Academic literature on the topic 'Récepteur couplé au protéine G'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Récepteur couplé au protéine G.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Récepteur couplé au protéine G"
Ismail, Sadek, Véronique Gigoux, and Daniel Fourmy. "Signalisation endosomale du récepteur du peptide insulinotrope dépendant du glucose (GIP)." Biologie Aujourd'hui 212, no. 1-2 (2018): 13–19. http://dx.doi.org/10.1051/jbio/2018018.
Full textDreyfus, JC, and JP Grünfeld. "Des mutations d'un récepteur couplé à une protéine G sont cause d'anomalies familiales du métabolisme du calcium." médecine/sciences 10, no. 4 (1994): 475. http://dx.doi.org/10.4267/10608/2646.
Full textGalvez, Thierry, and Jean-Philippe Pin. "Comment fonctionne un récepteur couplé aux protéines G ? Le cas des récepteurs métabotropiques du glutamate et du GABA." médecine/sciences 19, no. 5 (May 2003): 559–65. http://dx.doi.org/10.1051/medsci/2003195559.
Full textLanger, I., I. G. Tikhonova, C. Boulègue, J. P. Estève, S. Vatinel, A. Ferrand, L. Pradayrol, L. Moroder, P. Robberecht, and D. Fourmy. "Nouveau mécanisme de régulation d’un récepteur couplé aux protéines g par interaction directe entre la rgs2 et l’extrémité c-terminale phosphorylée du récepteur cck2." Gastroentérologie Clinique et Biologique 30, no. 5 (May 2006): 701. http://dx.doi.org/10.1016/s0399-8320(06)73270-5.
Full textBril, Antoine, Murielle Combettes, and Valérie Audinot. "Récepteurs couplés aux protéines G." médecine/sciences 28, no. 10 (October 2012): 799–800. http://dx.doi.org/10.1051/medsci/20122810001.
Full textLahuna, Olivier, and Ralf Jockers. "Signalisation mitochondriale des récepteurs couplés aux protéines G." Biologie Aujourd'hui 212, no. 1-2 (2018): 21–26. http://dx.doi.org/10.1051/jbio/2018024.
Full textGalzi, Jean-Luc, and Brigitte Ilien. "Les récepteurs couplés aux protéines G." médecine/sciences 28, no. 10 (October 2012): 852–57. http://dx.doi.org/10.1051/medsci/20122810013.
Full textBockaert, Joël. "Les récepteurs couplés aux protéines G." médecine/sciences 28, no. 12 (December 2012): 1133–37. http://dx.doi.org/10.1051/medsci/20122812026.
Full textBanères, Jean-Louis, and Bernard Mouillac. "Manipulation des récepteurs couplés aux protéines G." médecine/sciences 28, no. 10 (October 2012): 837–44. http://dx.doi.org/10.1051/medsci/20122810011.
Full textScott, Mark G. H., Alexandre Benmerah, and Stefano Marullo. "Endocytose des récepteurs couplés aux protéines G." médecine/sciences 20, no. 1 (January 2004): 78–83. http://dx.doi.org/10.1051/medsci/200420178.
Full textDissertations / Theses on the topic "Récepteur couplé au protéine G"
Damian, Marjorie. "Mécanisme d'activation au sein d'un dimère de récepteur couplé aux protéine G." Thesis, Montpellier 1, 2011. http://www.theses.fr/2011MON13513.
Full textG-protein coupled receptors are versatile biological sensors that are responsible for the majority of cellular responses to hormones and neurotransmitters as well as for the sense of sight, smell and taste. Signal transduction is associated with a set of changes in the tertiary structure of the receptor that are recognized by the associated intracellular partners, in particular the G proteins. There is compelling evidence that GPCR can assemble as dimers but the way these assemblies function at the molecular level is still under investigation.We used here the leukotriene B4 receptor BLT1 as a model to analyze the conformational changes occurring during activation. To this end, we first produced the receptor in E. coli inclusion bodies and subsequently folded it back to its native state in vitro using original membrane mimetics. Using the purified dimeric receptor, we showed that (i) the G protein induces an asymmetric arrangement of the BLT1 homodimer where each of the protomers is in a distinct conformation, and (ii) the G protein is cis-activated, i.e. the protomer that binds the agonist also activates Gα. Finally, we brought evidence that, although the dimer fully activates its G protein partner, the monomer has per se all the molecular determinant for an efficient functioning. All these data are original evidence that sheds light into the way GPCR dimers are activated and in turn modulate G protein-mediated signaling
Murail, Samuel. "Mécanismes moléculaires des interactions ligand-protéine membranaire : étude biophysique d'un récepteur couplé aux protéines G, VPAC1, et du récepteur périphérique des benzodiazépines." Paris 7, 2008. http://www.theses.fr/2008PA077120.
Full textThe main goal of this work has been to contribute to elucidate the molecular mechanism underlying protein-ligand interaction within the membrane. The first protein studied is the peripheral benzodiazepine receptor (PBR) and its ligand interest, cholesterol. PBR is involved in steroid biosynthesis, through the cholesterol translocation from the outer to the inner membrane of mitochondria. In the absence of any available structural information on PBR, our first work has been to focus on the PBR structure, by determining from NMR data the conformation of synthetic fragments encompassing the predicted transmembrane domains and then by studying the entire recombinant protein by NMR and circular dichroism. In second step, several studies combining mutagenesis and molecular modeling have be performed which allow to characterize PBR-cholesterol interaction, and the role of key residues this interaction. The second part of our work is devoted to study the interaction of the extracellular domain VPAC1, a G-protein coupled receptor, with the vasointestinal neuropeptide (VIP), which plays important role in human physiopathology. From the VIP conformation obtained by NMR a photoaffinity data, we were able to propose a molecular model of the VIP-VPAC1 interaction using docking protocols and to characterize this interaction using molecular dynamics simulation. Our result contributes to elucidate the molecular basis of VIP recognition and more generally understand the ligand-receptor interaction process of the class B family of GPCRs
Marotte, Amélie. "Conception rationnelle de nouveaux ligands du GPR103, un récepteur couplé à une protéine G et cible du 26RFa." Rouen, 2013. http://www.theses.fr/2013ROUES039.
Full textDa, Silva Mélanie. "Développement d’essais HTRF® innovants pour détecter l'activation des protéines G natives par leurs récepteurs." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT033.
Full textG protein-coupled receptors (GPCRs) represent the main family of membrane proteins, and they are the target of more than 25% of drugs in the market. These receptors activate various signaling pathways through different families of heterotrimeric G proteins (Gs, Gq, Gi/o et G12/13). Since a given GPCR can activate several G proteins, it is important to understand how ligands favor the activation of some of these G proteins (biased ligands). The objective of my thesis was to develop assays to study most G protein subtypes
Lelouvier, Benjamin. "Trafic cellulaire d'un récepteur couplé aux protéines G dans le système nerveux central : mécanismes et conséquences physiopathologiques." Paris 6, 2007. http://www.theses.fr/2007PA066351.
Full textIbarz, Géraldine. "Etude pharmacologique de la signalisation intracellulaire d'un récepteur couplé aux protéines G : le récepteur de la cholécystokinine de type I." Montpellier 1, 2003. http://www.theses.fr/2003MON13503.
Full textRoux, Mélisange. "Impact de la modulation de l’expression de la protéine sécrétogranine III sur les fonctions analgésiques du récepteur NTS2." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9478.
Full textLevoye, Angélique. "Recherche de la fonction du récepteur orphelin couplé aux protéines G GPR50 par hétérodimérisation." Paris 11, 2005. http://www.theses.fr/2005PA11T041.
Full textChaves-Almagro, Carline. "Signalisation apeline : nouvelle cible thérapeutique de l'adénocarcinome pancréatique ?" Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30246/document.
Full textApelin, the endogenous ligand of the human G-protein coupled receptor, APJ, is a key regulator of cardiovascular system, notably during physiological and tumor angiogenesis. Using a cancer profiling array approach, our team clearly showed that apelin gene is overexpressed in one third of the human carcinomas, with the highest frequency (2/3) in pancreatic cancers. Thus, the aim of my PhD project was to characterize apelin signaling function during pancreatic carcinogenesis. Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and the discovery of biomarkers and new therapeutic targets is of crucial interest for this cancer since this cancer is diagnosed too late and there is no effective therapy. By an immunohistochemistry approach on human PDAC slides (49 patients), we show that apelin and APJ are strongly expressed by pancreatic tumor cells. In order to characterize apelin and APJ spatio-temporal expression during pancreatic carcinogenesis, we have studied their expression by immunohistochemistry in genetically engineered mouse models of PDAC. In the K-ras mouse model (Lox-Stop-Lox-K-rasG12D/+/Pdx1-Cre) which recapitulates early stages of the disease, and in the KPC mouse model (Lox-Stop-Lox- K-rasG12D/+ ; Lox-Stop-Lox-Trp53 R172H/+/Pdx1-Cre) which develops PDAC until invasive stages, our results demonstrate that apelin and its receptor are expressed by tumor cells since the first steps of carcinogenesis. In order to study apelin signaling function, we have characterized signal transduction pathways activated by apelin in MiaPaCa human pancreatic cancer cell line endogenously expressing apelin and APJ as observed in vivo. In these cells, apelin induces transient activation of ERKs and p70S6 Kinase, a sustained Akt activation and an inhibitory phosphorylation of GSK3 thus allowing Beta-catenin stabilization. Interestingly, my results demonstrate that the MAPK pathway activation apelin induced is Gi protein dependent. Conversely, long term stimulation of PI3K/Akt pathway is G protein independent but instead involves receptor internalization. Moreover, apelin positively regulates on one hand c-myc and cyclin D1 protein levels, both of them being implicated in cell proliferation and on the other hand, intracellular protein content of Hexokinase 2 in order to ensure high glycolytic flux which is essential for tumor cells energy supply. These results are in agreement with cellular effects that we observed since apelin stimulates proliferation, glucose uptake and migration of tumor cells which are essentials properties for tumor progression. Accordingly, apelin and APJ overexpression in PDAC and the effects of this signaling pathway on tumor cells make of this ligand/receptor couple a new potential therapeutic target for pancreatic cancer treatment
Holleran, Brian. "Identification de déterminants moléculaires de la liaison du récepteur et de l'urotensine II." Thèse, Université de Sherbrooke, 2009. http://savoirs.usherbrooke.ca/handle/11143/4300.
Full textBooks on the topic "Récepteur couplé au protéine G"
R, Ruffolo Robert, and Hollinger Mannfred A, eds. G-protein coupled transmembrane signaling mechanisms. Boca Raton, Fla: CRC Press, 1995.
Find full textBook chapters on the topic "Récepteur couplé au protéine G"
Robert, Jacques. "Les voies des récepteurs couplés aux protéines G." In Signalisation cellulaire et cancer, 91–102. Paris: Springer Paris, 2010. http://dx.doi.org/10.1007/978-2-8178-0028-8_7.
Full text