Academic literature on the topic 'Realizability theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Realizability theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Realizability theory"

1

McCarty, Charles. "Realizability and recursive set theory." Annals of Pure and Applied Logic 32 (1986): 153–83. http://dx.doi.org/10.1016/0168-0072(86)90050-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hofstra, Pieter, and Michael A. Warren. "Combinatorial realizability models of type theory." Annals of Pure and Applied Logic 164, no. 10 (October 2013): 957–88. http://dx.doi.org/10.1016/j.apal.2013.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soto, Ricardo L., Ana I. Julio, and Jaime H. Alfaro. "Permutative universal realizability." Special Matrices 9, no. 1 (January 1, 2021): 66–77. http://dx.doi.org/10.1515/spma-2020-0123.

Full text
Abstract:
Abstract A list of complex numbers Λ is said to be realizable, if it is the spectrum of a nonnegative matrix. In this paper we provide a new sufficient condition for a given list Λ to be universally realizable (UR), that is, realizable for each possible Jordan canonical form allowed by Λ. Furthermore, the resulting matrix (that is explicity provided) is permutative, meaning that each of its rows is a permutation of the first row. In particular, we show that a real Suleĭmanova spectrum, that is, a list of real numbers having exactly one positive element, is UR by a permutative matrix.
APA, Harvard, Vancouver, ISO, and other styles
4

Biryukov, Oleg N. "Parity conditions for realizability of Gauss diagrams." Journal of Knot Theory and Its Ramifications 28, no. 01 (January 2019): 1950015. http://dx.doi.org/10.1142/s0218216519500159.

Full text
Abstract:
We consider a problem of realizability of Gauss diagrams by closed plane curves where the plane curves have only double points of transversal self-intersection. We formulate the necessary and sufficient conditions for realizability. These conditions are based only on the parity of double and triple intersections of the chords in the Gauss diagram.
APA, Harvard, Vancouver, ISO, and other styles
5

Harnik, Victor, and Michael Makkai. "Lambek's categorical proof theory and Läuchli's abstract realizability." Journal of Symbolic Logic 57, no. 1 (March 1992): 200–230. http://dx.doi.org/10.2307/2275186.

Full text
Abstract:
In this paper we give an introduction to categorical proof theory, and reinterpret, with improvements, Läuchli's work on abstract realizability restricted to propositional logic (but see [M1] for predicate logic). Partly to make some points of a foundational nature, we have included a substantial amount of background material. As a result, the paper is (we hope) readable with a knowledge of just the rudiments of category theory, the notions of category, functor, natural transformation, and the like. We start with an extended introduction giving the background, and stating what we do with a minimum of technicalities.In three publications [L1, 2, 3] published in the years 1968, 1969 and 1972, J. Lambek gave a categorical formulation of the notion of formal proof in deductive systems in certain propositional calculi. The theory is also described in the recent book [LS]. See also [Sz].The basic motivation behind Lambek's theory was to place proof theory in the framework of modern abstract mathematics. The spirit of the latter, at least for the purposes of the present discussion, is to organize mathematical objects into mathematical structures. The specific kind of structure we will be concerned with is category.In Lambek's theory, one starts with an arbitrary theory in any one of several propositional calculi. One has the (formal) proofs (deductions) in the given theory of entailments A ⇒ B, with A and B arbitrary formulas. One introduces an equivalence relation on proofs under which, in particular, equivalent proofs are proofs of the same entailment; equivalence of proofs is intended to capture the idea of the proofs being only inessentially different. One forms a category whose objects are the formulas of the underlying language of the theory, and whose arrows from A to B, with the latter arbitrary formulas, are the equivalence classes of formal proofs of A ⇒ B.
APA, Harvard, Vancouver, ISO, and other styles
6

van den Berg, Benno, and Ieke Moerdijk. "Aspects of predicative algebraic set theory, II: Realizability." Theoretical Computer Science 412, no. 20 (April 2011): 1916–40. http://dx.doi.org/10.1016/j.tcs.2010.12.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Ray-Ming, and Michael Rathjen. "Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory." Archive for Mathematical Logic 51, no. 7-8 (August 14, 2012): 789–818. http://dx.doi.org/10.1007/s00153-012-0299-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carboni, A. "Some free constructions in realizability and proof theory." Journal of Pure and Applied Algebra 103, no. 2 (September 1995): 117–48. http://dx.doi.org/10.1016/0022-4049(94)00103-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

RATHJEN, MICHAEL, and ANDREW W. SWAN. "LIFSCHITZ REALIZABILITY AS A TOPOLOGICAL CONSTRUCTION." Journal of Symbolic Logic 85, no. 4 (December 2020): 1342–75. http://dx.doi.org/10.1017/jsl.2021.1.

Full text
Abstract:
AbstractWe develop a number of variants of Lifschitz realizability for $\mathbf {CZF}$ by building topological models internally in certain realizability models. We use this to show some interesting metamathematical results about constructive set theory with variants of the lesser limited principle of omniscience including consistency with unique Church’s thesis, consistency with some Brouwerian principles and variants of the numerical existence property.
APA, Harvard, Vancouver, ISO, and other styles
10

Belk, Maria, and Robert Connelly. "Realizability of Graphs." Discrete & Computational Geometry 37, no. 2 (February 2007): 125–37. http://dx.doi.org/10.1007/s00454-006-1284-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Realizability theory"

1

Phoa, Wesley. "Domain theory in realizability toposes." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Inna Fausett Donald W. "Controllability, observability and realizability." Click here to access thesis, 2005. http://www.georgiasouthern.edu/etd/archive/fall2005/ismith/smith%5Finna%5Fn%5F200508%5Fms.pdf.

Full text
Abstract:
Thesis (M.S.)--Georgia Southern University, 2005.
"A thesis submitted to the Graduate Faculty of Georgia Southern University in partial fulfillment of the requirements for the degree Master of Science" ETD. Includes bibliographical references (p. 131-132)
APA, Harvard, Vancouver, ISO, and other styles
3

Merckx, Keno. "Optimization and Realizability Problems for Convex Geometries." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/288673/4/TOC.pdf.

Full text
Abstract:
Convex geometries are combinatorial structures; they capture in an abstract way the essential features of convexity in Euclidean space, graphs or posets for instance. A convex geometry consists of a finite ground set plus a collection of subsets, called the convex sets and satisfying certain axioms. In this work, we study two natural problems on convex geometries. First, we consider the maximum-weight convex set problem. After proving a hardness result for the problem, we study a special family of convex geometries built on split graphs. We show that the convex sets of such a convex geometry relate to poset convex geometries constructed from the split graph. We discuss a few consequences, obtaining a simple polynomial-time algorithm to solve the problem on split graphs. Next, we generalize those results and design the first polynomial-time algorithm for the maximum-weight convex set problem in chordal graphs. Second, we consider the realizability problem. We show that deciding if a given convex geometry (encoded by its copoints) results from a point set in the plane is ER-hard. We complete our text with a brief discussion of potential further work.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
4

Swan, Andrew Wakelin. "Automorphisms of partial combinatory algebras and realizability models of constructive set theory." Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590459.

Full text
Abstract:
In this thesis we investigate automorphisms of partial combinatory algebras and construct realizability models of constructive set theory. After some introductory and background material in chapters 1 and 2, we define in chapter 3 a generalisation of Kripke and realizability models of intuitionistic logic that we call Kripke realizability models. In chapters 4, 6 and 7 we then develop various realizability models of constructive set theory. We show in chapter 5 how to use these techniques to investigate the automorphisms of some partial combinatory algebras. In chapter 8 we use a Kripke realizability model to show that a property known as the existence property does not hold for the set theory CZF.
APA, Harvard, Vancouver, ISO, and other styles
5

Matsumoto, Kei. "Coherence Spaces and Uniform Continuity." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lepigre, Rodolphe. "Sémantique et implantation d'une extension de ML pour la preuve de programmes." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM034/document.

Full text
Abstract:
Au cours des dernières années, les assistants de preuves on fait des progrès considérables et ont atteint un grand niveau de maturité. Ils ont permit la certification de programmes complexes tels que des compilateurs et même des systèmes d'exploitation. Néanmoins, l'utilisation d'un assistant de preuve requiert des compétences techniques très particulières, qui sont très éloignées de celles requises pour programmer de manière usuelle. Pour combler cet écart, nous entendons concevoir un langage de programmation de style ML supportant la preuve de programmes. Il combine au sein d'un même outil la flexibilité de ML et le fin niveau de spécification offert par un assistant de preuve. Autrement dit, le système peut être utilisé pour programmer de manière fonctionnelle et fortement typée tout en autorisant l'obtention de nouvelles garanties au besoin.On étudie donc un langage en appel par valeurs dont le système de type étend une logique d'ordre supérieur. Il comprend un type égalité entre les programmes non typés, un type de fonction dépendant, la logique classique et du sous-typage. La combinaison de l'appel par valeurs,des fonctions dépendantes et de la logique classique est connu pour poser des problèmes de cohérence. Pour s'assurer de la correction du système (cohérence logique et sûreté à l'exécution), on propose un cadre théorique basé sur la réalisabilité classique de Krivine. La construction du modèle repose sur une propriété essentielle qui lie les différent niveaux d'interprétation des types d'une manière novatrice.On démontre aussi l'expressivité de notre système en se basant sur son implantation dans un prototype. Il peut être utilisé pour prouver des propriétés de programmes standards tels que la fonction « map »sur les listes ou le tri par insertion
In recent years, proof assistant have reached an impressive level of maturity. They have led to the certification of complex programs such as compilers and operating systems. Yet, using a proof assistant requires highly specialised skills and it remains very different from standard programming. To bridge this gap, we aim at designing an ML-style programming language with support for proofs of programs, combining in a single tool the flexibility of ML and the fine specification features of a proof assistant. In other words, the system should be suitable both for programming (in the strongly-typed, functional sense) and for gradually increasing the level of guarantees met by programs, on a by-need basis.We thus define and study a call-by-value language whose type system extends higher-order logic with an equality type over untyped programs, a dependent function type, classical logic and subtyping. The combination of call-by-value evaluation, dependent functions and classical logic is known to raise consistency issues. To ensure the correctness of the system (logical consistency and runtime safety), we design a theoretical framework based on Krivine's classical realisability. The construction of the model relies on an essential property linking the different levels of interpretation of types in a novel way.We finally demonstrate the expressive power of our system using our prototype implementation, by proving properties of standard programs like the map function on lists or the insertion sort
APA, Harvard, Vancouver, ISO, and other styles
7

Geoffroy, Guillaume. "Réalisabilité classique : nouveaux outils et applications." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0099/document.

Full text
Abstract:
La réalisabilité classique de Jean-Louis Krivine associe à chaque modèle de calcul et chaque modèle de la théorie des ensembles un nouveau modèle de la théorie des ensembles, appelé modèle de réalisabilité, d'une façon similaire au forcing. Chaque modèle de réalisabilité est muni d’une algèbre de Boole caractéristique $\gimel 2$ (gimel 2), dont la structure donne des informations sur les propriétés du modèle de réalisabilité. En particulier, les modèles de forcing correspondent au cas où $\gimel 2$ est l'algèbre de Boole à deux éléments.Ce travail présente de nouveaux outils pour manipuler les modèles de réalisabilité et donne de nouveaux résultats obtenus en les exploitant. L'un d'entre eux est qu'au premier ordre, la théorie des algèbres de Boole à au moins deux éléments est complète pour $\gimel 2$, au sens où $\gimel 2$ eut être rendue élémentairement équivalente à n'importe quelle algèbre de Boole. Deux autres résultats montrent que $\gimel 2$ peut être utilisée pour étudier les modèles dénotationnels de langage de programmation (chacun part d'un modèle dénotationnel et classifie ses degrés de parallélisme à l'aide de $\gimel 2$). Un autre résultat montre que la technique de Jean-Louis Krivine pour réaliser l'axiome des choix dépendants à partir de l'instruction quote peut se généraliser à des formes plus fortes de choix. Enfin, un dernier résultat, obtenu en collaboration avec Laura Fontanella, accompagne le précédent en adaptant la condition d'antichaîne dénombrable du forcing au cadre de la réalisabilité, ce qui semble semble ouvrir une piste prometteuse pour réaliser l'axiome du choix
Jean-Louis Krivine's classical realizability defines, from any given model of computation and any given model of set theory, a new model of set theory called the realizability model, in a similar way to forcing. Each realizability model is equipped with a characteristic Boolean algebra $\gimel 2$ (gimel 2), whose structure encodes important information about the properties of the realizability model. For instance, forcing models are precisely the realizability models in which $\gimel 2$ is the Boolean algebra with to elements.This document defines new tools for studying realizability models and exploits them to derive new results. One such result is that, as far as first-order logic is concerned, the theory of Boolean algebras with at least two elements is complete for $\gimel 2$, meaning that for each Boolean algebra B (with at least two elements), there exists a realizability model in which $\gimel 2$ is elementarily equivalent to B. Next, two results show that $\gimel 2$ can be used as a tool to study denotational models of programming languages (each one of them takes a particular denotational model and classifies its degrees of parallelism using $\gimel 2$). Moving to set theory, another results generalizes Jean-Louis Krivine's technique of realizing the axiom of dependant choices using the instruction quote to higher forms of choice. Finally, a last result, which is joint work with Laura Fontanella, complements the previous one by adapting the countable antichain condition from forcing to classical realizability, which seems to open a new, promising approach to the problem of realizing the full axiom of choice
APA, Harvard, Vancouver, ISO, and other styles
8

Jackson, Eugenie Marie. "Explorations in the classification of vertices as good or bad." [Johnson City, Tenn. : East Tennessee State University], 2001. http://etd-submit.etsu.edu/etd/theses/available/etd-0310101-153932/unrestricted/jacksone.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lasson, Marc. "Réalisabilité et paramétricité dans les systèmes de types purs." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00770669.

Full text
Abstract:
Cette thèse porte sur l'adaptation de la réalisabilité et la paramétricité au cas des types dépendants dans le cadre des Systèmes de Types Purs. Nous décrivons une méthode systématique pour construire une logique à partir d'un langage de programmation, tous deux décrits comme des systèmes de types purs. Cette logique fournit des formules pour exprimer des propriétés des programmes et elle offre un cadre formel adéquat pour développer une théorie de la réalisabilité au sein de laquelle les réalisateurs des formules sont exactement les programmes du langage de départ. Notre cadre permet alors de considérer les théorèmes de représentation pour le système T de Gödel et le système F de Girard comme deux instances d'un théorème plus général.Puis, nous expliquons comment les relations logiques de la théorie de la paramétricité peuvent s'exprimer en terme de réalisabilité, ce qui montre que la logique engendrée fournit un cadre adéquat pour développer une théorie de la paramétricité du langage de départ. Pour finir, nous montrons comment cette théorie de la paramétricité peut-être adaptée au système sous-jacent à l'assistant de preuve Coq et nous donnons un exemple d'application original de la paramétricité à la formalisation des mathématiques.
APA, Harvard, Vancouver, ISO, and other styles
10

Haque, Mohammad Moinul. "Realizability of tropical lines in the fan tropical plane." 2013. http://hdl.handle.net/2152/21209.

Full text
Abstract:
In this thesis we construct an analogue in tropical geometry for a class of Schubert varieties from classical geometry. In particular, we look at the collection of tropical lines contained in the fan tropical plane. We call these tropical spaces "tropical Schubert prevarieties", and develop them after creating a tropical analogue for flag varieties that we call the "flag Dressian". Having constructed this tropical analogue of Schubert varieties we then determine that the 2-skeleton of these tropical Schubert prevarieties is realizable. In fact, as long as the lift of the fan tropical plane is in general position, only the 2-skeleton of the tropical Schubert prevariety is realizable.
text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Realizability theory"

1

Zemanian, A. H. Realizability theory for continuous linear systems. New York: Dover, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Piccinini, Gualtiero. Neurocognitive Mechanisms. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198866282.001.0001.

Full text
Abstract:
This book provides the foundations for a neurocomputational explanation of cognition based on contemporary cognitive neuroscience. An ontologically egalitarian account of composition and realization, according to which all levels are equally real, is defended. Multiple realizability and mechanisms are explicated in light of this ontologically egalitarian framework. A goal-contribution account of teleological functions is defended, and so is a mechanistic version of functionalism. This provides the foundation for a mechanistic account of computation, which in turn clarifies the ways in which the computational theory of cognition is a multilevel mechanistic theory supported by contemporary cognitive neuroscience. The book argues that cognition is computational at least in a generic sense. The computational theory of cognition is defended from standard objections yet a priori arguments for the computational theory of cognition are rebutted. The book contends that the typical vehicles of neural computations are representations and that, contrary to the received view, neural representations are observable and manipulable in the laboratory. The book also contends that neural computations are neither digital nor analog; instead, neural computations are sui generis. The book concludes by investigating the relation between computation and consciousness, suggesting that consciousness may have a functional yet not wholly computational nature.
APA, Harvard, Vancouver, ISO, and other styles
3

Kaplan, David M. Neural Computation, Multiple Realizability, and the Prospects for Mechanistic Explanation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199685509.003.0008.

Full text
Abstract:
There is an ongoing philosophical and scientific debate concerning the nature of computational explanation in the neurosciences. Recently, some have cited modeling work involving so-called canonical neural computations—standard computational modules that apply the same fundamental operations across multiple brain areas—as evidence that computational neuroscientists sometimes employ a distinctive explanatory scheme from that of mechanistic explanation. Because these neural computations can rely on diverse circuits and mechanisms, modeling the underlying mechanisms is supposed to be of limited explanatory value. I argue that these conclusions about computational explanations in neuroscience are mistaken, and rest upon a number of confusions about the proper scope of mechanistic explanation and the relevance of multiple realizability considerations. Once these confusions are resolved, the mechanistic character of computational explanations can once again be appreciated.
APA, Harvard, Vancouver, ISO, and other styles
4

Prozorov, Sergei. Democratic Biopolitics. Edinburgh University Press, 2019. http://dx.doi.org/10.3366/edinburgh/9781474449342.001.0001.

Full text
Abstract:
Contemporary studies of biopolitics tend to assume that the rise of biopolitical governance entails the eclipse of democracy. The abstract egalitarianism of democratic government appears to be incompatible with the concrete, particularist and individualizing operations of biopower. The revival of democracy is then only conceivable as the overcoming of biopolitics. Democratic Biopolitics challenges this interpretation and argues for the possibility of a positive synthesis of biopolitics and democracy, in which both rationalities can positively transform each other. The book identifies the sources of the impasse of the current critique of biopolitics in its broadly Rousseauan orientation that conceives of democratic subject as subtracted from all particular identities, interests or forms of life. In contrast, we argue that democracy is practicable from within particular forms of life as long as their contingency is affirmed and manifested. Drawing on a wide range of authors both belonging to and outside the biopolitics canon, Prozorov develops a vision of democratic biopolitics that consists in the coexistence of diverse and incommensurable forms of life on the basis of their reciprocal recognition as free, equal and in common. He demonstrates the realizability of this vision by addressing its correlates in our lived experience and argues for its sustainability by elucidating the pleasure involved in the freeform, experimental way of living that democracy makes possible.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Realizability theory"

1

Vyalyi, Mikhail N. "Universality of Regular Realizability Problems." In Computer Science – Theory and Applications, 271–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38536-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bollig, Benedikt, and Loïc Hélouët. "Realizability of Dynamic MSC Languages." In Computer Science – Theory and Applications, 48–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13182-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schaefer, Marcus. "Realizability of Graphs and Linkages." In Thirty Essays on Geometric Graph Theory, 461–82. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0110-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sontag, E. D., and Y. Wang. "Input/Output Equations and Realizability." In Realization and Modelling in System Theory, 125–32. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-3462-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lohrey, Markus. "Safe Realizability of High-Level Message Sequence Charts*." In CONCUR 2002 — Concurrency Theory, 177–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45694-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lipton, James. "Kripke semantics for dependent type theory and realizability interpretations." In Lecture Notes in Computer Science, 22–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0021080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liberti, Leo, and Carlile Lavor. "On a Relationship Between Graph Realizability and Distance Matrix Completion." In Optimization Theory, Decision Making, and Operations Research Applications, 39–48. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5134-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hélouët, Loïc, and Karim Kecir. "Realizability of Schedules by Stochastic Time Petri Nets with Blocking Semantics." In Application and Theory of Petri Nets and Concurrency, 155–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39086-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaber, Guilhem, and Colin Riba. "Temporal Refinements for Guarded Recursive Types." In Programming Languages and Systems, 548–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72019-3_20.

Full text
Abstract:
AbstractWe propose a logic for temporal properties of higher-order programs that handle infinite objects like streams or infinite trees, represented via coinductive types. Specifications of programs use safety and liveness properties. Programs can then be proven to satisfy their specification in a compositional way, our logic being based on a type system.The logic is presented as a refinement type system over the guarded $$\lambda $$ λ -calculus, a $$\lambda $$ λ -calculus with guarded recursive types. The refinements are formulae of a modal $$\mu $$ μ -calculus which embeds usual temporal modal logics such as and . The semantics of our system is given within a rich structure, the topos of trees, in which we build a realizability model of the temporal refinement type system.
APA, Harvard, Vancouver, ISO, and other styles
10

Shimakawa, Masaya, Shigeki Hagihara, and Naoki Yonezaki. "Towards Unbounded Realizability Checking." In Theory and Practice of Computation, 26–36. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813202818_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Realizability theory"

1

Shimakawa, Masaya, Shigeki Hagihara, and Naoki Yonezaki. "Towards Improvements of Bounded Realizability Checking." In Seventh Workshop on Computation: Theory and Practice, WCTP 2017. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813279674_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

So, Anthony Man-Cho, and Yinyu Ye. "A semidefinite programming approach to tensegrity theory and realizability of graphs." In the seventeenth annual ACM-SIAM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1109557.1109641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kachapova, Farida. "Realizability and Existence Property of a Constructive Set Theory with Types." In 13th Asian Logic Conference. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814678001_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ivanenko, Y., and S. Nordebo. "Non-passive approximation as a tool to study the realizability of amplifying media." In 2019 URSI International Symposium on Electromagnetic Theory (EMTS). IEEE, 2019. http://dx.doi.org/10.23919/ursi-emts.2019.8931480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moore, Joan G., and John Moore. "Realizability in Turbulence Modelling for Turbomachinery CFD." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-024.

Full text
Abstract:
It is obvious that the Reynolds normal stresses uu¯ should always be positive in all directions, i.e. the computed turbulence stresses should be realizable. However, the commonly used two-equation turbulence models do not incorporate realizability. They take the turbulent viscosity as cμk2/ε with cμ a constant, and frequently generate negative normal stresses far from walls in the nominally inviscid sections of turbomachinery flows. Pressure gradients due to leading edge stagnation and blade turning create an inviscid strain field. These strains cause the calculation of negative normal stresses over significant portions of the flow field. The result can be erroneous increases in turbulence kinetic energy upstream of the leading edge by a factor of ten or more. This erroneous turbulence is then convected around the blade and through the blade row, significantly affecting the computed boundary layer development and profile losses. Frequently the problem of overproduction is avoided by using artificially high values of the dissipation, ε, at the inlet. But this incorrect procedure is not needed when realizability is incorporated in the turbulence model. The paper reviews some methods and models which ensure realizability in two-equation turbulence models. The extent of the problem and its solution are illustrated with examples from compressor and turbine cascades.
APA, Harvard, Vancouver, ISO, and other styles
6

Ozkaya, Mert, and Christos Kloukinas. "Are We There Yet? Analyzing Architecture Description Languages for Formal Analysis, Usability, and Realizability." In 2013 39th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 2013. http://dx.doi.org/10.1109/seaa.2013.34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Czech, Manuel, and Ulrich Walter. "Industrial Verification of Piezo Motors on a CubeSat Based Verification Platform." In CANEUS 2006: MNT for Aerospace Applications. ASMEDC, 2006. http://dx.doi.org/10.1115/caneus2006-11084.

Full text
Abstract:
Due to the classification of technologies in NASA’s and ESA’s technology readiness levels, newly developed components have to be space proven before they can be utilized in space missions. This space prove can be adduced by sending these technologies to orbit either as experiment on a piggyback flight or a dedicated mission. Over the last years the size of technologies and satellites has shifted to much smaller sizes. In this paper, the possibility of industrial verification of MEMS (Micro Electro Mechanical System) applications using dedicated pico-satellite missions is examined. Based on the CubeSat concept, a technology verification platform can be realized for verification of not only pico-satellite components, but also of components of complex systems and missions. Therefore a platform fulfilling the requirements for such industrial verification of components named MOVE (Munich Orbital Verification Experiment) is developed at the Institute of Astronautics (LRT). This platform enables professional verification of MEMS technology and techniques at overall mission costs of less than 100k€. As a first application of this approach, a mission called π-MOVE (π for piezo) will verify piezo motors on the developed platform. These piezo motors are representative for components of complex systems, as this motor concept is considered to be key technology for future segmented mirror telescope missions. In the mission design process for this platform, strong emphasis is put on the robustness of the design, low complexity and realizability within the institute’s environment. The advantages through access to both university and industry resources will be taken. The feasibility of professional technology verification is highly dependent on the test plans, which are developed in cooperation with the experienced industrial partners.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Realizability theory"

1

Krommes, J. A. Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal turbulence, and self-organized criticality. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/750257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography