regions characterized by low marine primary production rates, in combination with a great distance to the continental shelf and slope, as well as deep water columns. Yet, results also highlight the importance of lateral transport processes for apparent OM reactivity. In particular, deep sea sediments in the vicinity of dynamic continental margin environments or under the influence of strong ocean currents can receive comparably reactive OM inputs from more productive environments and, thus, reveal OM reactivities that are higher than traditionally expected. Finally, based on the observed strong link between apparent OM reactivity (i.e. RCM parameters a) and DOU rate, a transfer function that predicts the order of magnitude of RCM parameter a as a function of DOU is used to derive, to our knowledge, the first global map of apparent OM reactivity.Finally, we use the new global map of apparent OM reactivity to quantify biogeochemical dynamics and benthic-pelagic coupling across 22 benthic provinces that cover the entire global ocean. To this end, the numerical diagenetic model BRNS model is set-up for each province and forced with regionally averaged boundary conditions derived from global data sets, as well as apparent OM reactivities informed by the global OM reactivity map. The 22 regional model set-ups were then used to quantify biogeochemical process rates, as well as benthic carbon and nutrient fluxes in each province and on the global scale. Model results of regional and global fluxes and rates fall well within the range of observed values and also agree with general globally observed patterns. Results also highlight the role of the deeper ocean for benthic-pelagic cycling and indicate towards a large regional variability in benthic cycling at great depth. This is a first step towards a more refined global estimate of benthic biogeochemical cycling that accounts for the global heterogeneity of the seafloor environment. This aspect is critical to improve our understanding of benthic feedbacks on benthic-pelagic coupling and on the carbon-climate system, which can then be incorporated in benthic processes in Earth System Models.
Les sédiments marins sont un élément clé du cycle mondial du carbone et du système climatique. Ils abritent l’un des plus grands réservoirs de carbone sur Terre, fournissent le seul puits à long terme pour le CO2 atmosphérique, recyclent les nutriments et constituent les archives climatiques les plus importantes. Les processus de la diagénèse précoce dans les sédiments marins sont donc au cœur de notre compréhension des cycles et du climat biogéochimiques passés, présents et futurs. Étant donné que tous les processus diagénétiques précoces peuvent être directement ou indirectement liés à la dégradation de la matière organique (MO), faire progresser cette compréhension nécessite de démêler les différents facteurs qui contrôlent le devenir de la MO (sédimentation, dégradation et enfouissement) à différentes échelles spatiales et temporelles. En général, la dégradation hétérotrophique de la MO dans les sédiments marins est contrôlée par la quantité et, en particulier, la réactivité apparente de la MO qui se dépose sur les sédiments marins. Bien que les contrôles potentiels ((micro) biologiques, chimiques et physiques) de la réactivité de la MO soient de mieux en mieux compris, leur importance relative reste difficile à quantifier. Traditionnellement, des approches de modèle de données intégrées sont utilisées pour quantifier la réactivité apparente de la MO (c’est-à-dire les constantes de vitesse de dégradation de la MO) sur des sites de forage bien étudiés. Ces approches reposent sur des modèles de réaction-transport (RTM) qui tiennent généralement compte des processus de transport (advection, diffusion moléculaire, bioturbation et bio-irrigation) et de réaction (production, consommation, équilibre), mais leur complexité varie. La réactivité apparente de la MO est généralement considérée comme un paramètre libre qui est utilisé pour ajuster les profils de profondeur, les taux de réaction ou les flux d’échange benthique-pélagique observés. À l’heure actuelle, aucun cadre quantitatif n’existe pour prédire la réactivité apparente de la MO dans les zones où aucun ensemble complet de données benthiques n’est disponible.Pour évaluer l’impact de ce manque de connaissance, nous avons exploré la sensibilité des taux de réaction biogéochimiques benthiques, ainsi que des flux d’échange benthique-pélagique aux variations de la réactivité apparente de la MO (c.-à-d. les paramètres du modèle de con- tinuum réactif a et ν) au moyen d’un modèle diagénétique numérique complexe appliqué aux zones de dépôts sur les plateaux, les talus et en haute mer. Les résultats du modèle montrent que la réactivité apparente de la MO exerce un contrôle dominant sur l’ampleur des taux de réaction biogéochimiques et des flux d’échange benthique-pélagique dans différents environ- nements. L’absence d’un cadre général pour quantifier la réactivité de la MO complique donc la paramétrisation des modèles diagénétiques à l’échelle régionale et mondiale et, ainsi, compromet notre capacité à quantifier le couplage benthique-pélagique global en général et la dynamique de dégradation de la MO en particulier.Pour tendre à meilleure connaissance systématique et quantitative de la réactivité de la MO, la réactivité apparente OM (c.-à-d. les paramètres du modèle de continuum réactif a et ν) est quantifiée par modélisation inverse des profils de sédiments organiques de carbone, de sulfate (et de méthane), ainsi que localisation de la zone de transition sulfate-méthane à l’aide d’un modèle diagénétique numérique complexe pour 14 sites individuels à travers différents environnements de dépôt. Les résultats du modèle mettent à nouveau en évidence le contrôle dominant de la réactivité de l’OM sur les taux de réaction biogéochimiques et les flux d’échanges benthiques. De plus, les résultats montrent que les valeurs déterminées inversement déterminées se situent dans une plage étroite (0,1 <ν<0,2). En revanche, les valeurs déterminées s’étendent sur dix ordres de grandeur (1 ·10−3 <ν< 1·107) et sont donc le principal moteur de la variabilité globale de la réactivité OM. L’exploration de ces tendances dans leur contexte environnemental révèle que la réactivité apparente de l’OM est déterminée par un ensemble dynamique de contrôles environnementaux plutôt que par des contrôles environnementaux uniques traditionnellement proposés (par exemple, la profondeur de l’eau, le taux de sédimentation, les flux OM). Cependant, la forte demande de calcul associée à une telle approche de modèle inverse multi-espèces, ainsi que la disponibilité limitée de données complètes sur l’eau interstitielle, limitent le nombre d’estimations apparentes de la réactivité OM. Par conséquent, tout en fournissant des amorces importantes pour une quantification de la réactivité de l’OM à l’échelle mondiale, les résultats du modèle inverse sont loin de fournir un cadre prédictif.Pour surmonter les limites de calcul et étendre la modélisation inverse de la réactivité apparente de l’OM à l’échelle mondiale, le modèle analytique OMEN-SED est étendu en intégrant une approximation nG du modèle de continuum réactif qui est pleinement cohérente avec la structure générale d’OMEN-SED. La nouvelle version OMEN-SED-RCM fournit ainsi l’efficacité de calcul requise pour la détermination inverse de la réactivité apparente de l’OM (c’est-à-dire les paramètres du modèle de continuum réactif a et ν) à l’échelle mondiale. Les capacités du nouveau modèle OMEN-SED-RCM à capturer les modèles locaux et globaux de dynamique diagénétique observés sont rigoureusement testés par les données du modèle, ainsi que la comparaison modèle- modèle.OMEN-SED-RCM est ensuite utilisé pour déterminer inversement la réactivité apparente de l’OM par modélisation inverse de 394 mesures individuelles du taux d’utilisation de l’oxygène dissous (DOU). Le DOU est couramment utilisé comme indicateur de la réactivité de l’OM, il est plus largement disponible que les ensembles de données exhaustifs sur l’eau interstitielle et les cartes benthiques mondiales/régionales des taux d’utilisation de l’oxygène dissous (DOU) ont été dérivées sur la base de l’ensemble de données DOU croissant. Le test de sensibilité montre que, bien que la modélisation inverse des taux de DOU ne fournisse pas une estimation robuste du paramètre RCM ν, c’est un bon indicateur pour le paramètre RCM a. Sur la base des résultats précédents, le paramètre ν a donc été supposé être globalement constant. Les valeurs a déterminées à l’inverse varient selon l’ordre de grandeur, de a = 0,6 an dans la région polaire sud à a = 5, 6 · 106 dans le Pacifique sud oligotrophique central. Malgré une forte hétérogénéité intra et interrégionale dans la réactivité apparente de la MO benthique, un certain nombre de schémas régionaux clairs qui correspondent largement aux observations précédentes émergent. Des réactivités apparentes élevées de l’OM sont généralement observées dans les régions dominées par des sources marines de MO et caractérisées par un naufrage efficace de l’OM et une dégradation limitée pendant le naufrage. En revanche, les réactivités MO apparentes les plus faibles sont observées pour les régions caractérisées par de faibles taux de production primaire marine, en combinaison avec une grande distance du plateau continental et de la pente, ainsi que des colonnes d’eau profonde. Pourtant, les résultats mettent également en évidence l’importance des processus de transport latéral pour la réactivité apparente de l’OM.En particulier, les sédiments des mers profondes au voisinage d’environnements de marge continentale dynamiques ou sous l’influence de forts courants océaniques peuvent recevoir des apports OM de réactivité comparable provenant d’environnements plus productifs et, ainsi, révéler des réactivités OM plus élevées que ce qui était traditionnellement prévu. Enfin, sur la base du lien fort observé entre la réactivité apparente de l’OM (c’est-à-dire le paramètre RCM a) et le taux DOU, une fonction de transfert qui prédit l’ordre de grandeur du paramètre RCM a en fonction de DOU est utilisée pour dériver, pour nos connaissances, la première carte mondiale de la réactivité apparente de l’OM. Les résultats du modèle des flux et des taux régionaux et mondiaux se situent bien dans la gamme des valeurs observées et également d’accord avec les tendances générales observées au niveau mondial. Les résultats mettent également en évidence le rôle de l’océan profond pour le cycle benthique-pélagique et indiquent une grande variabilité régionale du cycle benthique à grande profondeur. Il s’agit d’une première étape vers une estimation mondiale plus précise du cycle biogéochimique benthique qui tient compte de l’hétérogénéité mondiale du milieu marin. Cet aspect est essentiel pour améliorer notre compréhension des rétroactions benthiques sur le couplage benthique-pélagique et sur le système carbone-climat, qui peuvent ensuite être incorporées aux processus benthiques dans les modèles du système terrestre.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
7

Negm, Hani Hussein. "Studies on the Optimum Geometry for a Nuclear Resonance Fluorescence Detection System for Nuclear Security Applications." Kyoto University, 2014. http://hdl.handle.net/2433/193589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ilas, Danut. "Coarse mesh transport theory model for heterogeneous systems." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/16089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stallmach, Frank, and Sven Crone. "Analytical model for extrapolation of experimental NMR diffusion studies to reaction conditions for formulated catalyst particles." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Naji, Majd, Michael Goepel, Anca Roibu, and Roger Gläser. "Reduction of p-Nitrophenol to p-Aminophenol over supported monometallic catalysts as a model reaction for mass-transfer investigations: Reduction of p-Nitrophenol to p-Aminophenol over supportedmonometallic catalysts as a model reaction for mass-transferinvestigations." Diffusion fundamentals 24 (2015) 2, S. 1, 2015. https://ul.qucosa.de/id/qucosa%3A14515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Reaction-transport model"

1

Goode, Daniel J. Age, double porosity, and simple reaction modifications for the MOC3D ground-water transport model. Lemoyne, Pa: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goode, Daniel J. Age, double porosity, and simple reaction modifications for the MOC3D ground-water transport model. Lemoyne, Pa: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gupta, Roop N. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. Hampton, Va: Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Periodic precipitation: A microcomputer analysis of transport and reaction processes in diffusion media, with software development. Oxford [England]: Pergamon, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

W, Townsend Lawrence, Cucinotta Francis A, and Langley Research Center, eds. Transport model of nucleon-nucleus reaction. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krantz, William B. Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach to Model Building and the Art of Approximation. American Institute of Chemical Engineers, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scaling Analysis in Modeling Transport and Reaction Processes: A Systematic Approach to Model Building and the Art of Approximation. Wiley-Interscience, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kam-Pui, Lee, Gupta Roop N, and Langley Research Center, eds. Computer codes for the evaluation of thermodynamic properties, transport properties, and equilibrium constants of an 11-species air model. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

N, Gupta Roop, and Langley Research Center, eds. A Review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

M, Yos Jerrold, Thompson Richard A, and Langley Research Center, eds. A Review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000K. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Reaction-transport model"

1

Schröder, Daniel. "Detailed One-Dimensional Air Electrode Model." In Analysis of Reaction and Transport Processes in Zinc Air Batteries, 83–94. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-12291-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schröder, Daniel. "Model Approach to Reveal Air-Composition Impact." In Analysis of Reaction and Transport Processes in Zinc Air Batteries, 109–33. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-12291-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Geiser, Jürgen. "Numerical Simulation of a Model for Transport and Reaction of Radionuclides." In Large-Scale Scientific Computing, 487–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45346-6_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Quarteroni, Alfio. "Diffusion-transport-reaction equations." In Numerical Models for Differential Problems, 291–338. Milano: Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5522-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Quarteroni, Alfio. "Diffusion-transport-reaction equations." In Numerical Models for Differential Problems, 315–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49316-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Antonelli, P. L., N. D. Kazarinoff, R. E. Reichelt, R. H. Bradbury, and P. J. Moran. "A Diffusion-Reaction-Transport Model for Large-Scale Waves in Crown-of-Thorns Starfish Outbreaks on the Great Barrier Reef." In Acanthaster and the Coral Reef: A Theoretical Perspective, 45–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-46726-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Riedel, U., U. Maas, and J. Warnatz. "Simulation of Hypersonic Flows Using Detailed Reaction and Transport Models." In Orbital Transport, 223–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-45720-3_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zama, Fabiana, Roberta Ciavarelli, Dario Frascari, and Davide Pinelli. "Numerical Parameters Estimation in Models of Pollutant Transport with Chemical Reaction." In IFIP Advances in Information and Communication Technology, 547–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36062-6_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van der Zee, Sjoerd E. A. T. M. "Reaction Kinetics and Transport in Soil: Compatibility and Differences between Some Simple Models." In Mathematical Modeling for Flow and Transport Through Porous Media, 703–37. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-017-2199-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sahimi, Muhammad, and Theodore T. Tsotsis. "Statistical Models of Transport and Reaction in Porous Media and Their Applications in Catalysis." In ACS Symposium Series, 158–78. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0411.ch015.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reaction-transport model"

1

Lao, Liangfeng, Matthew Ellis, and Panagiotis D. Christofides. "Economic model predictive control of a transport-reaction process." In 2013 21st Mediterranean Conference on Control & Automation (MED). IEEE, 2013. http://dx.doi.org/10.1109/med.2013.6608742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Babaei Pourkargar, Davood, and Antonios Armaou. "Output tracking of spatiotemporal thermal dynamics in transport-reaction processes via adaptive model reduction." In 2014 American Control Conference - ACC 2014. IEEE, 2014. http://dx.doi.org/10.1109/acc.2014.6859206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghantasala, Sathyendra, and Nael H. El-Farra. "Model-Based Fault Isolation and Reconfigurable Control of Transport-Reaction Processes with Actuator Faults." In 2007 American Control Conference. IEEE, 2007. http://dx.doi.org/10.1109/acc.2007.4282760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, X., and P. Ortoleva. "A Coupled Reaction and Transport Model for Assessing the Injection, Migration and Fate of Waste Fluids." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1996. http://dx.doi.org/10.2118/36640-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hasmady, Saiful, Manuel Philipp Wacker, Kazuyoshi Fushinobu, and Ken Okazaki. "Treatment of Heterogeneous Electrocatalysis in Modeling Transport-Reaction Phenomena in PEFCs." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32581.

Full text
Abstract:
Thermal and water management is a critical issue in PEFCs. In this research, the thermal behavior of PEFC is focused. The objective is to understand the influence of heat on cell performance both by experiment and theoretical analysis, as well as improving cell performance and reliability. In order to investigate the theoretical behavior, especially in the catalyst layer where the electrochemical reactions occur, a detailed modeling of heterogeneous surface reaction coupled with reactant transport is needed. In this paper, a theoretical model that improves the dependency of the exchange current density with reactant concentrations by applying data from a known surface reaction steps found in catalysis is developed. It served as a preliminary step before the thermal-electrochemical behavior of a PEFC can be fully understood.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Bei, and Hui Zhang. "A Thermal Transport and Non-Equilibrium Deposition Model in AlN Sublimation Growth Process." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72257.

Full text
Abstract:
Sublimation vapor transport method is a widely used technique for production of bulk crystals, such as SiC and AlN. A one-step reaction with two vapor species, i.e. aluminum (Al) vapor and nitrogen (N2) gas, is usually assumed for AlN sublimation growth with diffusion-controlled growth mechanism. However, vapor species generation/consumption is determined by surface reactions, which do not depend on the concentration gradient, but on concentration itself. Thus, the flux at the interfaces is controlled not only by the Fick’s law, but by the surface reaction. In this paper, inductively heated AlN sublimation growth process is simulated to predict the heat generation and temperature field in the growth system. The effects of coil position on heat and mass transfer are investigated. A non-equilibrium growth model considering surface reaction on the source/seed surfaces, diffusion within the boundary layers and vapor transport between source and seed is developed to predict the growth rates at different operating conditions. The predicted results are compared with the experimental data and the results from a traditional diffusion model, which assumes thermodynamic equilibrium on the solid/vapor surface/interface and vapor diffusion through bulk gas. The conditions under which the new model will provide the same as the one obtained by the diffusion model are identified.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Dongkyu, Insuk Han, Kang Y. Huh, Je-Hyung Lee, Sung-Jun Kim, Woo Kang, and Yongtae Kim. "A New Combustion Model Based on Transport of Mean Reaction Progress Variable in a Spark Ignition Engine." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-0964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

YUSTIANI, YONIK MEILAWATI, TOTOK SUPRIJO, SUPRIHANTO NOTODARMODJO, and AKIRA MANO. "TRANSPORT MODEL WITH KINETICS REACTION OF AMMONIUM, NITRITE, AND NITRATE ON TWO DIMENSIONAL WATERS OF SEMARANG COAST." In Proceedings of the 13th IAHRߝ;APD Congress. World Scientific Publishing Company, 2002. http://dx.doi.org/10.1142/9789812776969_0191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shewchun, John, Ming-Chia Lai, and Santosh A. Bhaskarachari. "An Electronic Model for Transport in Fuel Cell Systems." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59552.

Full text
Abstract:
Existing descriptions for the current-voltage characteristics of a fuel cell are based on classical thermodynamics, which treat the cell as a simple reversible chemical reaction ( A + B ↔ C + D). The cell voltage is given through the Nernst equation in terms of the concentrations of the reacting species. However, cell current can only be expressed phenomenologically through voltage losses due to charge and mass transport, which are termed “polarizations.” The main component of the cell current (the operating region) is controlled by the diffusion gradients at the two porous electrodes (anode and cathode) and is expressed through Fick’s law.
APA, Harvard, Vancouver, ISO, and other styles
10

Cai, D., and L. L. Zheng. "Numerical Study of Transport and Reaction Phenomena in GaN Vapor Phase Epitaxy." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72337.

Full text
Abstract:
A vapor phase epitaxy (VPE) system has been designed to grow high quality gallium nitride layers under the deposition temperature of 990°C and the pressure range of 200–800 Torr. For the better understanding of the deposition mechanism of GaN layers, a numerical model that is capable of describing multi-component fluid flow, gas/surface chemistry, conjugate heat transfer, thermal radiation, and species transport, has been developed to help in design and optimization of the epitaxy growth system. The vacuum area between heaters and reactor tube is simulated as a solid body with small thermal conductivity and totally transparent to radiative heat transfer. Simulation results were compared to the experimental data to examine the temperature distribution achieved inside the growth reactor. To optimize operating parameters, the reaction mechanism for GaN in the VPE system has been identified, and the comprehensive computational simulations have been performed to study the temperature distribution, species mixing process, ammonia decomposition process and GaN deposition rate distribution on the substrate. Parametric studies have been performed to investigate the effects of operational and geometric conditions, such as temperature, reacting/carrier gas flow rate and distance between the substrate and the nozzle, on species mixing process and GaN deposition uniformity. The relationship between gas flow rate and III/V ratio achieved on the substrate will be established.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Reaction-transport model"

1

Wampler, William R., and Samuel M. Myers. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1204088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saar, Martin O., William E. Seyfried, Jr., and Ellen K. Longmire. Recovery Act: An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1258777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Age, double porosity, and simple reaction modifications for the MOC3D ground-water transport model. US Geological Survey, 1999. http://dx.doi.org/10.3133/wri994041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography