Academic literature on the topic 'Reactive oxigen species (ROS)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reactive oxigen species (ROS).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reactive oxigen species (ROS)"
Romecin, P. A., J. E. Millán, A. B. Meseguer, M. C. Ortiz, F. Gragnolini, E. M. García, N. Atucha, and J. García-Estañn. "533 INCREASED PLATELET REACTIVE OXIGEN SPECIES (ROS) PRODUCTION IN EXPERIMENTAL CIRRHOSIS." Journal of Hepatology 52 (April 2010): S213—S214. http://dx.doi.org/10.1016/s0168-8278(10)60535-1.
Full textSawayama, Yasushi, Yasushi Miyazaki, Chizuko Tsutsumi, Koji Ando, Kazutaka Kuriyama, and Masao Tomonaga. "Myeloperoxidase Increases Chemosensitivity of Leukemia Cells through the Generation of Reactive Oxigen and Nitrogen Species." Blood 108, no. 11 (November 16, 2006): 4506. http://dx.doi.org/10.1182/blood.v108.11.4506.4506.
Full textButsanets, P., A. Baik, N. Shugaeva, and A. Shugaev. "EFFECT OF SALICYLIC ACID ON RESPIRATORY ACTIVITY AND REACTIVE OXIGEN SPECIES GENERATION IN PLANT MITOCHONDRIA." EurasianUnionScientists 2, no. 10(79) (November 20, 2020): 9–15. http://dx.doi.org/10.31618/esu.2413-9335.2020.2.79.1043.
Full textGranato, Marisa, Maria Gilardini Montani, Camilla Angiolillo, Gabriella D’Orazi, Alberto Faggioni, and Mara Cirone. "Cytotoxic Drugs Activate KSHV Lytic Cycle in Latently Infected PEL Cells by Inducing a Moderate ROS Increase Controlled by HSF1, NRF2 and p62/SQSTM1." Viruses 11, no. 1 (December 24, 2018): 8. http://dx.doi.org/10.3390/v11010008.
Full textLEVY-PEREIRA, Nycolas, Ricardo Luiz Moro de SOUSA, Roberson SAKABE, Fernanda de Alexandre SEBASTIÃO, Elisabeth Criscuolo URBINATI, and Fabiana PILARSKI. "DIETARY MANNAN-OLIGOSACCHARIDE INCREASES REACTIVE OXIGEN SPECIES PRODUCTION BUT DECREASES SERUM LYSOZYME IN HIGH LEVELS OF INCLUSION FOR NILE TILAPIA." Boletim do Instituto de Pesca 46, no. 3 (December 16, 2020): 1–7. http://dx.doi.org/10.20950/1678-2305.2020.46.3.551.
Full textDreyer, Maik, Anna Rabe, Eko Budiyanto, Klaus Friedel Ortega, Sharif Najafishirtari, Harun Tüysüz, and Malte Behrens. "Dynamics of Reactive Oxygen Species on Cobalt-Containing Spinel Oxides in Cyclic CO Oxidation." Catalysts 11, no. 11 (October 29, 2021): 1312. http://dx.doi.org/10.3390/catal11111312.
Full textIannuzzi, Anna Maria, Chiara Giacomelli, Marinella De Leo, Lara Russo, Fabiano Camangi, Nunziatina De Tommasi, Alessandra Braca, Claudia Martini, and Maria Letizia Trincavelli. "Cornus sanguinea Fruits: a Source of Antioxidant and Antisenescence Compounds Acting on Aged Human Dermal and Gingival Fibroblasts." Planta Medica 87, no. 10/11 (April 15, 2021): 879–91. http://dx.doi.org/10.1055/a-1471-6666.
Full textImelda, Eva, Rinaldi Idroes, Khairan Khairan, Rodiah Rahmawaty Lubis, Abdul Hawil Abas, Ade John Nursalim, Mohamad Rafi, and Trina Ekawati Tallei. "Natural Antioxidant Activities of Plants in Preventing Cataractogenesis." Antioxidants 11, no. 7 (June 28, 2022): 1285. http://dx.doi.org/10.3390/antiox11071285.
Full textAltaf, Muhammad, Naike Casagrande, Elena Mariotto, Nadeem Baig, Abdel-Nasser Kawde, Giuseppe Corona, Roberto Larcher, et al. "Potent In Vitro and In Vivo Anticancer Activity of New Bipyridine and Bipyrimidine Gold (III) Dithiocarbamate Derivatives." Cancers 11, no. 4 (April 4, 2019): 474. http://dx.doi.org/10.3390/cancers11040474.
Full textMisra, A. N., M. Misra, and R. Singh. "Nitric oxide ameliorates stress responses in plants." Plant, Soil and Environment 57, No. 3 (March 4, 2011): 95–100. http://dx.doi.org/10.17221/202/2010-pse.
Full textDissertations / Theses on the topic "Reactive oxigen species (ROS)"
Ristic, Marko. "ROS/SUMO relationship in the chemotherapeutic treatment of Acute Myeloid Leukemia." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT047.
Full textAcute Myeloid Leukemias (AML) are a group a severe hematological malignancies, which treatment is generally composed of two genotoxics: Cytarabine (Ara-C) and Daunorubicin (DNR). We have shown that these drugs induce the rapid deconjugation of the Small Ubiquitin-related Modifier (SUMO) from its target protein. This is due to the inactivation of SUMO E1 and E2 enzymes by Reactive oxygen species (ROS). This deSUMOylation participated in the activation of specific genes and is involved the induction of apoptosis. In addition, this ROS/SUMO axis is anergized in chemoresistant AMLs. However, it can be reactivated by pro-oxidants or inhibition of the SUMO pathway with anacardic acid, an inhibitor of the SUMO E1. To identify which proteins are regulated by this ROS/SUMO axis, we performed a quantitative mass spectrometry approach. Among the 1000 identified SUMO targets, most of the 114 proteins, which SUMOylation decrease upon treatment, are involved in the regulation of gene expression. In addition, we showed by ChIP-Seq with SUMO-2 antibodies that genotoxics, in particular DNR, induce a massive decrease of the presence of SUMOylated proteins on the chromatin. Motif search analysis of the SUMO binding sequences in these genes identified CTCF binding motif. Interestingly, CTCF was found in the SILAC as deSUMOylated by the drugs. Using publicly available ChIP-Seq data for CTCF, we found 55 genes which are occupied by both SUMO-2 and CTCF and which expression is regulated by the drugs. In the last part of this work, we got interested in the 19 proteins that get up-SUMOylated upon treatment. Among them, we found centromeric proteins, including CENP-B and CENP-C. Using Proximity Ligation Assay, we could show that CENP-B and CENP-C colocalize with both SUMO and yH2AX upon DNR treatment. Altogether, this suggests that centromeric protein up-SUMOylation occurs at sites of DNA damage and might play a role in DNA damage repair
Menazza, Sara. "Relationship between mitochondrial ROS formation and myofibrillar protein oxidation in contractile dysfunction." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421607.
Full textLo stress ossidativo è stato riconosciuto come uno dei meccanismi alla base di molte patologie cardiovascolari e muscolari, ma non è ancora stata chiarita quale possa essere la relazione tra l’elevato accumulo di ROS e la disfunzione contrattile. Noi abbiamo ipotizzato che in presenza di stress ossidativo le proteine miofibrillari (MPs) possano venire ossidate, contribuendo cosi al danno contrattile. I risultati ottenuti in questo lavoro dimostrano che la disfunzione mitocondriale svolge un ruolo chiave nel danno muscolare, sia nelle malattie cardiovascolari che nella distrofia muscolare. Abbiamo dimostrato che le ROS prodotte nel mitocondrio modificano le MPs causando una disfunzione contrattile. Questi risultati dimostrano che le ossidazioni alle MPs sono un importante bersaglio delle ROS. Inoltre questo studio mette in evidenza che le ROS prodotte dalla monoamino ossidasi (MAO) sono responsabili sia delle modifiche a carico delle MPs che della morte cellulare. Infatti l’inibizione farmaceutica della MAO protegge il fenotipo distrofico riducendo la produzione delle ROS e la degenerazione delle fibre muscolari. Questo dimostra il ruolo chiave dei mitocondri nella disfunzione contrattile, suggerendo un nuovo potenziale terapeutico per gli inibitori della MAO.
Hirst, Suzanne Marie. "Anti-inflammatory Effects and Biodistribution of Cerium Oxide Nanoparticles." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/76806.
Full textMaster of Science
Wason, Melissa. "Cerium Oxide Nanoparticles Sensitize Pancreatic Cancer Cells to Radiation by Promoting Acidic pH, ROS, and JNK Dependent Apoptosis." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6033.
Full textPh.D.
Doctorate
Molecular Biology and Microbiology
Medicine
Biomedical Sciences
Barreiro, Portela Esther. "Study of reactive oxygen species (ROS) and nitric oxide (NO) as molecular mediators of the sepsis-induced diaphragmatic contractile dysfunction : protective effect of heme oxygenases." Doctoral thesis, Universitat Pompeu Fabra, 2002. http://hdl.handle.net/10803/7066.
Full textEn un model de sepsi de disfunció diafragmàtica, s´ha avaluat el paper de les sintetases de l'òxid nítric (NOS) en la formació i localitzacio de 3-nitrotirosina, i l´expressió i significat biològic de les hemo oxigenases (HOs) (inhibidor de les HOs i estudis de contractilitat) davant l' estrès oxidatiu. La sepsi s'induí mitjançant injecció de 20 mg/kg del lipolisacàrid (LPS) d´Escherichia Coli a rates, i a ratolins deficients en les NOS induïble (iNOS), neuronal (nNOS) i endotelial (eNOS). Les proteïnes nitrificades i les HOs es van detectar amb anticossos específics. L' estrès oxidatiu s' avaluà mitjançant l' oxidació proteica, la peroxidació lipídica i el glutation muscular. Concloem que hi han proteïnes nitrificades en el múscul normal i aquestes s'incrementen durant la sepsi en les fraccions mitocondrial i membranar. L'isoforma iNOS és majorment responsable de la formació de nitrotirosina. Les HOs protegirien el múscul normal i sèptic dels efectes deleteris dels oxidants.
Viegas, Juliane Oliveira. "Cytotoxic potential of graphene oxide in human lung Adenocarcinoma cell line." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22356.
Full textGraphene oxide (GO) is a compound with application in several fields, especially biomedicine and environment, due to its unique properties which confer excellent characteristics. Despite the nowadays wide application of nanomaterials, the lack of information regarding the risks to human health and the environment is still remaining. Consequently, the investigation about the toxicity of nanoparticles must be a priority. The lung is one of the main routes of entry for nanoparticles into the body, therefore, the aim of this study is to evaluate the cytotoxic potential of graphene oxide in lung, using as model the human carcinoma epithelial cell line (A549). The morphology and viability of A549 cells were evaluated after 24h of exposure to GO at concentrations from 10μg/ml to 200μg/ml. The uptake of GO and the production of reactive oxygen species were also investigated by flow cytometry. The results suggest that GO has no obvious toxicity to A549 cells when assessed by WST-8 assay, though the cell cycle showed a slightly alteration in the S and G2 phase at 50μg/mL with arrest at G2 phase. Also, GO showed an increasing in the ROS production at the lowest doses (10ug/mL and 37μg/mL). The intracellular uptake increased for the highest concentration. Together these results suggest that this form of GO shows biocompatibility for lung cells.
O óxido de grafeno (GO) é um composto com aplicação em diversas áreas, especialmente biomedicina e ambiente, devido as suas propriedades únicas que lhe conferem excelentes características. Apesar da atual ampla utilização de nanomateriais, a falta de informação sobre os riscos para a saúde humana e para o ambiente ainda permanece. Consequentemente, a investigação sobre a toxicidade das nanopartículas deve ser uma prioridade. Sendo o pulmão uma das principais vias de entrada das nanopartículas no organismo, o objetivo deste trabalho é avaliar o potencial citotóxico de óxido de grafeno no pulmão, usando com modelo uma linha celular epitelial de carcinoma do pulmão humano (A549). A morfologia e a viabilidade das células A549 foram avaliados após 24 horas de exposição a concentrações de GO entre 10μg/mL a 200μg/mL. A captação de GO e a produção de espécies reativas de oxigênio foram avaliadas por citometria de fluxo. Os resultados sugerem que GO não apresenta óbvia toxicidade para as células A549, quando avaliada pelo ensaio WST-8. No entanto, no ciclo celular observou-se uma ligeira alteração na fase S e na fase G2 em 50μg/mL, com paragem na fase G2. GO induziu também um aumento na produção de ROS em doses mais baixas (10μg/mL e 37μg/mL). A captação intracelular de GO aumentou para a dose mais elevada. Em conjunto, estes resultados sugerem que esta forma de GO apresenta biocompatibilidade para as células de pulmão.
Garlid, Anders Olav. "Mitochondrial Reactive Oxygen Species (ROS): Which ROS is Responsible for Cardioprotective Signaling?" PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1641.
Full textVaidyanathan, V. V. "Oxidative Stress In The Brain: Effects Of Hydroperoxides And Nitric Oxide On Glyceraldehyde 3-Phosphate Dehydrogenase And Phosphoinositide Cycle Enzymes." Thesis, Indian Institute of Science, 1994. http://hdl.handle.net/2005/142.
Full textAl-Nu'airat, Jomana. "Implications of reactive oxygen species (ROS) in initiating chemical reactions." Thesis, Al-Nu'airat, Jomana (2018) Implications of reactive oxygen species (ROS) in initiating chemical reactions. PhD thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/42916/.
Full textTodd, Adam. "The role and inhibition of reactive oxygen species (ROS) in psoriasis." Thesis, University of Sunderland, 2009. http://sure.sunderland.ac.uk/3699/.
Full textBooks on the topic "Reactive oxigen species (ROS)"
Musonda, Alam Clement. Quercetin as a modulator of xenobiotic metabolism and reactive oxygen species (ROS) in human hepG2 cells. Birmingham: University of Birmingham, 1998.
Find full textNakamura, Tomohiro, and Stuart A. Lipton. Neurodegenerative Diseases as Protein Misfolding Disorders. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190233563.003.0002.
Full textFilip, Cristiana, and Elena Albu, eds. Reactive Oxygen Species (ROS) in Living Cells. InTech, 2018. http://dx.doi.org/10.5772/intechopen.69697.
Full textZilliox, Lindsay, and James W. Russell. Diabetic and Prediabetic Neuropathy. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0115.
Full textTG 495: Ros (Reactive Oxygen Species) Assay for Photoreactivity. OECD, 2019. http://dx.doi.org/10.1787/915e00ac-en.
Full textSingh, Vijay Pratap, Sheo Mohan Prasad, Durgesh K. Tripathi, Samiksha Singh, and Devendra K. Chauhan. Reactive Oxygen Species in Plants: Boon or Bane - Revisiting the Role of ROS. Wiley & Sons, Limited, John, 2017.
Find full textReactive Oxygen Species in Plants: Boon Or Bane - Revisiting the Role of ROS. Wiley, 2017.
Find full textSingh, Vijay Pratap, Sheo Mohan Prasad, Durgesh Kumar Tripathi, Devendra Kumar Chauhan, and Samiksha Singh. Reactive Oxygen Species in Plants: Boon or Bane - Revisiting the Role of ROS. Wiley & Sons, Incorporated, John, 2017.
Find full textSingh, Vijay Pratap, Sheo Mohan Prasad, Durgesh Kumar Tripathi, Devendra Kumar Chauhan, and Samiksha Singh. Reactive Oxygen Species in Plants: Boon or Bane - Revisiting the Role of ROS. Wiley & Sons, Incorporated, John, 2017.
Find full textReactive Oxygen Species (ROS), Nanoparticles, and Endoplasmic Reticulum (ER) Stress-Induced Cell Death Mechanisms. Elsevier, 2020. http://dx.doi.org/10.1016/c2019-0-04102-7.
Full textBook chapters on the topic "Reactive oxigen species (ROS)"
Mehlhorn, Heinz. "Reactive Oxygen Species (ROS)." In Encyclopedia of Parasitology, 2314–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-43978-4_4262.
Full textMehlhorn, Heinz. "Reactive Oxygen Species (ROS)." In Encyclopedia of Parasitology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27769-6_4262-1.
Full textKemp, Melissa L. "Reactive Oxygen Species (ROS)." In Encyclopedia of Systems Biology, 1817. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1263.
Full textMartemyanov, Kirill A., Pooja Parameswaran, Irene Aligianis, Mark Handley, Marga Gual-Soler, Tomohiko Taguchi, Jennifer L. Stow, et al. "ROS (Reactive Oxygen Species)." In Encyclopedia of Signaling Molecules, 1691. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101203.
Full textTauler Riera, Pedro, Maurizio Volterrani, Ferdinando Iellamo, Francesco Fallo, Andrea Ermolao, William J. Kraemer, Nicholas A. Ratamess, Avery Faigenbaum, Andrew Philp, and Keith Baar. "Reactive Oxygen Species (ROS)." In Encyclopedia of Exercise Medicine in Health and Disease, 749. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2942.
Full textGooch, Jan W. "Reactive Oxygen Species (ROS)." In Encyclopedic Dictionary of Polymers, 919. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14648.
Full textAgarwal, Ashok, Sajal Gupta, and Rakesh Sharma. "Reactive Oxygen Species (ROS) Measurement." In Andrological Evaluation of Male Infertility, 155–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26797-5_21.
Full textPham, Jasmine, and Radhika Desikan. "ROS Signalling in Stomata." In Reactive Oxygen Species in Plant Signaling, 55–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00390-5_4.
Full textde Lamirande, Eve, and Claude Gagnon. "Reactive Oxygen Species (ROS) and Reproduction." In Free Radicals in Diagnostic Medicine, 185–97. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1833-4_14.
Full textWen, Tao, Jianbo Liu, Weiwei He, and Aiyun Yang. "Nanomaterials and Reactive Oxygen Species (ROS)." In Nanotechnology in Regenerative Medicine and Drug Delivery Therapy, 361–87. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5386-8_8.
Full textConference papers on the topic "Reactive oxigen species (ROS)"
Elshiekh, Duaa Ibnomer, Hadeel Hendawi, Aya Goul, Dina Awartan, Isra Marei, Christopher Triggle, and Haissam Abou Saleh. "Effect of Hyperglycemia on eNOS function in EPCs." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0215.
Full textYu, Miao, and Alisa Morss Clyne. "Dextran and PEG Coating Reduced Nanoparticle Toxicity to Cells." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80819.
Full textPodder, Soumik, and Sunipa Roy. "Reactive Oxygen Species (ROS) Sensing- A Nanoscale Transistorized Approach." In 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON). IEEE, 2022. http://dx.doi.org/10.1109/edkcon56221.2022.10032914.
Full textYu, J. Q., L. K. Chin, Y. Fu, T. Yu, K. Q. Luo, and A. Q. Liu. "Pulsatile shear stress and high glucose concentrations induced reactive oxigen species production in endothelial cells." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969310.
Full textSuyono, Handi, and Guritno Suryokusumo. "Hyperbaric Oxygen (HBO) Heals Cell Through Reactive Oxygen Species (ROS)." In Surabaya International Physiology Seminar. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007334001230127.
Full textNorina, Svetlana B. "MAGNETOPHORETIC AND OPTICAL STUDY OF ANISOTROPIC MAGNETIC PROPERTIES OF BIOMICROPARTICLES CONTAINING REACTIVE OXIGEN SPECIES OR FERRITIN." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ecbo.2003.5143_126.
Full textVeronica, Gisca, Komariah, and Ln Gabriella Clara Maria. "Microencapsulation of Lemongrass Leaves Effect on Reactive Oxygen Species (ROS) Fibroblasts." In 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce). IEEE, 2021. http://dx.doi.org/10.1109/inhence52833.2021.9537219.
Full textKhaing Oo, Maung Kyaw, Maria Gomez, Hongjun Wang, and Henry Du. "Enhanced Generation of Reactive Oxygen Species Using Gold Nanoparticles Conjugated With Protoporphyrin IX." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13115.
Full textSun, Qingrui, and Tongsheng Chen. "Reactive oxygen species (ROS) is not a promotor of taxol-induced cytoplasmic vacuolization." In SPIE BiOS: Biomedical Optics, edited by Wei R. Chen. SPIE, 2009. http://dx.doi.org/10.1117/12.807256.
Full textJohnson, Arnold, and Amy Barton-Pai. "Lipoteichoic Acid (LTA) Causes Reactive Oxygen Species (ROS) dependent Lung Endothelial Barrier Dysfunction." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a3441.
Full textReports on the topic "Reactive oxigen species (ROS)"
Asenath-Smith, Emily, Emma Ambrogi, Eftihia Barnes, and Jonathon Brame. CuO enhances the photocatalytic activity of Fe₂O₃ through synergistic reactive oxygen species interactions. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42131.
Full textDroby, Samir, Michael Wisniewski, Ron Porat, and Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Full textGarlid, Anders. Mitochondrial Reactive Oxygen Species (ROS): Which ROS is Responsible for Cardioprotective Signaling? Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1640.
Full textFriedman, Haya, Chris Watkins, Susan Lurie, and Susheng Gan. Dark-induced Reactive Oxygen Species Accumulation and Inhibition by Gibberellins: Towards Inhibition of Postharvest Senescence. United States Department of Agriculture, December 2009. http://dx.doi.org/10.32747/2009.7613883.bard.
Full textHorwitz, Benjamin, and Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, January 2017. http://dx.doi.org/10.32747/2017.7604290.bard.
Full textMiller, Gad, and Jeffrey F. Harper. Pollen fertility and the role of ROS and Ca signaling in heat stress tolerance. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598150.bard.
Full textPrusky, Dov, Noel T. Keen, and Stanley Freeman. Elicitation of Preformed Antifungal Compounds by Non-Pathogenic Fungus Mutants and their Use for the Prevention of Postharvest Decay in Avocado Fruits. United States Department of Agriculture, January 1996. http://dx.doi.org/10.32747/1996.7570573.bard.
Full textHorwitz, Benjamin A., and Barbara Gillian Turgeon. Fungal Iron Acquisition, Oxidative Stress and Virulence in the Cochliobolus-maize Interaction. United States Department of Agriculture, March 2012. http://dx.doi.org/10.32747/2012.7709885.bard.
Full textPesis, Edna, Elizabeth J. Mitcham, Susan E. Ebeler, and Amnon Lers. Application of Pre-storage Short Anaerobiosis to Alleviate Superficial Scald and Bitter Pit in Granny Smith Apples. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7593394.bard.
Full textHansen, Peter J., Zvi Roth, and Jeremy J. Block. Improving oocyte competence in dairy cows exposed to heat stress. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598163.bard.
Full text