Journal articles on the topic 'Reactive force field molecular dynamics simulations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Reactive force field molecular dynamics simulations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gődény, Márta, and Christian Schröder. "Reactive Molecular Dynamics in Ionic Liquids: A Review of Simulation Techniques and Applications." Liquids 5, no. 1 (2025): 8. https://doi.org/10.3390/liquids5010008.
Full textChenoweth, Kimberly, Adri C. T. van Duin, and William A. Goddard. "ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation." Journal of Physical Chemistry A 112, no. 5 (2008): 1040–53. http://dx.doi.org/10.1021/jp709896w.
Full textHong, Dikun, and Xin Guo. "Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field." Fuel 210 (December 2017): 58–66. http://dx.doi.org/10.1016/j.fuel.2017.08.061.
Full textSheng, Chunyang, Kenichi Nomura, Pankaj Rajak, Aiichiro Nakano, Rajiv K. Kalia, and Priya Vashishta. "Quantum Molecular Dynamics Validation of Nanocarbon Synthesis by High-Temperature Oxidation of Nanoparticles." MRS Advances 1, no. 24 (2016): 1811–16. http://dx.doi.org/10.1557/adv.2016.413.
Full textPonce, Victor, and Jorge M. Seminario. "Lithiation of Sulfur-Graphene Compounds Using Reactive Force-Field Molecular Dynamics Simulations." Journal of The Electrochemical Society 167, no. 10 (2020): 100555. http://dx.doi.org/10.1149/1945-7111/ab9ccf.
Full textRimsza, J. M., Lu Deng, and Jincheng Du. "Molecular dynamics simulations of nanoporous organosilicate glasses using Reactive Force Field (ReaxFF)." Journal of Non-Crystalline Solids 431 (January 2016): 103–11. http://dx.doi.org/10.1016/j.jnoncrysol.2015.04.031.
Full textZhang, Xiu Mei, Sheldon Q. Shi, and Jun Cao. "Elastic Properties of Cellulose by Molecular Dynamics Simulation." Applied Mechanics and Materials 416-417 (September 2013): 1726–30. http://dx.doi.org/10.4028/www.scientific.net/amm.416-417.1726.
Full textPurse, Marcus, Grace Edmund, Stephen Hall, Brendan Howlin, Ian Hamerton, and Stephen Till. "Reactive Molecular Dynamics Study of the Thermal Decomposition of Phenolic Resins." Journal of Composites Science 3, no. 2 (2019): 32. http://dx.doi.org/10.3390/jcs3020032.
Full textVerma, Akarsh, Weiwei Zhang, and Adri C. T. van Duin. "ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets." Physical Chemistry Chemical Physics 23, no. 18 (2021): 10822–34. http://dx.doi.org/10.1039/d1cp00546d.
Full textAgrawal, Ankit, Mayank Agrawal, Donguk Suh, et al. "Molecular simulation study on the flexibility in the interpenetrated metal–organic framework LMOF-201 using reactive force field." Journal of Materials Chemistry A 8, no. 32 (2020): 16385–91. http://dx.doi.org/10.1039/c9ta12065c.
Full textAriesto Pamungkas, Mauludi, Choirun Nisa, Istiroyah Istiroyah, and Abdurrouf Abdurrouf. "Nitrogenation of Amorphous Silicon : Reactive Molecular Dynamics Simulations." Journal of Pure and Applied Chemistry Research 8, no. 3 (2019): 197–207. http://dx.doi.org/10.21776/ub.jpacr.2019.008.03.487.
Full textPonnuchamy, Veerapandian, Jakub Sandak, and Anna Sandak. "Revealing of Supercritical Water Gasification Process of Lignin by Reactive Force Field Molecular Dynamics Simulations." Processes 9, no. 4 (2021): 714. http://dx.doi.org/10.3390/pr9040714.
Full textBrault, Pascal. "(Invited) Molecular Dynamics Simulation Insights into Plasma Treatment of Emerging Pollutants in Water." ECS Meeting Abstracts MA2023-02, no. 18 (2023): 1196. http://dx.doi.org/10.1149/ma2023-02181196mtgabs.
Full textLin, Jianquan, Qian Zhao, Haotian Huang, and Yimin Xiao. "Investigation of hydration of potassium carbonate via reactive force-field molecular dynamics simulations." Journal of Energy Storage 39 (July 2021): 102601. http://dx.doi.org/10.1016/j.est.2021.102601.
Full textRahnamoun, Ali, Mehmet Cagri Kaymak, Madushanka Manathunga, et al. "ReaxFF/AMBER—A Framework for Hybrid Reactive/Nonreactive Force Field Molecular Dynamics Simulations." Journal of Chemical Theory and Computation 16, no. 12 (2020): 7645–54. http://dx.doi.org/10.1021/acs.jctc.0c00874.
Full textNomura, Ken-ichi, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta. "A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations." Computer Physics Communications 178, no. 2 (2008): 73–87. http://dx.doi.org/10.1016/j.cpc.2007.08.014.
Full textRiefer, Arthur, Philipp Plänitz, Gunnar Meichsner, and Matthias Hackert-Oschätzchen. "Determination of the NaCl electrolyte viscosity from reactive force field molecular dynamics simulations." Procedia CIRP 133 (2025): 108–13. https://doi.org/10.1016/j.procir.2025.02.020.
Full textSeki, Ryuichi, Naozumi Fujiwara, Masanobu Sato, Yasutoshi Okuno, and Momoji Kubo. "Insights into FinFET Structure Collapse: A Reactive Force Field-Based Molecular Dynamics Investigation." Solid State Phenomena 346 (August 14, 2023): 123–28. http://dx.doi.org/10.4028/p-muo0oa.
Full textYang, Wei, Yiqiang Hong, Youpei Du, et al. "Reaction Pathway Analysis of Methane and Propylene Cracking: A Reactive Force Field Simulation Approach." Materials 18, no. 12 (2025): 2672. https://doi.org/10.3390/ma18122672.
Full textPan, Cunjia, Qiaoyue Chen, Danfeng Liu, Mingming Ding, and Lili Zhang. "Reactive molecular dynamics simulations investigating ROS-mediated HIV damage from outer gp120 protein to internal capsid protein." RSC Advances 15, no. 1 (2025): 331–36. https://doi.org/10.1039/d4ra07023b.
Full textZhang, Xiumei, Mark A. Tschopp, Mark F. Horstemeyer, Sheldon Q. Shi, and Jun Cao. "Mechanical properties of amorphous cellulose using molecular dynamics simulations with a reactive force field." International Journal of Modelling, Identification and Control 18, no. 3 (2013): 211. http://dx.doi.org/10.1504/ijmic.2013.052814.
Full textSanz-Navarro, Carlos F., Per-Olof Åstrand, De Chen, et al. "Molecular Dynamics Simulations of Carbon-Supported Ni Clusters Using the Reax Reactive Force Field." Journal of Physical Chemistry C 112, no. 33 (2008): 12663–68. http://dx.doi.org/10.1021/jp711825a.
Full textOberhoffer, Simon, Albert M. Iskandarov, and Yoshitaka Umeno. "A Reactive Force Field (ReaxFF) for Molecular Dynamics Simulations of NiO Reduction in H2Environments." ECS Transactions 78, no. 1 (2017): 2765–71. http://dx.doi.org/10.1149/07801.2765ecst.
Full textBarcaro, Giovanni, Susanna Monti, Luca Sementa, and Vincenzo Carravetta. "Parametrization of a Reactive Force Field (ReaxFF) for Molecular Dynamics Simulations of Si Nanoparticles." Journal of Chemical Theory and Computation 13, no. 8 (2017): 3854–61. http://dx.doi.org/10.1021/acs.jctc.7b00445.
Full textDeng, Lu, Shingo Urata, Yasuyuki Takimoto, et al. "Structural features of sodium silicate glasses from reactive force field‐based molecular dynamics simulations." Journal of the American Ceramic Society 103, no. 3 (2019): 1600–1614. http://dx.doi.org/10.1111/jace.16837.
Full textHuang, H. S., L. Q. Ai, A. C. T. van Duin, M. Chen, and Y. J. Lü. "ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals." Journal of Chemical Physics 151, no. 9 (2019): 094503. http://dx.doi.org/10.1063/1.5112794.
Full textOspina-Acevedo, Francisco, Ningxuan Guo, and Perla B. Balbuena. "Lithium oxidation and electrolyte decomposition at Li-metal/liquid electrolyte interfaces." Journal of Materials Chemistry A 8, no. 33 (2020): 17036–55. http://dx.doi.org/10.1039/d0ta05132b.
Full textZhang, Jinping, Yubing Si, Can Leng, and Baocheng Yang. "Molecular dynamics simulation of Al–SiO2 sandwich nanostructure melting and low-temperature energetic reaction behavior." RSC Advances 6, no. 64 (2016): 59313–18. http://dx.doi.org/10.1039/c6ra09570d.
Full textShen, X. J., Y. Xiao, W. Dong, X. H. Yan, and H. F. Busnengo. "Molecular dynamics simulations based on reactive force-fields for surface chemical reactions." Computational and Theoretical Chemistry 990 (June 2012): 152–58. http://dx.doi.org/10.1016/j.comptc.2012.03.012.
Full textCowen, Benjamin J., and Mohamed S. El-Genk. "Bond-order reactive force fields for molecular dynamics simulations of crystalline silica." Computational Materials Science 111 (January 2016): 269–76. http://dx.doi.org/10.1016/j.commatsci.2015.09.042.
Full textZhang, Zhijun, Hanyu Zhang, Jun Chai, Liang Zhao, and Li Zhuang. "Reactive molecular dynamics simulation of oil shale combustion using the ReaxFF reactive force field." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43, no. 3 (2019): 349–60. http://dx.doi.org/10.1080/15567036.2019.1624887.
Full textWang, Xue-lei, Wei Xu, Wen-bing Zhu, and Qing-min Li. "Reactive Molecular Dynamics Simulation of Transformer Oil Pyrolysis Based on ReaxFF Reactive Force Field." IOP Conference Series: Materials Science and Engineering 486 (July 10, 2019): 012029. http://dx.doi.org/10.1088/1757-899x/486/1/012029.
Full textPalacios-Rivera, Rogger, David C. Malaspina, Nir Tessler, et al. "Surface specificity and mechanistic pathway of de-fluorination of C60F48 on coinage metals." Nanoscale Advances 2, no. 10 (2020): 4529–38. http://dx.doi.org/10.1039/d0na00513d.
Full textAsthana, Abhishek, and Dean R. Wheeler. "A polarizable reactive force field for water to enable molecular dynamics simulations of proton transport." Journal of Chemical Physics 138, no. 17 (2013): 174502. http://dx.doi.org/10.1063/1.4798457.
Full textHong, Sungwook, and Adri C. T. van Duin. "Molecular Dynamics Simulations of the Oxidation of Aluminum Nanoparticles using the ReaxFF Reactive Force Field." Journal of Physical Chemistry C 119, no. 31 (2015): 17876–86. http://dx.doi.org/10.1021/acs.jpcc.5b04650.
Full textLiu, Yue, Jiayi Hu, Hua Hou, and Baoshan Wang. "ReaxFF reactive force field development and application for molecular dynamics simulations of heptafluoroisobutyronitrile thermal decomposition." Chemical Physics Letters 751 (July 2020): 137554. http://dx.doi.org/10.1016/j.cplett.2020.137554.
Full textYang, Zhen, and Yuan-hang He. "Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations." Chinese Journal of Chemical Physics 29, no. 5 (2016): 557–63. http://dx.doi.org/10.1063/1674-0068/29/cjcp1603054.
Full textGalván, César G., José M. Cabrera-Trujillo, Ivonne J. Hernández-Hernández, and Luis A. Pérez. "Molecular dynamics approach for crystal structures of methane A and B." International Journal of Modern Physics C 28, no. 04 (2017): 1750048. http://dx.doi.org/10.1142/s0129183117500486.
Full textIlyin, Daniil V., William A. Goddard, Julius J. Oppenheim, and Tao Cheng. "First-principles–based reaction kinetics from reactive molecular dynamics simulations: Application to hydrogen peroxide decomposition." Proceedings of the National Academy of Sciences 116, no. 37 (2018): 18202–8. http://dx.doi.org/10.1073/pnas.1701383115.
Full textAssowe, O., Olivier Politano, Vincent Vignal, Patrick Arnoux, and B. Diawara. "A Reactive Force Field Molecular Dynamics Simulation Study of Corrosion of Nickel." Defect and Diffusion Forum 323-325 (April 2012): 139–45. http://dx.doi.org/10.4028/www.scientific.net/ddf.323-325.139.
Full textAvakyan, L. A., A. V. Skidanenko, Ya A. Vakulenko, et al. "New Reactive Force Field for the Molecular Dynamics Simulation of Borate Systems." Journal of Structural Chemistry 66, no. 1 (2025): 165–75. https://doi.org/10.1134/s0022476625010159.
Full textBai, Zhongze, Xi Zhuo Jiang, and Kai H. Luo. "Reactive force field molecular dynamics simulation of pyridine combustion assisted by an electric field." Fuel 333 (February 2023): 126455. http://dx.doi.org/10.1016/j.fuel.2022.126455.
Full textMonteferrante, Michele, Sauro Succi, Dario Pisignano, and Marco Lauricella. "Simulating Polymerization by Boltzmann Inversion Force Field Approach and Dynamical Nonequilibrium Reactive Molecular Dynamics." Polymers 14, no. 21 (2022): 4529. http://dx.doi.org/10.3390/polym14214529.
Full textAshraf, Chowdhury, Abhishek Jain, Yuan Xuan, and Adri C. T. van Duin. "ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions." Physical Chemistry Chemical Physics 19, no. 7 (2017): 5004–17. http://dx.doi.org/10.1039/c6cp08164a.
Full textHamilton, Brenden W., Pilsun Yoo, Michael N. Sakano, Md Mahbubul Islam, and Alejandro Strachan. "High-pressure and temperature neural network reactive force field for energetic materials." Journal of Chemical Physics 158, no. 14 (2023): 144117. http://dx.doi.org/10.1063/5.0146055.
Full textWoellner, Cristiano F., Tiago Botari, Eric Perim, and Douglas S. Galvão. "Mechanical Properties of Schwarzites - A Fully Atomistic Reactive Molecular Dynamics Investigation." MRS Advances 3, no. 8-9 (2018): 451–56. http://dx.doi.org/10.1557/adv.2018.124.
Full textLascane, Leonardo Gois, Eliezer Fernando Oliveira, and Augusto Batagin-Neto. "Polyfuran-based chemical sensors: reactivity analysis via Fukui indexes and reactive molecular dynamics." MRS Advances 5, no. 10 (2020): 497–503. http://dx.doi.org/10.1557/adv.2020.203.
Full textKeil, Frerich J. "Molecular Modelling for Reactor Design." Annual Review of Chemical and Biomolecular Engineering 9, no. 1 (2018): 201–27. http://dx.doi.org/10.1146/annurev-chembioeng-060817-084141.
Full textYu, Shi, Ruizhi Chu, Xiao Li, Guoguang Wu, and Xianliang Meng. "Combined ReaxFF and Ab Initio MD Simulations of Brown Coal Oxidation and Coal–Water Interactions." Entropy 24, no. 1 (2021): 71. http://dx.doi.org/10.3390/e24010071.
Full textZhang, Xiu Mei, M. A. Tschopp, Sheldon Q. Shi, and Jun Cao. "Molecular Dynamics Simulations of the Glass Transition Temperature of Amorphous Cellulose." Applied Mechanics and Materials 214 (November 2012): 7–11. http://dx.doi.org/10.4028/www.scientific.net/amm.214.7.
Full text