Academic literature on the topic 'Real-time time-dependent density functional theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Real-time time-dependent density functional theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Real-time time-dependent density functional theory"

1

Krishtal, Alisa, Davide Ceresoli, and Michele Pavanello. "Subsystem real-time time dependent density functional theory." Journal of Chemical Physics 142, no. 15 (April 21, 2015): 154116. http://dx.doi.org/10.1063/1.4918276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Provorse, Makenzie R., Bradley F. Habenicht, and Christine M. Isborn. "Peak-Shifting in Real-Time Time-Dependent Density Functional Theory." Journal of Chemical Theory and Computation 11, no. 10 (September 17, 2015): 4791–802. http://dx.doi.org/10.1021/acs.jctc.5b00559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Provorse, Makenzie R., and Christine M. Isborn. "Electron dynamics with real-time time-dependent density functional theory." International Journal of Quantum Chemistry 116, no. 10 (February 5, 2016): 739–49. http://dx.doi.org/10.1002/qua.25096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baer, Roi, and Daniel Neuhauser. "Real-time linear response for time-dependent density-functional theory." Journal of Chemical Physics 121, no. 20 (November 22, 2004): 9803–7. http://dx.doi.org/10.1063/1.1808412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fischer, Sean A., Christopher J. Cramer, and Niranjan Govind. "Excited State Absorption from Real-Time Time-Dependent Density Functional Theory." Journal of Chemical Theory and Computation 11, no. 9 (August 25, 2015): 4294–303. http://dx.doi.org/10.1021/acs.jctc.5b00473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, K. M., K. Yabana, and G. F. Bertsch. "Magnetic circular dichroism in real-time time-dependent density functional theory." Journal of Chemical Physics 134, no. 14 (April 14, 2011): 144106. http://dx.doi.org/10.1063/1.3575587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marques, M. A. L., and E. K. U. Gross. "TIME-DEPENDENT DENSITY FUNCTIONAL THEORY." Annual Review of Physical Chemistry 55, no. 1 (June 2004): 427–55. http://dx.doi.org/10.1146/annurev.physchem.55.091602.094449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Habenicht, Bradley F., Noriyuki P. Tani, Makenzie R. Provorse, and Christine M. Isborn. "Two-electron Rabi oscillations in real-time time-dependent density-functional theory." Journal of Chemical Physics 141, no. 18 (November 14, 2014): 184112. http://dx.doi.org/10.1063/1.4900514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Donati, Greta, Andrew Wildman, Stefano Caprasecca, David B. Lingerfelt, Filippo Lipparini, Benedetta Mennucci, and Xiaosong Li. "Coupling Real-Time Time-Dependent Density Functional Theory with Polarizable Force Field." Journal of Physical Chemistry Letters 8, no. 21 (October 13, 2017): 5283–89. http://dx.doi.org/10.1021/acs.jpclett.7b02320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yabana, K., T. Nakatsukasa, J. I. Iwata, and G. F. Bertsch. "Real-time, real-space implementation of the linear response time-dependent density-functional theory." physica status solidi (b) 243, no. 5 (April 2006): 1121–38. http://dx.doi.org/10.1002/pssb.200642005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Real-time time-dependent density functional theory"

1

Cazorla, Julien J. A. "Real time techniques in time-dependent density functional theory." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jensen, Daniel S. "Real-Space Approach to Time Dependent Current Density Functional Theory." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2559.

Full text
Abstract:
A real-space time-domain calculation of the frequency-dependent dielectric constant of nonmetallic crystals is outlined and the integrals required for this calculation are computed. The outline is based on time dependent current density functional theory and is partially implemented in the ab initio density functional theory FIREBALL program. The addition of a vector potential to the Hamiltonian of the system is discussed as well as the need to include the current density in addition to the particle density. The derivation of gradient integrals within a localized atomic-like orbital basis is presented for use in constructing the current density. Due to the generality of the derivation we also give the derivation of the kinetic energy, dipole, and overlap interactions.
APA, Harvard, Vancouver, ISO, and other styles
3

Yam, Chi-yung, and 任志勇. "Linear-scaling time-dependent density functional theory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31246199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ioannou, Andrew George. "Applications of time-dependent current density functional theory." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Van, Caillie Carole. "Electronic structure calculations using time-dependent density functional theory." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lacombe, Lionel. "On dynamics beyond time-dependent mean-field theories." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30185/document.

Full text
Abstract:
Cette thèse présente différentes approches quantiques pour l'exploration de processus dynamiques dans des systèmes multiélectroniques, en particulier après une forte excitation qui peut aboutir à des effets dissipatifs. Les théories de champ moyen sont un outil utile à cet égard. Malgré l'existence de nombreux travaux réalisés ces deux dernières décennies, ces théories peinent à reproduire complètement la corrélation à deux corps. La thermalisation est un des effets des collisions électron-électron. Après un chapitre introductif, on présentera dans le chapitre 2 le formalisme de plusieurs méthodes étudiées dans cette thèse, ayant pour but la description de ces effets en ajoutant un terme de collision au champ moyen. Ces méthodes sont appelées Stochastic Time-Dependent Hartree Fock (STDHF), Extended TDHF (ETDHF) et Collisional TDHF (CTDHF). Cette dernière méthode représente d'une certaine façon le résultat principal de cette thèse. L'implémentation numérique de chacune de ces méthodes sera aussi examinée en détail. Dans les chapitres 3, 4 et 5, nous appliquerons à différents systèmes les méthodes présentées dans le chapitre 2. Dans le chapitre 3, nous étudions d'abord un canal de réaction rare, ici la probabilité d'un électron de s'attacher à un petit agrégat d'eau. Un bon accord avec les données expérimentales a été observé. Dans le chapitre 4, un modèle fréquemment utilisé en physique nucléaire est résolu exactement et comparé quantitativement à STDHF. L'évolution temporelle des observables à un corps s'accorde entre les deux méthodes, plus particulièrement en ce qui concerne le comportement thermique. Néanmoins, pour permettre une bonne description de la dynamique, il est nécessaire d'avoir une grande statistique, ce qui peut être un frein à l'utilisation de STDHF sur de larges systèmes. Pour surpasser cette difficulté, dans le chapitre 5 nous testons CTDHF, qui a été introduit dans le chapitre 2, sur un modèle à une dimension (et sans émission électronique). Le modèle se compose d'électrons dans un potentiel de type jellium avec une interaction auto-cohérente sous la forme d'une fonctionnelle de la densité. L'avantage de ce modèle à une dimension est que les calculs STDHF sont possibles numériquement, ce qui permet une comparaison directe aux calculs CTDHF. Dans cette étude de validité du concept, CTDHF s'accorde remarquablement bien avec STDHF. Cela pose les jalons pour une description efficace de la dissipation dans des systèmes réalistes en trois dimensions par CTDHF
This thesis presents various quantal approaches for the exploration of dynamical processes in multielectronic systems, especially after an intense excitation which can possibly lead to dissipative effects. Mean field theories constitute useful tools in that respect. Despite the existence of numerous works during the past two decades, they have strong difficulties to capture full 2-body correlations. Thermalization is one of these effects that stems from electron-electron collisions. After an introductory chapter, we present in Chapter 2 the formalism of the various schemes studied in this thesis toward the description of such an effect by including collisional terms on top of a mean field theory. These schemes are called Stochastic Time-Dependent Hartree Fock (STDHF), Extended TDHF (ETDHF) and Collisional TDHF (CTDHF). The latter scheme constitutes in some sense the main achievement of this thesis. The numerical realizations of each scheme are also discussed in detail. In Chapters 3, 4 and 5, we apply the approaches discussed in Chapter 2 but in various systems. In Chapter 3, we first explore a rare reaction channel, that is the probability of an electron to attach on small water clusters. Good agreement with experimental data is achieved. In Chapter 4, a model widely used in nuclear physics is exactly solved and quantitatively compared to STDHF. The time evolution of 1-body observables agrees well in both schemes, especially what concerns thermal behavior. However, to allow a good description of the dynamics, one is bound to use a large statistics, which can constitute a hindrance of the use of STDHF in larger systems. To overcome this problem, in Chapter 5, we go for a testing of CTDHF developed in Chapter 2 in a one-dimensional system (and without electronic emission). This system consists in electrons in a jellium potential with a simplified self-consistent interaction expressed as a functional of the density. The advantage of this 1D model is that STDHF calculations are numerically manageable and therefore allows a direct comparison with CTDHF calculations. In this proof of concept study, CTDHF compares remarkably well with STDHF. This thus paves the road toward an efficient description of dissipation in realistic 3D systems by CTDHF
APA, Harvard, Vancouver, ISO, and other styles
7

Esplugas, Ricardo Oliveira. "Density functional theory and time-dependent density functional theory studies of copper and silver cation complexes." Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496931.

Full text
Abstract:
A particular emphasis of this thesis has been to provide insight into the underlying stability of these complexes and hence interpret experimental data, and to establish the development of solvation shell structure and its effect on reactivity and excited states. Energy decomposition analysis, fragment analysis and charge analysis has been used throughout to provide deeper insight into the nature of the bonding in these complexes. This has also been used successfully to explain observed preferential stability and dissociative loss products.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Ying. "A Comparison of Calculation by Real-Time and by Linear-Response Time-Dependent Density Functional Theory in the Regime of Linear Optical Response." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1460554444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tempel, David Gabriel. "Time-Dependent Density Functional Theory for Open Quantum Systems and Quantum Computation." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10208.

Full text
Abstract:
First-principles electronic structure theory explains properties of atoms, molecules and solids from underlying physical principles without input from empirical parameters. Time-dependent density functional theory (TDDFT) has emerged as arguably the most widely used first-principles method for describing the time-dependent quantum mechanics of many-electron systems. In this thesis, we will show how the fundamental principles of TDDFT can be extended and applied in two novel directions: The theory of open quantum systems (OQS) and quantum computation (QC). In the first part of this thesis, we prove theorems that establish the foundations of TDDFT for open quantum systems (OQS-TDDFT). OQS-TDDFT allows for a first principles description of non-equilibrium systems, in which the electronic degrees of freedom undergo relaxation and decoherence due to coupling with a thermal environment, such as a vibrational or photon bath. We then discuss properties of functionals in OQS-TDDFT and investigate how these differ from functionals in conventional TDDFT using an exactly solvable model system. Next, we formulate OQS-TDDFT in the linear-response regime, which gives access to environmentally broadened excitation spectra. Lastly, we present a hybrid approach in which TDDFT can be used to construct master equations from first-principles for describing energy transfer in condensed phase systems. In the second part of this thesis, we prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. TDDFT applied to universal Hamiltonians implies that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. This offers the possibility of simplifying computations by using the principles of TDDFT similar to how it is applied in electronic structure theory. Lastly, we discuss a related result; the computational complexity of TDDFT.
Physics
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Xing. "Spin-flip time-dependent density functional theory and its applications to photodynamics." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469628877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Real-time time-dependent density functional theory"

1

Marques, Miguel A. L., Carsten A. Ullrich, Fernando Nogueira, Angel Rubio, Kieron Burke, and Eberhard K. U. Gross, eds. Time-Dependent Density Functional Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/b11767107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

T, Maitra Neepa, Nogueira Fernando M. S, Gross E. K. U, Rubio Angel, and SpringerLink (Online service), eds. Fundamentals of Time-Dependent Density Functional Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marques, Miguel A. L., Neepa T. Maitra, Fernando M. S. Nogueira, E. K. U. Gross, and Angel Rubio, eds. Fundamentals of Time-Dependent Density Functional Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23518-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Time-dependent density-functional theory: Concepts and applications. Oxford: Oxford University Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rubio, Angel, Fernando Nogueira, Eberhard K. U. Gross, Miguel A. L. Marques, Carsten A. Ullrich, and Kieron Burke. Time-Dependent Density Functional Theory. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maitra, Neepa T., Miguel A. L. Marques, and Fernando M. S. Nogueira. Fundamentals of Time-Dependent Density Functional Theory. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ullrich, Carsten A. Time-Dependent Density-Functional Theory: Concepts and Applications. Oxford University Press, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miguel A.L. Marques (Editor), Carsten A. Ullrich (Editor), Fernando Nogueira (Editor), Angel Rubio (Editor), Kieron Burke (Editor), and Eberhard K.U. Gross (Editor), eds. Time-Dependent Density Functional Theory (Lecture Notes in Physics). Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nalewajski, R. F. Density Functional Theory Ii: Relativistic And Time Dependent Extensions. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Excited States of Silicon Carbide Clusters by Time Dependent Density Functional Theory. Storming Media, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Real-time time-dependent density functional theory"

1

Vignale, G. "Current Density Functional Theory." In Time-Dependent Density Functional Theory, 75–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

van Leeuwen, R., and E. K. U. Gross. "Multicomponent Density-Functional Theory." In Time-Dependent Density Functional Theory, 93–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tokatly, I. V. "Time-Dependent Deformation Approximation." In Time-Dependent Density Functional Theory, 123–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dobson, John F. "Time-Dependent Density-Functional Theory." In Electronic Density Functional Theory, 43–53. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0316-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marques, M. A. L., and A. Rubio. "Time Versus Frequency Space Techniques." In Time-Dependent Density Functional Theory, 227–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marini, A., R. D. Sole, and A. Rubio. "Approximate Functionals from Many-Body Perturbation Theory." In Time-Dependent Density Functional Theory, 161–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wasserman, A., and K. Burke. "Scattering Amplitudes." In Time-Dependent Density Functional Theory, 493–505. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

van Leeuwen, R., N. E. Dahlen, G. Stefanucci, C. O. Almbladh, and U. von Barth. "Introduction to the Keldysh Formalism." In Time-Dependent Density Functional Theory, 33–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dobson, J. F. "Dispersion (Van Der Waals) Forces and TDDFT." In Time-Dependent Density Functional Theory, 443–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gebauer, R., K. Burke, and R. Car. "Kohn-Sham Master Equation Approach to Transport Through Single Molecules." In Time-Dependent Density Functional Theory, 463–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Real-time time-dependent density functional theory"

1

Zempo, Yasunari, and Satoru Kano. "Maximum Entropy Method Applied to Time-series Data in Real-time Time-Dependent Density Functional Theory." In Entropy 2021: The Scientific Tool of the 21st Century. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/entropy2021-09775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

VAN LEEUWEN, ROBERT. "NONEQUILIBRIUM GREEN FUNCTIONS IN TIME-DEPENDENT CURRENT-DENSITY-FUNCTIONAL THEORY." In Proceedings of the Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705129_0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

VIGNALE, G. "TIME-DEPENDENT DENSITY FUNCTIONAL THEORY BEYOND THE ADIABATIC APPROXIMATION." In Proceedings of the 10th International Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792754_0048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ANDRAE, K., A. POHL, P. G. REINHARD, C. LEGRAND, M. MA, and E. SURAUD. "TIME-DEPENDENT DENSITY FUNCTIONAL THEORY FROM A PRACTITIONERS PERSPECTIVE." In Proceedings of the Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705129_0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yam, Chi Yung, Fan Wang, GuanHua Chen, George Maroulis, and Theodore E. Simos. "An O(N) Time-Domain Method for Time-Dependent Density Functional Theory." In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Advances in Computational Science: Lectures presented at the International Conference on Computational Methods in Sciences and Engineering 2008 (ICCMSE 2008). AIP, 2009. http://dx.doi.org/10.1063/1.3225398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Andermatt, Samuel, Mohammad Hossein Bani-Hashemian, Sascha Bruck, Joost VandeVondele, and Mathieu Luisier. "Transport simulations with density-matrix-based real-time time-dependant density functional theory." In 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2017. http://dx.doi.org/10.23919/sispad.2017.8085293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jerome, Joseph W. "Operator newton iterative convergence for time dependent density functional theory." In 2015 International Workshop on Computational Electronics (IWCE). IEEE, 2015. http://dx.doi.org/10.1109/iwce.2015.7301967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Furche, Filipp, Enrico Tapavicza, Robert Send, P. M. Champion, and L. D. Ziegler. "Tackling Non-Adiabatic Effects by Time-Dependent Density Functional Theory." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakatsukasa, Takashi, Tsunenori Inakura, Paolo Avogadro, Shuichiro Ebata, Koichi Sato, and Kazuhiro Yabana. "Linear-response calculation in the time-dependent density functional theory." In ORIGIN OF MATTER AND EVOLUTION OF GALAXIES 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4763387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jia, Weile, Lin-Wang Wang, and Lin Lin. "Parallel transport time-dependent density functional theory calculations with hybrid functional on summit." In SC '19: The International Conference for High Performance Computing, Networking, Storage, and Analysis. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3295500.3356144.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Real-time time-dependent density functional theory"

1

Maitra, Neepa T. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1467834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baczewski, Andrew David, Luke Shulenburger, Michael Paul Desjarlais, and Rudolph J. Magyar. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1204090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maitra, Neepa. Support of A Summer School Workshop and Workshop Focused on Theory and Applications of Time-Dependent Density Functional Theory. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1422032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maitra, Neepa. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1262274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Di Ventra, Massimiliano. Time-dependent current-density-functional theory of charge, energy and spin transport and dynamics in nanoscale systems. Final Report. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1524794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nelson, Tammie, and Huajing Song. Implemented advance Surface-Hopping functional in time dependent Density Functional Theory (TDDFT) simulator package for modeling of nonlinear X-ray spectroscopy in complex molecular materials. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1778729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lewis, Sherman, Emilio Grande, and Ralph Robinson. The Mismeasurement of Mobility for Walkable Neighborhoods. Mineta Transportation Institute, November 2020. http://dx.doi.org/10.31979/mti.2020.2060.

Full text
Abstract:
The major US household travel surveys do not ask the right questions to understand mobility in Walkable Neighborhoods. Yet few subjects can be more important for sustainability and real economic growth based on all things of value, including sustainability, affordability, and quality of life. Walkable Neighborhoods are a system of land use, transportation, and transportation pricing. They are areas with attractive walking distances of residential and local business land uses of sufficient density to support enough business and transit, with mobility comparable to suburbia and without owning an auto. Mobility is defined as the travel time typically spent to reach destinations outside the home, not trips among other destinations that are not related to the home base. A home round trip returns home the same day, a way of defining routine trips based on the home location. Trip times and purposes, taken together, constitute travel time budgets and add up to total travel time in the course of a day. Furthermore, for Walkable Neighborhoods, the analysis focuses on the trips most important for daily mobility. Mismeasurement consists of including trips that are not real trips to destinations outside the home, totaling 48 percent of trips. It includes purposes that are not short trips functional for walk times and mixing of different trips into single purposes, resulting in even less useful data. The surveys do not separate home round trips from other major trip types such as work round trips and overnight trips. The major household surveys collect vast amounts of information without insight into the data needed for neighborhood sustainability. The methodology of statistics gets in the way of using statistics for the deeper insights we need. Household travel surveys need to be reframed to provide the information needed to understand and improve Walkable Neighborhoods. This research makes progress on the issue, but mismeasurement prevents a better understanding of the issue.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography