Journal articles on the topic 'Receptive dendrites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Receptive dendrites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
ROYER, AUDREY S., and ROBERT F. MILLER. "Dendritic impulse collisions and shifting sites of action potential initiation contract and extend the receptive field of an amacrine cell." Visual Neuroscience 24, no. 4 (July 2007): 619–34. http://dx.doi.org/10.1017/s0952523807070617.
Full textDAVENPORT, CHRISTOPHER M., PETER B. DETWILER, and DENNIS M. DACEY. "Functional polarity of dendrites and axons of primate A1 amacrine cells." Visual Neuroscience 24, no. 4 (May 29, 2007): 449–57. http://dx.doi.org/10.1017/s0952523807070010.
Full textPoe, Amy R., Lingfeng Tang, Bei Wang, Yun Li, Maria L. Sapar, and Chun Han. "Dendritic space-filling requires a neuronal type-specific extracellular permissive signal inDrosophila." Proceedings of the National Academy of Sciences 114, no. 38 (September 5, 2017): E8062—E8071. http://dx.doi.org/10.1073/pnas.1707467114.
Full textPeters, B. N., and R. H. Masland. "Responses to light of starburst amacrine cells." Journal of Neurophysiology 75, no. 1 (January 1, 1996): 469–80. http://dx.doi.org/10.1152/jn.1996.75.1.469.
Full textSwindale, Nicholas V. "Feedback Decoding of Spatially Structured Population Activity in Cortical Maps." Neural Computation 20, no. 1 (January 2008): 176–204. http://dx.doi.org/10.1162/neco.2008.20.1.176.
Full textWilson, James R., Donna M. Forestner, and Ryan P. Cramer. "Quantitative analyses of synaptic contacts of interneurons in the dorsal lateral geniculate nucleus of the squirrel monkey." Visual Neuroscience 13, no. 6 (November 1996): 1129–42. http://dx.doi.org/10.1017/s095252380000777x.
Full textRenehan, W. E., M. F. Jacquin, R. D. Mooney, and R. W. Rhoades. "Structure-function relationships in rat medullary and cervical dorsal horns. II. Medullary dorsal horn cells." Journal of Neurophysiology 55, no. 6 (June 1, 1986): 1187–201. http://dx.doi.org/10.1152/jn.1986.55.6.1187.
Full textHyngstrom, Allison, Michael Johnson, Jenna Schuster, and C. J. Heckman. "Movement-related receptive fields of spinal motoneurones with active dendrites." Journal of Physiology 586, no. 6 (March 15, 2008): 1581–93. http://dx.doi.org/10.1113/jphysiol.2007.149146.
Full textDacey, Dennis M., and Sarah Brace. "A coupled network for parasol but not midget ganglion cells in the primate retina." Visual Neuroscience 9, no. 3-4 (October 1992): 279–90. http://dx.doi.org/10.1017/s0952523800010695.
Full textChen, Minggang, Seunghoon Lee, and Z. Jimmy Zhou. "Local synaptic integration enables ON-OFF asymmetric and layer-specific visual information processing in vGluT3 amacrine cell dendrites." Proceedings of the National Academy of Sciences 114, no. 43 (September 27, 2017): 11518–23. http://dx.doi.org/10.1073/pnas.1711622114.
Full textStöckl, Anna Lisa, David Charles O’Carroll, and Eric James Warrant. "Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimize vision at different light levels." Science Advances 6, no. 16 (April 2020): eaaz8645. http://dx.doi.org/10.1126/sciadv.aaz8645.
Full textGladfelter, Wilbert E., Ronald J. Millecchia, Lillian M. Pubols, Ramana V. Sonty, Louis A. Ritz, Dorothy Covalt-Dunning, James Culberson, and Paul B. Brown. "Crossed receptive field components and crossed dendrites in cat sacrocaudal dorsal horn." Journal of Comparative Neurology 336, no. 1 (October 1, 1993): 96–105. http://dx.doi.org/10.1002/cne.903360108.
Full textStanford, L. R. "X-cells in the cat retina: relationships between the morphology and physiology of a class of cat retinal ganglion cells." Journal of Neurophysiology 58, no. 5 (November 1, 1987): 940–64. http://dx.doi.org/10.1152/jn.1987.58.5.940.
Full textJia, Yu, Seunghoon Lee, Yehong Zhuo, and Z. Jimmy Zhou. "A retinal circuit for the suppressed-by-contrast receptive field of a polyaxonal amacrine cell." Proceedings of the National Academy of Sciences 117, no. 17 (April 9, 2020): 9577–83. http://dx.doi.org/10.1073/pnas.1913417117.
Full textNelson, R., and H. Kolb. "A17: a broad-field amacrine cell in the rod system of the cat retina." Journal of Neurophysiology 54, no. 3 (September 1, 1985): 592–614. http://dx.doi.org/10.1152/jn.1985.54.3.592.
Full textHirai, T., H. D. Schwark, C. T. Yen, C. N. Honda, and E. G. Jones. "Morphology of physiologically characterized medial lemniscal axons terminating in cat ventral posterior thalamic nucleus." Journal of Neurophysiology 60, no. 4 (October 1, 1988): 1439–59. http://dx.doi.org/10.1152/jn.1988.60.4.1439.
Full textElyada, Yishai M., Juergen Haag, and Alexander Borst. "Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons." Nature Neuroscience 12, no. 3 (February 8, 2009): 327–32. http://dx.doi.org/10.1038/nn.2269.
Full textHeikkinen, Hanna, Fariba Sharifian, Ricardo Vigario, and Simo Vanni. "Feedback to distal dendrites links fMRI signals to neural receptive fields in a spiking network model of the visual cortex." Journal of Neurophysiology 114, no. 1 (July 2015): 57–69. http://dx.doi.org/10.1152/jn.00169.2015.
Full textHonda, C. N. "Visceral and somatic afferent convergence onto neurons near the central canal in the sacral spinal cord of the cat." Journal of Neurophysiology 53, no. 4 (April 1, 1985): 1059–78. http://dx.doi.org/10.1152/jn.1985.53.4.1059.
Full textMuller, Jay F., Josef Ammermüller, Richard A. Normann, and Helga Kolb. "Synaptic inputs to physiologically defined turtle retinal ganglion cells." Visual Neuroscience 7, no. 5 (November 1991): 409–29. http://dx.doi.org/10.1017/s0952523800009718.
Full textKASAMATSU, TAKUJI, KEIKO MIZOBE, and ERICH E. SUTTER. "Muscimol and baclofen differentially suppress retinotopic and nonretinotopic responses in visual cortex." Visual Neuroscience 22, no. 6 (November 2005): 839–58. http://dx.doi.org/10.1017/s0952523805226135.
Full textPaul, Dorothy H., and Jan Bruner. "Receptor Potentials and Electrical Properties of Nonspiking Stretch-Receptive Neurons in the Sand Crab Emerita analoga (Anomura, Hippidae)." Journal of Neurophysiology 81, no. 5 (May 1, 1999): 2493–500. http://dx.doi.org/10.1152/jn.1999.81.5.2493.
Full textMontgomery, J. C., and D. Bodznick. "HINDBRAIN CIRCUITRY MEDIATING COMMON MODE SUPPRESSION OF VENTILATORY REAFFERENCE IN THE ELECTROSENSORY SYSTEM OF THE LITTLE SKATE RAJA ERINACEA." Journal of Experimental Biology 183, no. 1 (October 1, 1993): 203–16. http://dx.doi.org/10.1242/jeb.183.1.203.
Full textZhu, J. Julius, and Barry W. Connors. "Intrinsic Firing Patterns and Whisker-Evoked Synaptic Responses of Neurons in the Rat Barrel Cortex." Journal of Neurophysiology 81, no. 3 (March 1, 1999): 1171–83. http://dx.doi.org/10.1152/jn.1999.81.3.1171.
Full textEzeh, P. I., D. P. Wellis, and J. W. Scott. "Organization of inhibition in the rat olfactory bulb external plexiform layer." Journal of Neurophysiology 70, no. 1 (July 1, 1993): 263–74. http://dx.doi.org/10.1152/jn.1993.70.1.263.
Full textFAMIGLIETTI, E. V. "“Small-tufted” ganglion cells and two visual systems for the detection of object motion in rabbit retina." Visual Neuroscience 22, no. 4 (July 2005): 509–34. http://dx.doi.org/10.1017/s0952523805224124.
Full textHERTEL, HORST, and ULRIKE MARONDE. "The Physiology and Morphology of Centrally Projecting Visual Interneurones in the Honeybee Brain." Journal of Experimental Biology 133, no. 1 (November 1, 1987): 301–15. http://dx.doi.org/10.1242/jeb.133.1.301.
Full textSchnell, B., M. Joesch, F. Forstner, S. V. Raghu, H. Otsuna, K. Ito, A. Borst, and D. F. Reiff. "Processing of Horizontal Optic Flow in Three Visual Interneurons of the Drosophila Brain." Journal of Neurophysiology 103, no. 3 (March 2010): 1646–57. http://dx.doi.org/10.1152/jn.00950.2009.
Full textStasheff, Steven F., and Richard H. Masland. "Functional Inhibition in Direction-Selective Retinal Ganglion Cells: Spatiotemporal Extent and Intralaminar Interactions." Journal of Neurophysiology 88, no. 2 (August 1, 2002): 1026–39. http://dx.doi.org/10.1152/jn.2002.88.2.1026.
Full textChacron, Maurice J. "Nonlinear Information Processing in a Model Sensory System." Journal of Neurophysiology 95, no. 5 (May 2006): 2933–46. http://dx.doi.org/10.1152/jn.01296.2005.
Full textMillecchia, R. J., L. M. Pubols, R. V. Sonty, J. L. Culberson, W. E. Gladfelter, and P. B. Brown. "Influence of map scale on primary afferent terminal field geometry in cat dorsal horn." Journal of Neurophysiology 66, no. 3 (September 1, 1991): 696–704. http://dx.doi.org/10.1152/jn.1991.66.3.696.
Full textBuzás, Péter, Sára Jeges, and Robert Gábriel. "The number and distribution of bipolar to ganglion cell synapses in the inner plexiform layer of the anuran retina." Visual Neuroscience 13, no. 6 (November 1996): 1099–107. http://dx.doi.org/10.1017/s0952523800007744.
Full textUmino, Osamu, Michiyo Maehara, Soh Hidaka, Shigeo Kita, and Yoko Hashimoto. "The network properties of bipolar–bipolar cell coupling in the retina of teleost fishes." Visual Neuroscience 11, no. 3 (May 1994): 533–48. http://dx.doi.org/10.1017/s0952523800002443.
Full textIwata, K., Y. Tsuboi, J. Yagi, K. Kitajima, and R. Sumino. "Morphology of primary somatosensory cortical neurons receiving input from the tooth pulp." Journal of Neurophysiology 72, no. 2 (August 1, 1994): 831–46. http://dx.doi.org/10.1152/jn.1994.72.2.831.
Full textLEBEDEV, D. S., and D. W. MARSHAK. "Amacrine cell contributions to red-green color opponency in central primate retina: A model study." Visual Neuroscience 24, no. 4 (July 2007): 535–47. http://dx.doi.org/10.1017/s0952523807070502.
Full textScherer, Warren J., and Susan B. Udin. "Differential intertectal delay between Rana pipiens and Xenopus laevis: Implications for species-specific visual plasticity." Visual Neuroscience 12, no. 5 (September 1995): 1007–11. http://dx.doi.org/10.1017/s0952523800009548.
Full textNagayama, Shin, Yuji K. Takahashi, Yoshihiro Yoshihara, and Kensaku Mori. "Mitral and Tufted Cells Differ in the Decoding Manner of Odor Maps in the Rat Olfactory Bulb." Journal of Neurophysiology 91, no. 6 (June 2004): 2532–40. http://dx.doi.org/10.1152/jn.01266.2003.
Full textUhlrich, D. J., J. B. Cucchiaro, A. L. Humphrey, and S. M. Sherman. "Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus." Journal of Neurophysiology 65, no. 6 (June 1, 1991): 1528–41. http://dx.doi.org/10.1152/jn.1991.65.6.1528.
Full textSchmidt, John T. "The modulatory cholinergic system in goldfish tectum may be necessary for retinotopic sharpening." Visual Neuroscience 12, no. 6 (November 1995): 1093–103. http://dx.doi.org/10.1017/s095252380000674x.
Full textDOUGLASS, JOHN K., and NICHOLAS J. STRAUSFELD. "Sign-conserving amacrine neurons in the fly's external plexiform layer." Visual Neuroscience 22, no. 3 (May 2005): 345–58. http://dx.doi.org/10.1017/s095252380522309x.
Full textXIA, YINGQIU, and SCOTT NAWY. "The gap junction blockers carbenoxolone and 18β-glycyrrhetinic acid antagonize cone-driven light responses in the mouse retina." Visual Neuroscience 20, no. 4 (July 2003): 429–35. http://dx.doi.org/10.1017/s0952523803204089.
Full textDacheux, R. F., and E. Raviola. "Light responses from one type of ON-OFF amacrine cells in the rabbit retina." Journal of Neurophysiology 74, no. 6 (December 1, 1995): 2460–68. http://dx.doi.org/10.1152/jn.1995.74.6.2460.
Full textBrown, Craig E., Jamie D. Boyd, and Timothy H. Murphy. "Longitudinal in vivo Imaging Reveals Balanced and Branch-Specific Remodeling of Mature Cortical Pyramidal Dendritic Arbors after Stroke." Journal of Cerebral Blood Flow & Metabolism 30, no. 4 (November 18, 2009): 783–91. http://dx.doi.org/10.1038/jcbfm.2009.241.
Full textBastian, J. "Plasticity in an electrosensory system. I. General features of a dynamic sensory filter." Journal of Neurophysiology 76, no. 4 (October 1, 1996): 2483–96. http://dx.doi.org/10.1152/jn.1996.76.4.2483.
Full textWerblin, Frank, Greg Maguire, Peter Lukasiewicz, Scott Eliasof, and Samuel M. Wu. "Neural interactions mediating the detection of motion in the retina of the tiger salamander." Visual Neuroscience 1, no. 3 (May 1988): 317–29. http://dx.doi.org/10.1017/s0952523800001978.
Full textBLOOMFIELD, STEWART A., and BÉLA VÖLGYI. "Response properties of a unique subtype of wide-field amacrine cell in the rabbit retina." Visual Neuroscience 24, no. 4 (May 29, 2007): 459–69. http://dx.doi.org/10.1017/s0952523807070071.
Full textSimmons, Aaron B., Samuel J. Bloomsburg, Joshua M. Sukeena, Calvin J. Miller, Yohaniz Ortega-Burgos, Bart G. Borghuis, and Peter G. Fuerst. "DSCAM-mediated control of dendritic and axonal arbor outgrowth enforces tiling and inhibits synaptic plasticity." Proceedings of the National Academy of Sciences 114, no. 47 (November 7, 2017): E10224—E10233. http://dx.doi.org/10.1073/pnas.1713548114.
Full textKomai, Shoji. "Dendritic excitability maturates somatosensory receptive field." Neuroscience Research 58 (January 2007): S13. http://dx.doi.org/10.1016/j.neures.2007.06.071.
Full textAmthor, Franklin R., Norberto M. Grzywacz, and David K. Merwine. "Extra-receptive-field motion facilitation in on-off directionally selective ganglion cells of the rabbit retina." Visual Neuroscience 13, no. 2 (March 1996): 303–9. http://dx.doi.org/10.1017/s0952523800007549.
Full textBloomfield, S. A. "Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina." Journal of Neurophysiology 68, no. 3 (September 1, 1992): 711–25. http://dx.doi.org/10.1152/jn.1992.68.3.711.
Full text