Academic literature on the topic 'Receptor-Interacting Protein Serine-Threonine Kinases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Receptor-Interacting Protein Serine-Threonine Kinases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Receptor-Interacting Protein Serine-Threonine Kinases"

1

Annunziata, Maria Carmela, Melania Parisi, Gabriella Esposito, Gabriella Fabbrocini, Rosario Ammendola, and Fabio Cattaneo. "Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling." International Journal of Molecular Sciences 21, no. 11 (May 27, 2020): 3818. http://dx.doi.org/10.3390/ijms21113818.

Full text
Abstract:
FPR1, FPR2, and FPR3 are members of Formyl Peptides Receptors (FPRs) family belonging to the GPCR superfamily. FPR2 is a low affinity receptor for formyl peptides and it is considered the most promiscuous member of this family. Intracellular signaling cascades triggered by FPRs include the activation of different protein kinases and phosphatase, as well as tyrosine kinase receptors transactivation. Protein kinases and phosphatases act coordinately and any impairment of their activation or regulation represents one of the most common causes of several human diseases. Several phospho-sites has been identified in protein kinases and phosphatases, whose role may be to expand the repertoire of molecular mechanisms of regulation or may be necessary for fine-tuning of switch properties. We previously performed a phospho-proteomic analysis in FPR2-stimulated cells that revealed, among other things, not yet identified phospho-sites on six protein kinases and one protein phosphatase. Herein, we discuss on the selective phosphorylation of Serine/Threonine-protein kinase N2, Serine/Threonine-protein kinase PRP4 homolog, Serine/Threonine-protein kinase MARK2, Serine/Threonine-protein kinase PAK4, Serine/Threonine-protein kinase 10, Dual specificity mitogen-activated protein kinase kinase 2, and Protein phosphatase 1 regulatory subunit 14A, triggered by FPR2 stimulation. We also describe the putative FPR2-dependent signaling cascades upstream to these specific phospho-sites.
APA, Harvard, Vancouver, ISO, and other styles
2

Dara, Lily. "The Receptor Interacting Protein Kinases in the Liver." Seminars in Liver Disease 38, no. 01 (February 2018): 073–86. http://dx.doi.org/10.1055/s-0038-1629924.

Full text
Abstract:
AbstractThe receptor interacting serine/threonine kinase1 and 3 (RIPK1, RIPK3) are regulators of cell death and survival. RIPK1 kinase activity is required for necroptosis and apoptosis, while its scaffolding function is necessary for survival. Although both proteins can mediate apoptosis, RIPK1 and RIPK3 are most well-known for their role in the execution of necroptosis via the mixed lineage domain like pseudokinase. Necroptosis is a caspase-independent regulated cell death program which was first described in cultured cells with unknown physiologic relevance in the liver. Many recent reports have suggested that RIPK1 and/or RIPK3 participate in liver disease pathogenesis and cell death. Notably, both proteins have been shown to mediate inflammation independent of cell death. Whether necroptosis occurs in hepatocytes, and how it is executed in the presence of an intact caspase machinery is controversial. In spite of this controversy, it is evident that RIPK1 and RIPK3 participate in many experimental liver disease models. Therefore, in addition to cell death signaling, their necroptosis-independent role warrants further examination.
APA, Harvard, Vancouver, ISO, and other styles
3

Kueng, Peter, Zariana Nikolova, Valentin Djonov, Andrew Hemphill, Valeria Rohrbach, Dominik Boehlen, Gisela Zuercher, Anne-Catherine Andres, and Andrew Ziemiecki. "A Novel Family of Serine/Threonine Kinases Participating in Spermiogenesis." Journal of Cell Biology 139, no. 7 (December 29, 1997): 1851–59. http://dx.doi.org/10.1083/jcb.139.7.1851.

Full text
Abstract:
The molecular mechanisms regulating the spectacular cytodifferentiation observed during spermiogenesis are poorly understood. We have recently identified a murine testis-specific serine kinase (tssk) 1, constituting a novel subfamily of serine/threonine kinases. Using low stringency screening we have isolated and molecularly characterized a second closely related family member, tssk 2, which is probably the orthologue of the human DGS-G gene. Expression of tssk 1 and tssk 2 was limited to the testis of sexually mature males. Immunohistochemical staining localized both kinases to the cytoplasm of late spermatids and to structures resembling residual bodies. tssk 1 and tssk 2 were absent in released sperms in the lumen of the seminiferous tubules and the epididymis, demonstrating a tight window of expression restricted to the last stages of spermatid maturation. In vitro kinase assays of immunoprecipitates containing either tssk 1 or tssk 2 revealed no autophosphorylation of the kinases, however, they led to serine phosphorylation of a coprecipitating protein of ∼65 kD. A search for interacting proteins using the yeast two-hybrid system with tssk 1 and tssk 2 cDNA as baits and a prey cDNA library from mouse testis, led to the isolation of a novel cDNA, interacting specifically with both tssk 1 and tssk 2, and encoding the coprecipitated 65-kD protein phosphorylated by both kinases. Interestingly, expression of the interacting clone was also testis specific and paralleled the developmental expression observed for the kinases themselves. These results represent the first demonstration of the involvement of a distinct kinase family, the tssk serine/threonine kinases, together with a substrate in the cytodifferentiation of late spermatids to sperms.
APA, Harvard, Vancouver, ISO, and other styles
4

Leconte, I., and E. Clauser. "Two sequences flanking the major autophosphorylation site of the insulin receptor are essential for tyrosine kinase activation." Biochemical Journal 306, no. 2 (March 1, 1995): 465–72. http://dx.doi.org/10.1042/bj3060465.

Full text
Abstract:
The tyrosine kinase domain of the human insulin receptor (IR) contains several short amino acid motifs which are strictly conserved in all protein kinases and two sequence motifs which are specific to the tyrosine kinases (AAR or RAA and P(I)/VK/RWT/M). In the serine/threonine kinases these motifs are replaced by the sequences KPE and GT/SXXY/PX respectively. In the present work, the tyrosine kinase-specific sequences of the IR (1134AAR1136 and 1172PVRWM1176) were replaced using site-directed mutagenesis by sequences which confer a serine kinase specificity on the receptor. Five different IR mutants were expressed in Chinese hamster ovary (CHO) or COS cells and their structural and functional properties compared with those of the wild-type recombinant human IR. These mutants are processed normally and bind insulin with normal affinities. None of the mutants containing a putative serine kinase-specific sequence display detectable autophosphorylation or tyrosine kinase activity in response to insulin, either in vitro or in vivo. These mutants were also unable to phosphorylate serine/threonine kinase substrates after insulin stimulation. Unexpectedly, they showed impaired ATP binding, as studied by an original technique consisting of cross-linking adenosine 5′-([35S]thio)triphosphate to partially purified receptors. Finally, none of the studied mutants transmit the insulin signal necessary to stimulate either DNA or glycogen synthesis. These data provide evidence for the importance of these conserved sequences in the kinase domain for both receptor activation and kinase activity. Furthermore, they demonstrate that the exchange of sequences specific to the catalytic domain of tyrosine kinases for those specific to the serine/threonine kinases is not sufficient to confer serine/threonine specificity on the insulin receptor.
APA, Harvard, Vancouver, ISO, and other styles
5

Jänne, O. A., A. M. Moilanen, H. Poukka, N. Rouleau, U. Karvonen, N. Kotaja, M. Häkli, and J. J. Palvimo. "Androgen-receptor-interacting nuclear proteins." Biochemical Society Transactions 28, no. 4 (August 1, 2000): 401–5. http://dx.doi.org/10.1042/bst0280401.

Full text
Abstract:
Androgen receptor (AR) belongs to the super-family of nuclear hormone receptors that employ complex molecular mechanisms to guide the development and physiological functions of their target tissues. Our recent work has led to the identification of four novel proteins that recognize AR zinc-finger region (ZFR) both in vivo and in vitro. One is a small nuclear RING-finger protein that possesses separate interaction interfaces for AR and for other transcription activators such as Spl. The second is a nuclear serine/threonine protein kinase (androgen-receptor-interacting nuclear protein kinase; ANPK); however, the receptor itself does not seem to be a substrate for this kinase. The third one is dubbed androgen-receptor-interacting protein 3 (ARIP3) and is a novel member of the PIAS (protein inhibitor of activated STAT) protein family. The fourth protein, termed ARIP4, is a nuclear ATPase that belongs to the SNF2-like family of chromatin remodelling proteins. All four proteins exhibit a punctate nuclear pattern when expressed in cultured cells. Each protein modulates AR-dependent transactivation in co-transfection experiments; their activating functions are not restricted to AR. Current work is aimed at elucidating the biochemical and functional properties of these AR-interacting proteins and at finding the partner proteins that form complexes with them in vivo.
APA, Harvard, Vancouver, ISO, and other styles
6

Mason, Amanda R., Lisa P. Elia, and Steven Finkbeiner. "The Receptor-interacting Serine/Threonine Protein Kinase 1 (RIPK1) Regulates Progranulin Levels." Journal of Biological Chemistry 292, no. 8 (January 9, 2017): 3262–72. http://dx.doi.org/10.1074/jbc.m116.752006.

Full text
Abstract:
Progranulin (PGRN), a secreted growth factor, is a key regulator of inflammation and is genetically linked to two common and devastating neurodegenerative diseases. Haploinsufficiency mutations in GRN, the gene encoding PGRN, cause frontotemporal dementia (FTD), and a GRN SNP confers significantly increased risk for Alzheimer's disease (AD). Because cellular and animal data indicate that increasing PGRN can reverse phenotypes of both FTD and AD, modulating PGRN level has been proposed as a therapeutic strategy for both diseases. However, little is known about the regulation of PGRN levels. In this study, we performed an siRNA-based screen of the kinome to identify genetic regulators of PGRN levels in a rodent cell-based model system. We found that knocking down receptor-interacting serine/threonine protein kinase 1 (Ripk1) increased both intracellular and extracellular PGRN protein levels by increasing the translation rate of PGRN without affecting mRNA levels. We observed this effect in Neuro2a cells, wild-type primary mouse neurons, and Grn-haploinsufficient primary neurons from an FTD mouse model. We found that the effect of RIPK1 on PGRN is independent of the kinase activity of RIPK1 and occurs through a novel signaling pathway. These data suggest that targeting RIPK1 may be a therapeutic strategy in both AD and FTD.
APA, Harvard, Vancouver, ISO, and other styles
7

Lamm, Marilyn L. G., Rajsree M. Rajagopalan-Gupta, and Mary Hunzicker-Dunn. "Epidermal Growth Factor-Induced Heterologous Desensitization of the Luteinizing Hormone/Choriogonadotopin Receptor in a Cell-Free Membrane Preparation Is Associated with the Tyrosine Phosphorylation of the Epidermal Growth Factor Receptor**This work was supported by USDA Grant NRICGP-9401432 (to M.H.D.)." Endocrinology 140, no. 1 (January 1, 1999): 29–36. http://dx.doi.org/10.1210/endo.140.1.6414.

Full text
Abstract:
Abstract Epidermal growth factor (EGF) attenuated hCG-stimulated adenylyl cyclase activity in rat luteal and follicular membranes. H7, an equipotent serine/threonine protein kinase inhibitor of cAMP-dependent protein kinases, cGMP-dependent protein kinases, and lipid-dependent protein kinase C, did not effect the ability of EGF to decrease hCG-responsive adenylyl cyclase activity, suggesting that a serine/threonine phosphorylation event catalyzed by these kinases was not critically involved in EGF-induced desensitization. Likewise, pertussis toxin-catalyzed ADP-ribosylation of a 40-kDa luteal membrane protein, which exhibited immunoreactivity with an antibody against Giα, did not hinder the ability of EGF to attenuate hCG-stimulated adenylyl cyclase activity, indicating that Gi did not mediate EGF-induced desensitization. Rather, EGF-induced heterologous desensitization of LH/CG receptor in ovarian membranes was closely associated with the specific and prominent tyrosine phosphorylation of the 170-kDa EGF receptor. Both EGF-stimulated autophosphorylation of EGF receptor and EGF-induced LH/CG receptor desensitization were attenuated by genistein, a tyrosine kinase inhibitor. These results suggest that tyrosine phosphorylation of the 170-kDa EGF receptor is a necessary component of the signaling pathway in EGF-induced heterologous desensitization of the LH/CG receptor.
APA, Harvard, Vancouver, ISO, and other styles
8

Asamoah, K. A., P. G. P. Atkinson, W. G. Carter, and G. J. Sale. "Studies on an insulin-stimulated insulin receptor serine kinase activity: separation of the kinase activity from the insulin receptor and its reconstitution back to the insulin receptor." Biochemical Journal 308, no. 3 (June 15, 1995): 915–22. http://dx.doi.org/10.1042/bj3080915.

Full text
Abstract:
In cells insulin stimulates autophosphorylation of the insulin receptor on tyrosine and its phosphorylation on serine and threonine by poorly characterized kinases. Recently we have achieved co-purification of the insulin receptor with insulin-stimulated insulin receptor serine kinase activity. We now show that the co-purified serine kinase activity can be removed by NaCl washing and reconstituted by adding back the NaCl eluate. Reconstitution enabled higher serine phosphorylation than achieved with the co-purified preparation. Myelin basic protein was discovered to be a potent substrate for insulin-stimulated serine phosphorylation by the co-purified preparation, with the activity responsible having similar properties to the serine kinase activity towards the receptor. Myelin basic protein was also phosphorylated on serine by the NaCl eluate. Myelin basic protein phosphorylated by the co-purified preparation or the NaCl eluate gave the same set of phosphoserine peptides. The major myelin basic protein serine kinase activity in the NaCl eluate co-purified exactly on Mono Q with the activity that restored insulin-stimulated insulin receptor serine phosphorylation. These results provide strong evidence for the true separation of the serine kinase from the insulin receptor and the distinctiveness of the serine kinase activity from the insulin receptor tyrosine kinase and mitogen-activated protein kinases. The procedures developed for the isolation of the serine kinase and the establishment of an effective in vitro substrate should allow purification of the kinase. The protocols also provide flexible systems for identifying the functions of the insulin-stimulated serine phosphorylations and the respective kinase(s).
APA, Harvard, Vancouver, ISO, and other styles
9

Knape, Matthias J., Maximilian Wallbott, Nicole C. G. Burghardt, Daniela Bertinetti, Jan Hornung, Sven H. Schmidt, Robin Lorenz, and Friedrich W. Herberg. "Molecular Basis for Ser/Thr Specificity in PKA Signaling." Cells 9, no. 6 (June 25, 2020): 1548. http://dx.doi.org/10.3390/cells9061548.

Full text
Abstract:
cAMP-dependent protein kinase (PKA) is the major receptor of the second messenger cAMP and a prototype for Ser/Thr-specific protein kinases. Although PKA strongly prefers serine over threonine substrates, little is known about the molecular basis of this substrate specificity. We employ classical enzyme kinetics and a surface plasmon resonance (SPR)-based method to analyze each step of the kinase reaction. In the absence of divalent metal ions and nucleotides, PKA binds serine (PKS) and threonine (PKT) substrates, derived from the heat-stable protein kinase inhibitor (PKI), with similar affinities. However, in the presence of metal ions and adenine nucleotides, the Michaelis complex for PKT is unstable. PKA phosphorylates PKT with a higher turnover due to a faster dissociation of the product complex. Thus, threonine substrates are not necessarily poor substrates of PKA. Mutation of the DFG+1 phenylalanine to β-branched amino acids increases the catalytic efficiency of PKA for a threonine peptide substrate up to 200-fold. The PKA Cα mutant F187V forms a stable Michaelis complex with PKT and shows no preference for serine versus threonine substrates. Disease-associated mutations of the DFG+1 position in other protein kinases underline the importance of substrate specificity for keeping signaling pathways segregated and precisely regulated.
APA, Harvard, Vancouver, ISO, and other styles
10

Verma, Anita, and Anthony T. Maurelli. "Identification of Two Eukaryote-Like Serine/Threonine Kinases Encoded by Chlamydia trachomatis Serovar L2 and Characterization of Interacting Partners of Pkn1." Infection and Immunity 71, no. 10 (October 2003): 5772–84. http://dx.doi.org/10.1128/iai.71.10.5772-5784.2003.

Full text
Abstract:
ABSTRACT Genome sequencing of C. trachomatis serovar D revealed the presence of three putative open reading frames (ORFs), CT145 (Pkn1), CT673 (Pkn5), and CT301 (PknD), encoding eukaryote-like serine/threonine kinases (Ser/Thr kinases). Two of these putative kinase genes, CT145 and CT301, were PCR amplified from serovar L2, cloned, and sequenced. Predicted translation products of the ORFs showed the presence of conserved kinase motifs at the N terminus of the proteins. CT145 and CT301 (encoding Pkn1 and PknD, respectively) were expressed in Escherichia coli as GST fusion proteins. In vitro kinase assays with Escherichia coli-derived glutathione S-transferase fusion proteins showed autophosphorylation of Pkn1 and PknD, indicating that they are functional kinases. Gene expression analysis of these kinase genes in Chlamydia by reverse transcriptase PCR indicated expression of these kinases at the early mid phase of the developmental cycle. Immunoprecipitated native chlamydial Pkn1 and PknD proteins also showed autophosphorylation in an in vitro kinase assay. Phosphoamino acid analysis by thin-layer chromatography confirmed that Pkn1 and PknD are phosphorylated on both serine and threonine residues. Interaction of Pkn1 and PknD with each other as well as interaction of Pkn1 with inclusion membrane protein G (IncG) was demonstrated by using a bacterial two-hybrid system. These interactions were further suggested by phosphorylation of the proteins in in vitro kinase assays. This report is the first description of the existence of functional Ser/Thr kinases in Chlamydia. The results of these findings should lead to a better understanding of how Chlamydia interact and interfere with host signaling pathways, since kinases represent potential mediators of the intimate host-pathogen interactions that are essential to the intracellular life cycle of Chlamydia.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Receptor-Interacting Protein Serine-Threonine Kinases"

1

Moquin, David M. "Elucidating the Molecular Mechanism of CYLD-Mediated Necrosis: A Dissertation." eScholarship@UMMS, 2005. http://escholarship.umassmed.edu/gsbs_diss/659.

Full text
Abstract:
TNFα-induced programmed necrosis is a caspase-independent cell death program that is contingent upon the formation of a multiprotein complex termed the necrosome. The association of two of the components of the necrosome, receptor interacting protein 1 (RIP1) and RIP3, is a critical and signature molecular event during necrosis. Within this complex, both RIP1 and RIP3 are phosphorylated which are consequential for transmission of the pro-necrotic signal. Namely, it has been demonstrated that RIP3 phosphorylation is required for binding to downstream substrates. Nevertheless, the regulatory mechanisms governing necrosome activation remain unclear. Since necrosis is implicated in a variety of different diseases, understanding the biochemical signaling pathway can potentially yield future drug targets. I was interested in identifying other regulators of necrosis in hope of gaining a better understanding of the necrosis signaling pathway and regulators of the necrosome. To address this, I screened a cancer gene siRNA library in a cell line sensitive to necrosis. From this, I independently identified CYLD as a positive regulator of necrosis. Previous studies suggest that deubiquitination of RIP1 in the TNF receptor (TNFR)-1 signaling complex is a prerequisite for transition of RIP1 into the cytosol and assembly of the RIP1-RIP3 necrosome. The deubiquitinase cylindromatosis (CYLD) is presumed to promote programmed necrosis by facilitating RIP1 deubiquitination in this membrane receptor complex. Surprisingly, I found that TNFα could induce RIP1-dependent necrosis in CYLD-/- cells. I show that CYLD does not regulate RIP1 ubiquitination at the receptor complex. Strikingly, assembly of the RIP1-RIP3 necrosome was delayed, but not abolished in the absence of CYLD. In addition to the TNFR-1 complex, I found that RIP1 within the necrosome was also ubiquitinated. In the absence of CYLD, RIP1 ubiquitination in the NP-40 insoluble necrosome was greatly increased. Increased RIP1 ubiquitination correlated with impaired RIP1 and RIP3 phosphorylation, a signature of kinase activation. My results show that CYLD regulates RIP1 ubiquitination in the NP-40 insoluble necrosome, but not in the TNFR-1 signaling complex. Contrary to the current model, CYLD is not essential for necrosome assembly. Rather, it facilitates RIP1 and RIP3 activation within the necrosome and the corollary is enhancement of necrosome functionality and subsequent necrosis. My results therefore indicate that CYLD exerts its pro-necrotic function in the NP-40 insoluble necrosome, and illuminates the mechanism of necrosome activation.
APA, Harvard, Vancouver, ISO, and other styles
2

Moquin, David M. "Elucidating the Molecular Mechanism of CYLD-Mediated Necrosis: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/659.

Full text
Abstract:
TNFα-induced programmed necrosis is a caspase-independent cell death program that is contingent upon the formation of a multiprotein complex termed the necrosome. The association of two of the components of the necrosome, receptor interacting protein 1 (RIP1) and RIP3, is a critical and signature molecular event during necrosis. Within this complex, both RIP1 and RIP3 are phosphorylated which are consequential for transmission of the pro-necrotic signal. Namely, it has been demonstrated that RIP3 phosphorylation is required for binding to downstream substrates. Nevertheless, the regulatory mechanisms governing necrosome activation remain unclear. Since necrosis is implicated in a variety of different diseases, understanding the biochemical signaling pathway can potentially yield future drug targets. I was interested in identifying other regulators of necrosis in hope of gaining a better understanding of the necrosis signaling pathway and regulators of the necrosome. To address this, I screened a cancer gene siRNA library in a cell line sensitive to necrosis. From this, I independently identified CYLD as a positive regulator of necrosis. Previous studies suggest that deubiquitination of RIP1 in the TNF receptor (TNFR)-1 signaling complex is a prerequisite for transition of RIP1 into the cytosol and assembly of the RIP1-RIP3 necrosome. The deubiquitinase cylindromatosis (CYLD) is presumed to promote programmed necrosis by facilitating RIP1 deubiquitination in this membrane receptor complex. Surprisingly, I found that TNFα could induce RIP1-dependent necrosis in CYLD-/- cells. I show that CYLD does not regulate RIP1 ubiquitination at the receptor complex. Strikingly, assembly of the RIP1-RIP3 necrosome was delayed, but not abolished in the absence of CYLD. In addition to the TNFR-1 complex, I found that RIP1 within the necrosome was also ubiquitinated. In the absence of CYLD, RIP1 ubiquitination in the NP-40 insoluble necrosome was greatly increased. Increased RIP1 ubiquitination correlated with impaired RIP1 and RIP3 phosphorylation, a signature of kinase activation. My results show that CYLD regulates RIP1 ubiquitination in the NP-40 insoluble necrosome, but not in the TNFR-1 signaling complex. Contrary to the current model, CYLD is not essential for necrosome assembly. Rather, it facilitates RIP1 and RIP3 activation within the necrosome and the corollary is enhancement of necrosome functionality and subsequent necrosis. My results therefore indicate that CYLD exerts its pro-necrotic function in the NP-40 insoluble necrosome, and illuminates the mechanism of necrosome activation.
APA, Harvard, Vancouver, ISO, and other styles
3

Weng, Dan. "Caspase-8 and RIP Kinases Regulate Bacteria-Induced Innate Immune Responses and Cell Death: A Dissertation." eScholarship@UMMS, 2014. https://escholarship.umassmed.edu/gsbs_diss/727.

Full text
Abstract:
Yersinia pestis (Y. pestis), as the causative agent of plague, has caused deaths estimated to more than 200 million people in three historical plague pandemics, including the infamous Black Death in medieval Europe. Although infection with Yersinia pestis can mostly be limited by antibiotics and only 2000-5000 cases are observed worldwide each year, this bacterium is still a concern for bioterrorism and recognized as a category A select agent by the Centers for Disease Control and Prevention (CDC). The investigation into the host-pathogen interactions during Y. pestis infection is important to advance and broaden our knowledge about plague pathogenesis for the development of better vaccines and treatments. Y. pestis is an expert at evading innate immune surveillance through multiple strategies, several mediated by its type three secretion system (T3SS). It is known that the bacterium induces rapid and robust cell death in host macrophages and dendritic cells. Although the T3SS effector YopJ has been determined to be the factor inducing cytotoxicity, the specific host cellular pathways which are targeted by YopJ and responsible for cell death remain poorly defined. This thesis research has established the critical roles of caspase-8 and RIP kinases in Y. pestis-induced macrophage cell death. Y. pestis-induced cytotoxicity is completely inhibited in RIP1-/- or RIP3-/-caspase-8-/- macrophages or by specific chemical inhibitors. Strikingly, this work also indicates that macrophages deficient in either RIP1, or caspase-8 and RIP3, have significantly reduced infection-induced production of IL-1β, IL-18, TNFα and IL-6 cytokines; impaired activation of NF-κB signaling pathway and greatly compromised caspase-1 processing; all of which are critical for innate immune responses and contribute to fight against pathogen infection. Y. pestis infection causes severe and often rapid fatal disease before the development of adaptive immunity to the V bacterium, thus the innate immune responses are critical to control Y. pestis infection. Our group has previously established the important roles of key molecules of the innate immune system: TLR4, MyD88, NLRP12, NLRP3, IL-18 and IL-1β, in host responses against Y. pestis and attenuated strains. Yersinia has proven to be a good model for evaluating the innate immune responses during bacterial infection. Using this model, the role of caspase-8 and RIP3 in counteracting bacterial infection has been determined in this thesis work. Mice deficient in caspase-8 and RIP3 are very susceptible to Y. pestis infection and display reduced levels of pro-inflammatory cytokines in spleen and serum, and decreased myeloid cell death. Thus, both in vitro and in vivo results indicate that caspase-8 and RIP kinases are key regulators of macrophage cell death, NF-κB and caspase-1 activation in Yersinia infection. This thesis work defines novel roles for caspase-8 and RIP kinases as the central components in innate immune responses against Y. pestis infection, and provides further insights to the host-pathogen interaction during bacterial challenge.
APA, Harvard, Vancouver, ISO, and other styles
4

Weng, Dan. "Caspase-8 and RIP Kinases Regulate Bacteria-Induced Innate Immune Responses and Cell Death: A Dissertation." eScholarship@UMMS, 2007. http://escholarship.umassmed.edu/gsbs_diss/727.

Full text
Abstract:
Yersinia pestis (Y. pestis), as the causative agent of plague, has caused deaths estimated to more than 200 million people in three historical plague pandemics, including the infamous Black Death in medieval Europe. Although infection with Yersinia pestis can mostly be limited by antibiotics and only 2000-5000 cases are observed worldwide each year, this bacterium is still a concern for bioterrorism and recognized as a category A select agent by the Centers for Disease Control and Prevention (CDC). The investigation into the host-pathogen interactions during Y. pestis infection is important to advance and broaden our knowledge about plague pathogenesis for the development of better vaccines and treatments. Y. pestis is an expert at evading innate immune surveillance through multiple strategies, several mediated by its type three secretion system (T3SS). It is known that the bacterium induces rapid and robust cell death in host macrophages and dendritic cells. Although the T3SS effector YopJ has been determined to be the factor inducing cytotoxicity, the specific host cellular pathways which are targeted by YopJ and responsible for cell death remain poorly defined. This thesis research has established the critical roles of caspase-8 and RIP kinases in Y. pestis-induced macrophage cell death. Y. pestis-induced cytotoxicity is completely inhibited in RIP1-/- or RIP3-/-caspase-8-/- macrophages or by specific chemical inhibitors. Strikingly, this work also indicates that macrophages deficient in either RIP1, or caspase-8 and RIP3, have significantly reduced infection-induced production of IL-1β, IL-18, TNFα and IL-6 cytokines; impaired activation of NF-κB signaling pathway and greatly compromised caspase-1 processing; all of which are critical for innate immune responses and contribute to fight against pathogen infection. Y. pestis infection causes severe and often rapid fatal disease before the development of adaptive immunity to the V bacterium, thus the innate immune responses are critical to control Y. pestis infection. Our group has previously established the important roles of key molecules of the innate immune system: TLR4, MyD88, NLRP12, NLRP3, IL-18 and IL-1β, in host responses against Y. pestis and attenuated strains. Yersinia has proven to be a good model for evaluating the innate immune responses during bacterial infection. Using this model, the role of caspase-8 and RIP3 in counteracting bacterial infection has been determined in this thesis work. Mice deficient in caspase-8 and RIP3 are very susceptible to Y. pestis infection and display reduced levels of pro-inflammatory cytokines in spleen and serum, and decreased myeloid cell death. Thus, both in vitro and in vivo results indicate that caspase-8 and RIP kinases are key regulators of macrophage cell death, NF-κB and caspase-1 activation in Yersinia infection. This thesis work defines novel roles for caspase-8 and RIP kinases as the central components in innate immune responses against Y. pestis infection, and provides further insights to the host-pathogen interaction during bacterial challenge.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Yibin. "The Role of Rip2 Protein in the Nod Mediated Innate Immune Response: A Dissertation." eScholarship@UMMS, 2010. https://escholarship.umassmed.edu/gsbs_diss/475.

Full text
Abstract:
The Rip2 kinase contains a caspase recruitment domain (CARD) and has been implicated in the activation of the transcriptional factor NF-кB downstream of Nod-like receptors. However, how Rip2 mediates innate immune responses is still largely unclear. We show that Rip2 and IKK-γ become stably polyubiquitinated upon treatment of cells with the Nod2 ligand, muramyl dipeptide. We demonstrate a requirement for the E2 conjugating enzyme Ubc13, the E3 ubiquitin ligase Traf6 and the ubiquitin activated kinase Tak1 in Nod2-mediated NF-кB activation. We also show that M. tuberculosisinfection stimulates Rip2 polyubiquitination. Collectively, this study revealed that the Nod2 pathway is ubiquitin regulated and that Rip2 employs a ubiquitin-dependent mechanism to achieve NF-кB activation. We also demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway. We show that upon Mtb infection, Nod2 recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which depends entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to Mycobacteria, perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system.
APA, Harvard, Vancouver, ISO, and other styles
6

Latreche-Carton, Céline. "Rôle oncogénique des fragments de p65/RelA Nf-kB générés par l'activité de RIPK3." Thesis, Lille 2, 2017. http://www.theses.fr/2017LIL2S048/document.

Full text
Abstract:
L'utilisation d'un agent déméthylant induit la réexpression de la protéine RIP3, une sérine-thréonine kinase, dans un modèle leucémique murin exprimant BCR-ABL humain. La réexpression de RIP3 conduit rapidement les cellules vers la nécroptose. Le mutant délété du domaine kinase est de façon surprenante plus "apoptogène" et induit le clivage de p65/RelA sur le résidu d'acide aspartique D361 par la caspase 6. Pour déterminer l'impact de ce clivage, nous avons construit un mutant non clivable p65/RelA D361E, ainsi que des plasmides exprimant chacun des fragments p65/RelA 1-361 ou p65/RelA 362-549, ou un plasmide exprimant simultanément p65/RelA 1-361 + p65/RelA 362-549. Ces différents plasmides codant pour les différentes formes de la protéine p65/RelA sont incorporés par transfection dans les cellules leucémiques ou de mélanome pour lesquels le gène RIP3 est respectivement méthylé ou exprimé. In vivo, nous mettons en évidence une différence de tumorigénicité entre les deux modèles. Elle est accrue par la présence de p65/RelA D361E par rapport à celle de p65/RelA WT et de p65/RelA 1-361 + p65/RelA 362-549 dans le modèle leucémique. Elle est au contraire faible dans le modèle du mélanome pour lequel la surexpression des fragments p65/RelA 1-361 +362-549 induit la tumorigenèse la plus forte. L'agressivité du mutant non clivable in vivo n'est pas corrélée à l'activité de NF-kB mesurée in vitro. Les fragments comme le mutant p65/RelA D361E induisent des profils d'expression différents dans le modèle murin de leucémie avec la modulation notable d'expression génique de la famille d'inhibiteurs de protéases à cystéine Stefins, ainsi que le transporteur de bicarbonate de sodium SLC4A5 qui joue un rôle majeur dans la régulation du pH intracellulaire. Le mutant p65/RelA D361E induit une expression importante du transporteur de bicarbonate de sodium SLC4A5 dans le modèle leucémique responsable de l'augmentation du pH intracellulaire qui participe au développement tumoral. Par contre, ce sont les deux fragments p65/RelA 1-361 + p65/RelA 362-549 qui induisent simultanément une expression plus forte de la molécule d'immunoéchappement PDL1, vraisemblablement par un mécanisme post-traductionnel. L'étude de la "souchitude" des modèles montre une différence d'activité du mutant p65/RelA D361E selon le modèle. On observe une augmentation de l'activité ALDH dans le modèle leucémique et une diminution de la formation de sphères dans le modèle de mélanome. En conclusion, ces résultats indiquent que les fragments issus du clivage de p65/RelA par l'activité de RIP3 indépendante de la kinase possèdent un rôle différent de celui de la forme sauvage sur la souchitude des cellules cancéreuses, et qu'elle dépend du modèle étudié. Ils confirment que le mutant non clivable possède la plus forte activité tumorigénique. Ils laissent également supposer que les fragments Nter et Cter puissent avoir une activité dans des cellules tumorales possédant une protéine RIP3 fonctionnelle et active, probablement par des mécanismes inflammatoires ou autres qui doivent être caractérisés
The receptor-interacting protein kinase 3 (RIPK3) can induce necroptosis, apoptosis, or cell proliferation, and is silenced in several hematological malignancies. We previously reported that RIPK3 activity independent of its kinase domain induces p65/RelA caspase-mediated cleavage resulting in N-terminal 1-362 and C-terminal 362-549 fragments. We show here that a non-cleavable p65/RelA D361E mutant expressed in DA1-3b leukemia cells decrease mouse survival and that coexpressed p65/RelA fragments increase tumoriginicty of B16/F1 melanoma cells that did not correlated with in vitro measured Nf-kB activity. Fragments and p65/RelA fragments display different expression profiles in DA1-3b leukemic cells, with the notable modulation of gene expression of the Stefin cysteine protease inhibitor family and of SLC4A5, a Na+-coupled HCO−3 transporter. DA1-3b cells expressing p65/RelA D361E mutant showed more basic intracellular pH. p65/RelA fragments induced ovexpression of PD-L1 immunoescape molecule in DA1-3b cells. Markers of stemness were also affected: p65/RelA D361E induced increased ALDH activity in DA1-3b cells and fragments expression resulted in increased melanoma sphere formation in B16/F1 cells. Thus, far from being neutral, p65/RelA cleavage initiated by kinase independent activity of RIPK3 induced a pleiotropic range of effects in vitro and in vivo in cancer cells, that may vary across tumor types
APA, Harvard, Vancouver, ISO, and other styles
7

Nugues, Anne-Lucie. "Altération du ripoptosome dans la leucémie aiguë myéloïde." Phd thesis, Université du Droit et de la Santé - Lille II, 2013. http://tel.archives-ouvertes.fr/tel-01018661.

Full text
Abstract:
Les protéines receptor-interacting protein kinase 1 (RIP1) et RIP3 ont été identifiées comme intervenant dans la régulation de la mort cellulaire apoptotique ou nécroptotique mais également dans la survie cellulaire. Ces deux protéines possèdent un domaine sérine/thréonine kinase, un domaine d'interaction spécifique RHIM (RIP homotypic interacting motif) et diffèrent dans leur domaine C-terminal car seule RIP1 possède un domaine de mort. Ces protéines font partie d'un ensemble de protéines régulatrices nommé ripoptosome. Des études ont montré une altération du ripoptosome dans les leucémies lymphoïdes chroniques (LLC) et les leucémies aigües lymphoïdes (LAL). Nous nous sommes intéressés aux leucémies aigües myéloïdes (LAM). L'analyse de l'expression des protéines RIP1 et RIP3 a été réalisée dans des blastes triées CD34+ de patients atteints de LAM ou dans des cellules CD34+ de donneurs sains en Q-RT-PCR. Les premières analyses montrent que RIP3 est significativement sous-exprimée chez les patients atteints de LAM en comparaison avec les cellules CD34+ issues de donneurs sains. Aucune différence n'a été mise en évidence pour l'expression de RIP1 dans les deux types de cellules CD34+. Afin de comprendre l'implication de l'extinction de RIP3 dans les LAM, nous avons étudié sa réexpression dans une lignée cellulaire leucémique murine (DA1-3b) où RIP3 n'est pas exprimée par métylation de son promoteur, au moyen d'un système d'expression conditionnelle (LacSwith II, IPTG). Après 10h d'induction de l'expression, on constate que la protéine RIP3 sauvage (RIP3-WT) induit une apoptose dans les cellules DA1-3b. Afin de déterminer l'implication des domaines de RIP3, nous avons utilisé une protéine mutante kinase Dead (RIP3-KD, activité kinase abolie) et une protéine mutante dans la séquence d'interaction spécifique avec RIP1 (RIP3-RHIM). L'analyse de la mortalité cellulaire en cytométrie en flux et en microscopie électronique montre que les protéines RIP3-WT et -KD induisent toutes les deux la mort apoptotique des cellules DA1-3b respectivement de 15% et de 50% après 10h d'expression. On constate donc que la protéine RIP3-KD induit une mort plus importante et plus précoce que la protéine sauvage. La protéine RIP3 mutée dans son domaine RHIM ne peut plus induire de mort cellulaire. Il semble donc que le domaine kinase de RIP3 jouerait un rôle régulateur dans la mort cellulaire induite par RIP3. L'utilisation du modèle de leucémie murine DA1-3b a permis de réaliser un étude in vivo de l'expression conditionnelle de RIP3-WT et -KD. Seule l'expression de RIP3-KD est capable de prolonger significativement la survie des souris.De plus, il a été démontré que RIP3 pouvait également induire la nécroptose dans les cellules lorsque l'apoptose ne peut aboutir, notament lorsque les caspases sont inhibées à l'aide d'un inhibiteur de pan-caspases le Z-VAD-FMK. Le traitement des cellules exprimant RIP3-WT par 50µM de Z-VAD-FMK induit une plus forte mortalité (45%) des cellules tandis que dans les cellules exprimant RIP3-KD, l'inhibiteur des caspases inhibe complètement le processus apoptotique et permet la survie des cellules (10%). Une étude en microscopie électronique a permis de déterminer que la présence de Z-VAD-FMK induit un switch de l'apoptose vers la nécroptose. Il semble donc que le domaine de kinase possède un rôle important dans la signalisation de la nécroptose car la protéine RIP3-KD n'est plus capable d'initier le switch entre l'apoptose et la nécroptose. Quelques données préliminaires semblent indiquer que les calpaïnes ainsi que la caspase 12 pourraient également être impliquées dans la balance apoptose/nécroptose. [...]
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Siao-Yun, and 江筱筠. "A Study on Biological Functions of Drosophila Homologue of Serine-Threonine Kinase Receptor-Associated Protein (STRAP)." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/03521047321498670384.

Full text
Abstract:
碩士
國立清華大學
分子醫學研究所
95
Echinoid (Ed) is an immunoglobulin domain-containing cell adhesion molecule (CAM). Ed negatively regulates epidermal growth factor (EGF) receptor signaling pathway during eye development and cooperates with Notch pathway during sensory bristle development. Moreover, Ed is a component of adherens junctions (AJ) that cooperates with DE-cadherin to mediate cell adhesion. To identify novel molecules associated with the intracellular domain of Ed, affinity chromatography of embryonic lysate followed by the protein identification with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry has been conducted. One major co-precipitated protein was identified to be the Drosophila homologue of serine-threonine kinase receptor-associated protein (D-STRAP). Although Ed associates with D-STRAP, however it was shown that STRAP is involved in the transforming growth factor-β (TGF-ß) signaling in mammalian cell cultures. To determine the function of D-STRAP during development, we generated homozygous D-STRAP mutant clones in eye imaginal discs. We observed apical constriction in D-STRAP clones that in turn causes the ommatidial disorganization and mislocalization of photoreceptor nuclei toward the basally localized optic stalk. However, the specification of mutant photoreceptor neurons is not affected. To determine whether D-STRAP is involved in the TGF-ß pathway, we examined the expression of phosphorylated form of Mothers against decapentapelagic (pMad), a reporter of TGF-ß activation during furrow progression. In contrast to thick veins (tkv) clones, we failed to detect the loss of pMad staining in D-STRAP clones. Together, we conclude that D-STRAP may not involved in the TGF-ß signaling pathway.
APA, Harvard, Vancouver, ISO, and other styles
9

Alameh, Mohamad. "Élaboration d’un bioessai à haut débit pour la découverte de nouveaux ligands péptidiques chez les végétaux." Thèse, 2010. http://hdl.handle.net/1866/4278.

Full text
Abstract:
Suite au projet de séquençage du génome d’Arabidopsis thaliana, plus de 400 récepteurs de types serine/thréonine kinases (Protein Receptor Kinase ou PRK) ont été prédits. Par contre, seulement sept paires de récepteurs/ligands ont été caractérisées jusqu’à présent par des techniques de biochimie et d’analyse, de mutants. Parmi ceux-ci figurent les PRK : BRI1, CLV1, SRK, SR160, Haesa-IDA et PEPR1 qui jouent un rôle important dans le développement, l’auto-incompatibilité sporophytique et les mécanismes de défense. Le but de mon projet de maîtrise était de développer un bioessai à haut débit qui permettra la découverte de ligands peptidiques. Le bioessai utilisera des PRK chimériques composés du domaine extracellulaire (l’ectodomaine) de la PRK à l’étude fusionnée au domaine intracellulaire d’une PRK qui agira comme rapporteur. Deux stratégies sont présentement développées dans notre laboratoire : la première consiste à fusionner la PRK à l’étude avec le domaine intracellulaire (l’endodomaine) du récepteur tyrosine kinase animal EGFR (Epidermal Growth Factor Receptor). Suite à l’interaction avec une fraction protéique contenant un ligand correspondant à la PRK étudiée, une transphosphorylation de l’endodomaine (le domaine kinase) serait détectable. La seconde stratégie utilise l’endodomaine du récepteur BRI1, un récepteur répondant aux brassinostéroïdes. Suite à l’interaction avec une fraction protéique contenant un ligand correspondant à la PRK étudiée, cette fois-ci nous devrions être en mesure de mesurer l’activation d’un gène rapporteur répondant normalement à une activation par les brassinostéroïdes.
The complete sequence of the genome of Arabidopsis thaliana was achieved in year 2000 and has resulted in the prediction of more than 400 receptor serine/threonine kinase or Plant Receptor Kinase (PRK). Despite this tremendous work, only seven pairs of ligand/receptor have been characterized through conventional techniques such as mutant analysis and biochemical characterization. These receptors have been found to play an important role in plant defense (SP160), development (BRI1, CLV1) and sporophytic autoincompatibility (SRK). The aim of the project was to develop a high throughput bioassay in order to find new ligands for known receptors. In order to do so, the bioassay will use chimeric protein technology, by fusing the ectodomain of a receptor to a known endodomaine. The latter will play the role of a reporter. Two strategies were developed in our laboratory and are being tested. The first strategy is to fuse the ectodomain of an unknown PRK to the phylogeneticaly unrelated kinase domain of the animal Epidermal Grown Factor Receptor (EGFR). When tested with a crude protein extract containing the specific ligand of the unknown PRK, a transphosphorylation should occur and be detected. The second strategy will use the endodomain of BRI1 as a reporter, a receptor responding to the brassinosteroid phytohormone, which will relay the message to a second construct used as a reporter gene once the ligand has bound the PRK ectodomain fused to the BRI1 endodomain.
APA, Harvard, Vancouver, ISO, and other styles
10

Konopacki, F. A., N. Jaafari, D. L. Rocca, K. A. Wilkinson, S. E. Chamberlain, P. Rubin, Sriharsha Kantamneni, J. R. Mellor, and J. M. Henley. "Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis." 2011. http://hdl.handle.net/10454/6054.

Full text
Abstract:
No
The surface expression and regulated endocytosis of kainate (KA) receptors (KARs) plays a critical role in neuronal function. PKC can modulate KAR trafficking, but the sites of action and molecular consequences have not been fully characterized. Small ubiquitin-like modifier (SUMO) modification of the KAR subunit GluK2 mediates agonist-evoked internalization, but how KAR activation leads to GluK2 SUMOylation is unclear. Here we show that KA stimulation causes rapid phosphorylation of GluK2 by PKC, and that PKC activation increases GluK2 SUMOylation both in vitro and in neurons. The intracellular C-terminal domain of GluK2 contains two predicted PKC phosphorylation sites, S846 and S868, both of which are phosphorylated in response to KA. Phosphomimetic mutagenesis of S868 increased GluK2 SUMOylation, and mutation of S868 to a nonphosphorylatable alanine prevented KA-induced SUMOylation and endocytosis in neurons. Infusion of SUMO-1 dramatically reduced KAR-mediated currents in HEK293 cells expressing WT GluK2 or nonphosphorylatable S846A mutant, but had no effect on currents mediated by the S868A mutant. These data demonstrate that agonist activation of GluK2 promotes PKC-dependent phosphorylation of S846 and S868, but that only S868 phosphorylation is required to enhance GluK2 SUMOylation and promote endocytosis. Thus, direct phosphorylation by PKC and GluK2 SUMOylation are intimately linked in regulating the surface expression and function of GluK2-containing KARs.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Receptor-Interacting Protein Serine-Threonine Kinases"

1

Kashikar, Nilesh D., and Pran K. Datta. "Serine-Threonine Kinase Receptor-Associated Protein." In Encyclopedia of Cancer, 3384–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_5259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kashikar, Nilesh D., and Pran K. Datta. "Serine-Threonine Kinase Receptor-Associated Protein." In Encyclopedia of Cancer, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_5259-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kashikar, Nilesh D., and Pran K. Datta. "Serine-Threonine Kinase Receptor-Associated Protein." In Encyclopedia of Cancer, 4189–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46875-3_5259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huganir, Richard L. "Regulation of the Nicotinic Acetylcholine Receptor by Serine and Tyrosine Protein Kinases." In Advances in Experimental Medicine and Biology, 279–94. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5907-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gomperts, Bastien D., Ijsbrand M. Kramer, and Peter E. R. Tatham. "Signalling through receptor bound protein serine/threonine kinases." In Signal Transduction, 359–71. Elsevier, 2002. http://dx.doi.org/10.1016/b978-012289631-6/50036-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kramer, IJsbrand M. "TGFβ and Signaling through Receptor Serine/Threonine Protein Kinases." In Signal Transduction, 887–933. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-394803-8.00017-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Receptor protein serine/threonine kinase." In Springer Handbook of Enzymes, 340–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85701-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Song, Jie, and Maréne Landström. "Lys63-Linked Polyubiquitination of Transforming Growth Factor β Type I Receptor (TβRI) Specifies Oncogenic Signaling." In Ubiquitin - Proteasome Pathway. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93065.

Full text
Abstract:
Transforming growth factor β (TGFβ) is a multifunctional cytokine with potent regulatory effects on cell fate during embryogenesis, in the normal adult organism, and in cancer cells. In normal cells, the signal from the TGFβ ligand is transduced from the extracellular space to the cell nucleus by transmembrane serine–threonine kinase receptors in a highly specific manner. The dimeric ligand binding to the TGFβ Type II receptor (TβRII) initiates the signal and then recruits the TGFβ Type I receptor (TβRI) into the complex, which activates TβRI. This causes phosphorylation of receptor-activated Smad proteins Smad2 and Smad3 and promotes their nuclear translocation and transcriptional activity in complex with context-dependent transcription factors. In several of our most common forms of cancer, this pathway is instead regulated by polyubiquitination of TβRI by the E3 ubiquitin ligase TRAF6, which is associated with TβRI. The activation of TRAF6 promotes the proteolytic cleavage of TβRI, liberating its intracellular domain (TβRI-ICD). TβRI-ICD enters the cancer cell nucleus in a manner dependent on the endosomal adaptor proteins APPL1/APPL2. Nuclear TβRI-ICD promotes invasion by cancer cells and is recognized as acting distinctly and differently from the canonical TGFβ-Smad signaling pathway occurring in normal cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Boura‐Halfon, Sigalit, and Yehiel Zick. "Chapter 12 Serine Kinases of Insulin Receptor Substrate Proteins." In Vitamins & Hormones, 313–49. Elsevier, 2009. http://dx.doi.org/10.1016/s0083-6729(08)00612-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Receptor-Interacting Protein Serine-Threonine Kinases"

1

Kang, K., SR Lee, X. Piao, HS Byun, SR Lee, M. Won, KA Park, and GM Hur. "PO-063 Triterpenoids isolated from natural product regulates TNF(tumour necrosis factor)-mediated RIP(receptor-interacting serine/threonine-protein kinase)1-dependent apoptosis." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jang, Kangwon, Jinyoung Sohn, Sung-Moo Kim, Kyoung Jin Kim, and Byoung Chul Cho. "Abstract 757: Activation of receptor-interacting serine/threonine protein kinase-2 (RIP2K) via EGFR-mediated CRAF transactivation induces the acquired resistance to Dabrafenib in BRAF V600E mutant non-small cell lung cancer." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bownes, Laura V., Adele P. Williams, Raoud Marayati, Colin H. Quinn, Jerry E. Stewart, Juliet Easlick, Joseph Whitaker, Pran Datta, and Elizabeth A. Beierle. "Serine-Threonine Kinase Receptor Associate Protein (STRAP) Confers Stemness in Neuroblastoma." In AAP National Conference & Exhibition Meeting Abstracts. American Academy of Pediatrics, 2021. http://dx.doi.org/10.1542/peds.147.3_meetingabstract.919-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Beeler, D., L. Fritze, G. Soff, R. Jackman, and R. Rosenberg. "HUMAN THROMBOMODULIN cDNA:SEQUENCE AND TRANSLATED STRUCTURE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643967.

Full text
Abstract:
A 750 bp bovine Thrombomodulin (TM) cDNA fragment was used as an hybridization probe to screen an oligo-dT primed Lambda gtll. cDNA library prepared from human umbilical vein endothelial cell mRNA. A 2.4 kb positive human clone was isolated which showed an 80% nucleotide sequence homology with bovine TM cDNA. This clone and a 550 bp fragment from its 5' end were used to further screen the oligo-dT primed library as well as randomly primed library prepared from the same mRNA. The cDNA clones obtained allow us to describe the overall structure of human TM and reveal that it is extremely similar to the structure of bovine TM, especially as the bovine TM is organized like the receptor for low density lipoprotein (LDL R). Both TM and LDL R exhibit short cytoplasmic C-terminal tails which are either neutral or negatively charged. Other coated pit receptors such as the insulin receptor or the epidermal growth factor (EGF) receptor have very large cytoplasmic regions with a complex tyrosine kinase segment as well as multiple sites for phosphorylation. Both TM and LDL R possess a transmembrane region and an immediately adjacent extracellular serine/threonine rich region which in LDL R has been shown to bear 0-1inked sugars. Both TM and LDL R contain a more distal area of cysteine rich repeats, first noted in the EGF precursor and termed EGF type B. However, the TM EGF type B repeats appear to have been duplicated in TM resulting in their being 6 of them rather than the 3 found in LDL R. The N-terminal half of LDL R is thought to contain the ligand binding region of the receptor and is constructed from multiple cysteine rich repeats similar to those of Complement factor C9. The structure of this region of TM is quite different from that of LDL R, possessing few cysteines. We suspect that protein C and/or thrombin may bind to this unique domain of TM.
APA, Harvard, Vancouver, ISO, and other styles
5

Schleuning, W. D. "THE BIOCHEMISTRY AND CELL BIOLOGY OF SINGLE CHAIN UROKINASE TYPE PLASMINOGEN ACTIVATOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642956.

Full text
Abstract:
Urokinase was discovered in the late nineteenth century, as an enzymatic principle in urine, that initiates the dissolution of blood clots. The basis of this phenomenon was recognized more than fifty years ago as the activation of plasminogen, the precursor of a tryptic protease, then known as profibrinolysin. Despite this long history, detailed data on the biochemistry of plasminogen activation have only become available recently. Urokinase (now designated urokinase-type plasminogen activator : u-PA) is synthesized and secreted as a single chain polypeptide (Mr-: 53,000) by many cell types. Single chain u-PA (scu-PA) is with equal justification called prourokinase (pro-u-PA), notwithstanding its low catalytic activity for synthetic peptide substrates and plasminogen, as most proenzymes of proteases display a certain degree of activity. The structure of pro-u-PA has been elucidated by protein and cDNA sequencing. It consists of three domains, exhibiting characteristic homology to other proteins: a serine protease domain, homologous to trypsin, chymotrypsin and elastase; a kringle domain, likewise found in prothrombin, plasminogen, tissue-type plasminogen activator (t-PA) and Factor XII; and an epidermal growth factor (EGF)-like domain, found in many other proteins, including certain clotting factors. Pro-u-PA is activated by the cleavage of its LYS158-Ile159 h1 bY either plasmin or kallikrein. This cleavage leads to a high increase of Kcat values with respect to both plasminogen and synthetic peptide substrates, but apparently to a reduction of its affinity to plasminogen. Thrartoin inactivates pro-u-PA irreversibly by the cleavage of the Arg156-Phe157 bond. U-PA but not pro-u-PA rapidly forms ccnplexes with plasminogen activator inhibitors (PAI)-l and PAI-2: second order rate constants Kass are respectively > 107 and 0.9xl06 (M-11sec-1). Unknown enzymes process pro-u-PA and u-PA to low molecular weight (LMW) pro-u-PA and LMW u-PA (Mr: 33,000) by cutting off a fragment consisting of the kr ingle and the EGF—like region. Pro—u—PA mediated plasminogen activation is fibrin dependent in vivo, and to a certain degree in vitro. Hie biochemical basis of this fibrin specificity is at present uncertain, although there are reports indicating that it may require polyvalent cations. Through its EGF-like region HMW pro-u-PA and HMW u-PA are capable of binding to specific membrane protein receptors which are found on many cells. Thus, u-PA activity may be restricted to the cell surface. According to a recent report, binding of u—PA to the receptor may also mediate signal transduction in auto- or paracrine growth control. In cells permissive for the respective pathways, pro-u-PA gene transcription is stimulated by mechanisms of signal transduction, that include the cAMP, the tyrosine specific kinase and the protein kinase C dependent pathways. Glucocorticoid hormones downregulate pro-u-PA gene transcription in cells where the gene is canstitutively expressed. Although different cells vary greatly in their response to agents that stimulate urokinase biosynthesis, growth factors and other mitogens are in many cases effective inducers. Significantly elevated levels of u-PA are also found in many malignant tissues. These findings and many others suggest that plasminogen activation by u-PA provides localized extracellular matrix degradation which is required for invasive growth, cell migration and other forms of tissue remodelling. Fibrin represents in this view only a variant of an extracellular matrix, which is provided through the clotting system in the case of an emergency.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography