Journal articles on the topic 'Reactivity and catalysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Reactivity and catalysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis." Synthesis 50, no. 18 (June 28, 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Full textDe Coster, Valentijn, Hilde Poelman, Jolien Dendooven, Christophe Detavernier, and Vladimir V. Galvita. "Designing Nanoparticles and Nanoalloys for Gas-Phase Catalysis with Controlled Surface Reactivity Using Colloidal Synthesis and Atomic Layer Deposition." Molecules 25, no. 16 (August 15, 2020): 3735. http://dx.doi.org/10.3390/molecules25163735.
Full textKonsolakis, Michalis, and Maria Lykaki. "Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review." Catalysts 11, no. 4 (March 31, 2021): 452. http://dx.doi.org/10.3390/catal11040452.
Full textWang, Danfeng, Robert Malmberg, Indrek Pernik, Shyamal K. K. Prasad, Max Roemer, Koushik Venkatesan, Timothy W. Schmidt, Sinead T. Keaveney, and Barbara A. Messerle. "Development of tethered dual catalysts: synergy between photo- and transition metal catalysts for enhanced catalysis." Chemical Science 11, no. 24 (2020): 6256–67. http://dx.doi.org/10.1039/d0sc02703k.
Full textde Bruin, Bas, and Colet te Grotenhuis. "Radical-type Reactions Controlled by Cobalt: From Carbene Radical Reactivity to the Catalytic Intermediacy of Reactive o-Quinodimethanes." Synlett 29, no. 17 (July 19, 2018): 2238–50. http://dx.doi.org/10.1055/s-0037-1610204.
Full textDong, Xiao-Yun, Zi-Wei Gao, Ke-Fang Yang, Wei-Qiang Zhang, and Li-Wen Xu. "Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals." Catalysis Science & Technology 5, no. 5 (2015): 2554–74. http://dx.doi.org/10.1039/c5cy00285k.
Full textMosinska, Magdalena, Natalia Stępińska, Waldemar Maniukiewicz, Jacek Rogowski, Agnieszka Mierczynska-Vasilev, Krasimir Vasilev, Malgorzata I. Szynkowska, and Pawel Mierczynski. "Hydrogen Production on Cu-Ni Catalysts via the Oxy-Steam Reforming of Methanol." Catalysts 10, no. 3 (March 1, 2020): 273. http://dx.doi.org/10.3390/catal10030273.
Full textDare, Nicola A., and Timothy J. Egan. "Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions." Open Chemistry 16, no. 1 (August 15, 2018): 763–89. http://dx.doi.org/10.1515/chem-2018-0083.
Full textPark, Jongmin, Hyo Seok Kim, Won Bo Lee, and Myung-June Park. "Trends and Outlook of Computational Chemistry and Microkinetic Modeling for Catalytic Synthesis of Methanol and DME." Catalysts 10, no. 6 (June 11, 2020): 655. http://dx.doi.org/10.3390/catal10060655.
Full textMinaev, Boris F., and Hans Ågren. "Spin-Orbit Coupling Induced Chemical Reactivity and Spin-Catalysis Phenomena." Collection of Czechoslovak Chemical Communications 60, no. 3 (1995): 339–71. http://dx.doi.org/10.1135/cccc19950339.
Full textShubina, Tatyana E., and Timothy Clark. "Catalysis of the Quadricyclane to Norbornadiene Rearrangement by SnCl2 and CuSO4." Zeitschrift für Naturforschung B 65, no. 3 (March 1, 2010): 347—r369. http://dx.doi.org/10.1515/znb-2010-0319.
Full textSchmal, Martin, and Hans-Joachim Freund. "Towards an atomic level understanding of niobia based catalysts and catalysis by combining the science of catalysis with surface science." Anais da Academia Brasileira de Ciências 81, no. 2 (June 2009): 297–318. http://dx.doi.org/10.1590/s0001-37652009000200016.
Full textBím, Daniel, Mauricio Maldonado-Domínguez, Lubomír Rulíšek, and Martin Srnec. "Beyond the classical thermodynamic contributions to hydrogen atom abstraction reactivity." Proceedings of the National Academy of Sciences 115, no. 44 (September 25, 2018): E10287—E10294. http://dx.doi.org/10.1073/pnas.1806399115.
Full textFallah, Amirhossein, Davood Kordestani, Abdolhamid Alizadeh, and Salasiah Endud. "Supported Palladium Catalysis Using a Biguanide N-Donor Motif on Mesoporous Silica for Suzuki-Miyaura Coupling Reaction." Advanced Materials Research 622-623 (December 2012): 757–61. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.757.
Full textLi, Haobo, Jianping Xiao, Qiang Fu, and Xinhe Bao. "Confined catalysis under two-dimensional materials." Proceedings of the National Academy of Sciences 114, no. 23 (May 22, 2017): 5930–34. http://dx.doi.org/10.1073/pnas.1701280114.
Full textLehn, J. M. "Supramolecular reactivity and catalysis." Applied Catalysis A: General 113, no. 2 (June 1994): 105–14. http://dx.doi.org/10.1016/0926-860x(94)80017-0.
Full textPonce, Adrian. "Radionuclide-induced defect sites in iron-bearing minerals may have accelerated the emergence of life." Interface Focus 9, no. 6 (October 18, 2019): 20190085. http://dx.doi.org/10.1098/rsfs.2019.0085.
Full textZhang, Yuwei, J. Matthew Lucas, Ping Song, Brandon Beberwyck, Qiang Fu, Weilin Xu, and A. Paul Alivisatos. "Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity." Proceedings of the National Academy of Sciences 112, no. 29 (July 6, 2015): 8959–64. http://dx.doi.org/10.1073/pnas.1502005112.
Full textHooley, Richard J. "No, Not That Way, the Other Way: Creating Active Sites in Self-Assembled Host Molecules." Synlett 31, no. 15 (May 28, 2020): 1448–63. http://dx.doi.org/10.1055/s-0040-1707125.
Full textFriščić, Tomislav, and Jean-Louis Do. "Chemistry 2.0: Developing a New, Solvent-Free System of Chemical Synthesis Based on Mechanochemistry." Synlett 28, no. 16 (August 17, 2017): 2066–92. http://dx.doi.org/10.1055/s-0036-1590854.
Full textPopovic, Janko, Lorenz Lindenthal, Raffael Rameshan, Thomas Ruh, Andreas Nenning, Stefan Löffler, Alexander Karl Opitz, and Christoph Rameshan. "High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts." Catalysts 10, no. 5 (May 22, 2020): 582. http://dx.doi.org/10.3390/catal10050582.
Full textLi, Yang, Yan Peng Ban, Quan Sheng Liu, Meng Zhang, Ke Duan Zhi, Yang Liu, and Lei Wang. "Effects of Several Metals Species on Steam Gasification Behavior of Lignite from Inner Mongolia." Advanced Materials Research 953-954 (June 2014): 1176–79. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.1176.
Full textZhang, Yu, Dongdong Feng, Yijun Zhao, Heming Dong, Guozhang Chang, Cui Quan, Shaozeng Sun, and Yukun Qin. "Evolution of Char Structure During In-Situ Biomass Tar Reforming: Importance of the Coupling Effect Among the Physical-Chemical Structure of Char-Based Catalysts." Catalysts 9, no. 9 (August 24, 2019): 711. http://dx.doi.org/10.3390/catal9090711.
Full textZinn, Fabiano Kauer, Mihai S. Viciu, and Steven P. Nolan. "10 Carbenes: reactivity and catalysis." Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 100 (2004): 231–49. http://dx.doi.org/10.1039/b401751j.
Full textRoss, Julian. "Surface reactivity and catalysis group." Applied Catalysis A: General 117, no. 2 (September 1994): N19. http://dx.doi.org/10.1016/0926-860x(94)85100-x.
Full textWeber, Sebastian, Sebastian Schäfer, Mattia Saccoccio, Nils Ortner, Marko Bertmer, Karsten Seidel, Stefan Berendts, et al. "Mayenite-Based Electride C12A7e−: A Reactivity and Stability Study." Catalysts 11, no. 3 (March 5, 2021): 334. http://dx.doi.org/10.3390/catal11030334.
Full textBoekell, Nicholas, Dana Cerone, Maria Boucher, Phong Quach, Wilfried Tentchou Nganyak, Christine Reavis, Ifeanyi Okoh, et al. "Triarylmethyl Cation Catalysis: A Tunable Lewis Acid Organocatalyst for the Synthesis of Bisindolylmethanes." SynOpen 01, no. 01 (March 2017): 0097–102. http://dx.doi.org/10.1055/s-0036-1588559.
Full textLevi, Samuel M., Qiuhan Li, Andreas R. Rötheli, and Eric N. Jacobsen. "Catalytic activation of glycosyl phosphates for stereoselective coupling reactions." Proceedings of the National Academy of Sciences 116, no. 1 (December 17, 2018): 35–39. http://dx.doi.org/10.1073/pnas.1811186116.
Full textPetersen, Haley A., Tessa H. T. Myren, and Oana R. Luca. "Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction." Inorganics 8, no. 11 (November 11, 2020): 62. http://dx.doi.org/10.3390/inorganics8110062.
Full textSun, Qian, Chun Zeng, Meng-Meng Xing, Bo Chen, Dan Zhao, San-Guo Hong, and Ning Zhang. "Efficiently Engineering Cu-Based Oxide by Surface Embedding of Ce for Selective Catalytic Reduction of NO with NH3." Nano 14, no. 06 (June 2019): 1950079. http://dx.doi.org/10.1142/s1793292019500796.
Full textEisenberger, P., and C. M. Crudden. "Borocation catalysis." Dalton Transactions 46, no. 15 (2017): 4874–87. http://dx.doi.org/10.1039/c6dt04232e.
Full textKonsolakis, Michalis, and Maria Lykaki. "Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions." Catalysts 10, no. 2 (February 1, 2020): 160. http://dx.doi.org/10.3390/catal10020160.
Full textRaja Shahruzzaman, Raja Mohamad Hafriz, Salmiaton Ali, Robiah Yunus, and Taufiq Yap Yun-Hin. "Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst." Bulletin of Chemical Reaction Engineering & Catalysis 13, no. 3 (December 4, 2018): 489. http://dx.doi.org/10.9767/bcrec.13.3.1956.489-501.
Full textPiccardi, Riccardo, Serge Turcaud, Erica Benedetti, and Laurent Micouin. "Synthesis and Reactivity of Mixed Dimethylalkynylaluminum Reagents." Synthesis 51, no. 01 (November 20, 2018): 97–106. http://dx.doi.org/10.1055/s-0037-1610392.
Full textBrown, Ronald W., Farzad Zamani, Michael G. Gardiner, Haibo Yu, Stephen G. Pyne, and Christopher J. T. Hyland. "Divergent Pd-catalyzed cross-coupling of allenyloxazolidinones to give chiral 1,3-dienes and vinyloxazolidinones." Chemical Science 10, no. 39 (2019): 9051–56. http://dx.doi.org/10.1039/c9sc03215k.
Full textGao, Xin-Qian, Wei Song, Wen-Cui Li, and An-Hui Lu. "Anti-coke behavior of an alumina nanosheet supported Pt–Sn catalyst for isobutane dehydrogenation." Catalysis Science & Technology 11, no. 7 (2021): 2597–603. http://dx.doi.org/10.1039/d0cy02154g.
Full textSmith, Louise R., Paul J. Smith, Karl S. Mugford, Mark Douthwaite, Nicholas F. Dummer, David J. Willock, Mark Howard, David W. Knight, Stuart H. Taylor, and Graham J. Hutchings. "New insights for the valorisation of glycerol over MgO catalysts in the gas-phase." Catalysis Science & Technology 9, no. 6 (2019): 1464–75. http://dx.doi.org/10.1039/c8cy02214c.
Full textZaccaria, Francesco, Peter H. M. Budzelaar, Cristiano Zuccaccia, Roberta Cipullo, Alceo Macchioni, Vincenzo Busico, and Christian Ehm. "Chain Transfer to Solvent and Monomer in Early Transition Metal Catalyzed Olefin Polymerization: Mechanisms and Implications for Catalysis." Catalysts 11, no. 2 (February 5, 2021): 215. http://dx.doi.org/10.3390/catal11020215.
Full textMonkcom, Emily C., Pradip Ghosh, Emma Folkertsma, Hidde A. Negenman, Martin Lutz, and Robertus J. M. Klein Gebbink. "Bioinspired Non-Heme Iron Complexes: The Evolution of Facial N, N, O Ligand Design." CHIMIA International Journal for Chemistry 74, no. 6 (June 24, 2020): 450–66. http://dx.doi.org/10.2533/chimia.2020.450.
Full textZhou, Chuan, Binghu Zhang, P. Hu, and Haifeng Wang. "An effective structural descriptor to quantify the reactivity of lattice oxygen in CeO2 subnano-clusters." Physical Chemistry Chemical Physics 22, no. 3 (2020): 1721–26. http://dx.doi.org/10.1039/c9cp05805b.
Full textCapdevila-Cortada, Marçal, Gianvito Vilé, Detre Teschner, Javier Pérez-Ramírez, and Núria López. "Reactivity descriptors for ceria in catalysis." Applied Catalysis B: Environmental 197 (November 2016): 299–312. http://dx.doi.org/10.1016/j.apcatb.2016.02.035.
Full textBaral, Ek Raj, Dongwook Kim, Sunwoo Lee, Myung Hwan Park, and Jeung Gon Kim. "Tin(IV)-Porphyrin Tetracarbonyl Cobaltate: An Efficient Catalyst for the Carbonylation of Epoxides." Catalysts 9, no. 4 (March 29, 2019): 311. http://dx.doi.org/10.3390/catal9040311.
Full textYin, Congcong, Yingmin Pan, Longsheng Zheng, Bijin Lin, Jialin Wen, and Xumu Zhang. "Iridium-catalyzed asymmetric hydrogenation of N-phosphinoylimine." Organic Chemistry Frontiers 8, no. 6 (2021): 1223–26. http://dx.doi.org/10.1039/d0qo01286f.
Full textYang, Gang, and Lijun Zhou. "Mechanisms and reactivity differences of proline-mediated catalysis in water and organic solvents." Catalysis Science & Technology 6, no. 10 (2016): 3378–85. http://dx.doi.org/10.1039/c6cy00033a.
Full textWen, Jinjun, Chunlei Huang, Yuhai Sun, Long Liang, Yudong Zhang, Yujun Zhang, Mingli Fu, Junliang Wu, Limin Chen, and Daiqi Ye. "The Study of Reverse Water Gas Shift Reaction Activity over Different Interfaces: The Design of Cu-Plate ZnO Model Catalysts." Catalysts 10, no. 5 (May 12, 2020): 533. http://dx.doi.org/10.3390/catal10050533.
Full textBordet, Alexis, Sami El Sayed, Matthew Sanger, Kyle J. Boniface, Deepti Kalsi, Kylie L. Luska, Philip G. Jessop, and Walter Leitner. "Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support." Nature Chemistry 13, no. 9 (July 5, 2021): 916–22. http://dx.doi.org/10.1038/s41557-021-00735-w.
Full textBattaglia, Lorenzo, Francesco Pinna, and Giorgio Strukul. "Thioacetalization of aldehydes and ketones in the presence of hydroxo complexes of platinum(II): An example of Lewis acid catalytic activity." Canadian Journal of Chemistry 79, no. 5-6 (May 1, 2001): 621–25. http://dx.doi.org/10.1139/v01-067.
Full textPike, Sebastian D., and Andrew S. Weller. "Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2037 (March 13, 2015): 20140187. http://dx.doi.org/10.1098/rsta.2014.0187.
Full textYang, Dong, Shengjie Zhang, Pinghong Xu, Nigel D. Browning, David A. Dixon, and Bruce C. Gates. "Single-Site Osmium Catalysts on MgO: Reactivity and Catalysis of CO Oxidation." Chemistry - A European Journal 23, no. 11 (January 30, 2017): 2532–36. http://dx.doi.org/10.1002/chem.201605131.
Full textPoudyal, Samiksha, and Siris Laursen. "Photocatalytic CO2 reduction by H2O: insights from modeling electronically relaxed mechanisms." Catalysis Science & Technology 9, no. 4 (2019): 1048–59. http://dx.doi.org/10.1039/c8cy02046a.
Full text