Academic literature on the topic 'Rebound hammer test'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rebound hammer test.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rebound hammer test"

1

Wang, Yu Ren, Dai Lun Chiang, and Yi Jao Chen. "Adapting ANFIS to Improve Field Rebound Hammer Test for Concrete Compressive Strength Estimation." Materials Science Forum 975 (January 2020): 191–96. http://dx.doi.org/10.4028/www.scientific.net/msf.975.191.

Full text
Abstract:
Rebound hammer tests are one of the most popular non-destructive testing methods to examine the concrete compressive strength in the field. Rebound hammer tests are relatively easy to conduct and low cost. More importantly, it will not cause damage to the existing structure and can obtain the results in a short time. However, concrete compressive strength estimations provided by rebound hammer tests have an average of around 20% mean absolute percentage error (MAPE) when comparing to the results from destructive tests. This research proposes an alternative approach to estimate the concrete compressive strengths using the rebound hammer test data. The alternative approach is to adopt the Artificial Neural Fuzzy Inference Systems, ANFIS, to develop an AI-based prediction model for the rebound hammer tests. A total of 100 rebound hammer tests are conducted in a 24-story residential building. Core samples are carefully taken to obtain the actual compressive tests. The data collected are used to train and validate the ANFIS prediction model. The results show that the proposed ANFIS model has successfully reduced the MAPE to 10.01%.
APA, Harvard, Vancouver, ISO, and other styles
2

Deng, Peng, Yan Sun, Yan Liu, and Xiaoxiao Song. "Revised Rebound Hammer and Pull-Out Test Strength Curves for Fiber-Reinforced Concrete." Advances in Civil Engineering 2020 (February 24, 2020): 1–12. http://dx.doi.org/10.1155/2020/8263745.

Full text
Abstract:
Rebound hammer tests and postinstalled pull-out tests are commonly used for evaluating the compressive strength of ordinary concrete, and the strength of concrete is estimated by strength curves. However, using these strength curves to predict the compressive strength of carbon fiber-reinforced concrete (CFRC), polypropylene fiber-reinforced concrete (PFRC), and carbon-polypropylene hybrid fiber-reinforced concrete (HFRC) may lead to considerable uncertainties. Therefore, this study revises the strength curves derived from rebound hammer tests and postinstalled pull-out tests for ordinary concrete. 480 specimens of fiber-reinforced concrete (FRC) of six strength grades are examined. Standard cube compressive strength tests are used as a reference, and the results of various regression models are compared. The linear model is determined as the most accurate model for postinstalled pull-out tests, whereas the power model is the most accurate for rebound hammer tests. The proposed strength curves have important applications for FRC engineering of the postinstalled pull-out tests and rebound hammer tests.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yu Ren, Wen Ten Kuo, Shian Shien Lu, Yi Fan Shih, and Shih Shian Wei. "Applying Support Vector Machines in Rebound Hammer Test." Advanced Materials Research 853 (December 2013): 600–604. http://dx.doi.org/10.4028/www.scientific.net/amr.853.600.

Full text
Abstract:
There are several nondestructive testing techniques available to test the compressive strength of the concrete and the Rebound Hammer Test is among one of the fast and economical methods. Nevertheless, it is found that the prediction results from Rebound Hammer Test are not satisfying (over 20% mean absolute percentage error). In view of this, this research intends to develop a concrete compressive strength prediction model for the SilverSchmidt test hammer, using data collected from 838 lab tests. The Q-values yield from the concrete test hammer SilverSchmidt is set as the input variable and the concrete compressive strength is set as the output variable for the prediction model. For the non-linear relationships, artificial intelligence technique, Support Vector Machines (SVMs), are adopted to develop the prediction models. The results show that the mean absolute percentage errors for SVMs prediction model, 6.76%, improves a lot when comparing to SilverSchmidt predictions. It is recommended that the artificial intelligence prediction models can be applied in the SilverSchmidt tests to improve the prediction accuracy.
APA, Harvard, Vancouver, ISO, and other styles
4

Jarushi, Fauzi, Paul J. Cosentino, and Edward H. Kalajian. "Prediction of High Pile Rebound with Fines Content and Uncorrected Blow Counts from Standard Penetration Test." Transportation Research Record: Journal of the Transportation Research Board 2363, no. 1 (2013): 47–55. http://dx.doi.org/10.3141/2363-06.

Full text
Abstract:
High-displacement piles have rebounded significantly while undergoing an extremely small permanent set per hammer blow in certain soils. This phenomenon, called high pile rebound (HPR), has occurred in many areas of North America. The Florida Department of Transportation identified HPR at six sites in Florida during the process of driving square, precast, prestressed concrete piles into saturated, fine silty-to-clayey sand and sandy-clay soils. Data on pile driving analyzer deflection versus time were used to develop strong correlations between fines content, uncorrected standard penetration test blow counts (NSPT), pile displacements, and rebound. The correlations developed in this study allow the geotechnical engineer to predict whether HPR will occur at a proposed site at which high-displacement piles are planned for driving by a single-acting diesel hammer. A design equation relating pile rebound to NSPT and fines content was developed. The correlations showed that permanent set and rebound were a direct function of NSPT and fines content of the soil at the pile tip. The design equation provides a methodology that allows prediction of HPR during the design phase.
APA, Harvard, Vancouver, ISO, and other styles
5

Bui, Quoc-Bao. "Assessing the Rebound Hammer Test for Rammed Earth Material." Sustainability 9, no. 10 (2017): 1904. http://dx.doi.org/10.3390/su9101904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brencich, Antonio, Giancarlo Cassini, Davide Pera, and Giuseppe Riotto. "Calibration and Reliability of the Rebound (Schmidt) Hammer Test." Civil Engineering and Architecture 1, no. 3 (2013): 66–78. http://dx.doi.org/10.13189/cea.2013.010303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brožovský, Jiří. "Influence of Moisture of Light-Weight Concrete Containing Lightweight Expanded Clay Aggregate on Test Results Obtained by Means of Impact Hammer." Advanced Materials Research 753-755 (August 2013): 663–67. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.663.

Full text
Abstract:
Properties of light-weight concrete congaing lightweight expanded clay aggregate differ from the ones of normal-weight concrete containing natural normal-weight aggregate. Particularly, when compared with natural normal-weight aggregate, these differences are due to lightweight aggregate being characterized by significantly lower strength and bulk weight as well as higher absorptivity. Properties of expanded clay lightweight aggregate influence the ones of light-weight concrete, too. Parameters obtained by means of Schmidt impact hammer non-destructive testing are influenced by series of factors, among others also concrete moisture. Moisture of light-weight concrete containing lightweight aggregate influences rebound number of Schmidt impact hammer. As to Schmidt impact hammer type N (2.25 Nm impact energy), rebound number on dry concrete exceeds the one on waterlogged concrete by 21 %. Correction coefficients for rebound number correction were defined taking into account moisture of light-weight concrete under testing.
APA, Harvard, Vancouver, ISO, and other styles
8

Borosnyói, Adorján, and Katalin Szilágyi. "Studies on the spatial variability of rebound hammer test results recorded at in-situ testing." Epitoanyag - Journal of Silicate Based and Composite Materials 65, no. 4 (2013): 102–6. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2013.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brožovský, Jiří. "Rebound Hammer Tests of Calcium Silicate Bricks – Effects of Internal Compressive Stress on Measurement Results." Applied Mechanics and Materials 595 (July 2014): 155–58. http://dx.doi.org/10.4028/www.scientific.net/amm.595.155.

Full text
Abstract:
The rebound hammers of the Schmidt system belong among the non-destructive testing methods that are used for determining compressive strength of building materials, most often concrete and rocks. Calibration relations between the rebound number and compressive strength must be available to determine the compressive strength. Calibration relations are determined on the basis of destructive and non-destructive tests of test specimens. This paper deals with the effects of internal compressive stress in calcium silicate bricks on measurement results obtained using the L-type Schmidt hammer. Based on the obtained information, in order to process calibration relations, it is recommended to apply such force to the test specimens, which corresponds to the internal compressive stress 10-15% of the final compressive strength. We do not recommend measuring on firmly supported bricks only.
APA, Harvard, Vancouver, ISO, and other styles
10

Kongola, Moses, and Karim Baruti. "Prediction of Uniaxial Compressive Strength of Granite Rock Samples of Lugoba Quarry Using Rebound Hammer Test." Tanzania Journal of Engineering and Technology 40, no. 1 (2021): 16–27. http://dx.doi.org/10.52339/tjet.v40i1.710.

Full text
Abstract:
Rebound hammer test is widely used as an indirect measure of uniaxial compressive strength for engineering materials such as concrete, soil, and rock in both civil and mining engineering works. In quarries, uniaxial compressive strength is a crucial parameter in the analysis of geotechnical problems involving rock stability and rock blasting design. This study aims at establishing the empirical models of uniaxial compressive strength fits on rebound hammer number that can be used to predict uniaxial compressive strength of granitic rock at Lugoba Quarry. Data for direct uniaxial compressive strength were obtained from uniaxial compressive strength test carried out on 20 core samples at the Dar es Salaam Institute of Technology Geotechnical Laboratory using ISMR Standard Procedures. The rebound hammer test was carried out using testing hammer type N. The tests were done horizontally on two scanline's geotechnical domains of the rock mass on the footwall side of the quarry. The obtained results of UCS ranging from 105 to 132.5 MPa and RHN from 44.90 to 49.5 were found to be comparable with values of other granitic rocks in other parts of the world. Regression Analysis using SPSS software was carried out to develop 5 regression models of UCS vs.RHN. The values of obtained in this study were found to be between 0.93 and 0.95, which are comparable with other studies. This implies that RHN accounted between 93 and 95% of the total variation of the UCS and the relationships were very strong. Two models; Logarithmic and exponential were found to be appropriate and recommended for application at Lugoba Quarry.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography