Journal articles on the topic 'Rechargeable li-ion battery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rechargeable li-ion battery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Roselin, L. Selva, Ruey-Shin Juang, Chien-Te Hsieh, et al. "Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries." Materials 12, no. 8 (2019): 1229. http://dx.doi.org/10.3390/ma12081229.
Full textXue, J. S., J. R. Dahn, and W. Xing. "Disordered carbon for rechargeable Li-ion battery." Acta Crystallographica Section A Foundations of Crystallography 52, a1 (1996): C412. http://dx.doi.org/10.1107/s0108767396083006.
Full textGoodenough, John B., and Kyu-Sung Park. "The Li-Ion Rechargeable Battery: A Perspective." Journal of the American Chemical Society 135, no. 4 (2013): 1167–76. http://dx.doi.org/10.1021/ja3091438.
Full textZhao-Karger, Zhirong, and Maximilian Fichtner. "Exploring Battery Materials for Ca Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (2023): 639. http://dx.doi.org/10.1149/ma2023-024639mtgabs.
Full textDemir-Cakan, Rezan, Mathieu Morcrette, Jean-Bernard Leriche, and Jean-Marie Tarascon. "An aqueous electrolyte rechargeable Li-ion/polysulfide battery." J. Mater. Chem. A 2, no. 24 (2014): 9025–29. http://dx.doi.org/10.1039/c4ta01308e.
Full textGoodenough, John B. "How we made the Li-ion rechargeable battery." Nature Electronics 1, no. 3 (2018): 204. http://dx.doi.org/10.1038/s41928-018-0048-6.
Full textSiroya, Dharmik, and Preet Shah. "Lithium-Polymer Usb Rechargeable Battery." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (2022): 190–94. http://dx.doi.org/10.22214/ijraset.2022.46140.
Full textSuhaimi, Lalu, Andy Tirta, and Muhammad Hilmy Alfaruqi. "THEORETICAL INVESTIGATION OF DIVALENT ION INSERTION INTO TUNNEL-TYPE MANGANESE DIOXIDE POLYMORPH." OISAA Journal of Indonesia Emas 3, no. 1 (2020): 1–4. http://dx.doi.org/10.52162/jie.2020.003.01.1.
Full textKotaka, Hiroki, Hiroyoshi Momida, and Tamio Oguchi. "Performance and reaction mechanisms of tin compounds as high-capacity negative electrodes of lithium and sodium ion batteries." Materials Advances 3, no. 6 (2022): 2793–99. http://dx.doi.org/10.1039/d1ma00967b.
Full textHan, Liang, Feng Xiao, and Shen Wang Wang. "The Study of Current and Voltage Needle for Li-Ion Battery Formation." Advanced Materials Research 650 (January 2013): 403–6. http://dx.doi.org/10.4028/www.scientific.net/amr.650.403.
Full textJihad, Ahmad, Affiano Akbar Nur Pratama, Salsabila Ainun Nisa, Shofirul Sholikhatun Nisa, Cornelius Satria Yudha, and Agus Purwanto. "Resynthesis of NMC Type Cathode from Spent Lithium-Ion Batteries: A Review." Materials Science Forum 1044 (August 27, 2021): 3–14. http://dx.doi.org/10.4028/www.scientific.net/msf.1044.3.
Full textOzoemena, Kenneth Ikechukwu, and Aderemi Bashiru Haruna. "Defective High-Entropy Spinel Oxides as Efficient Electrocatalysts for Rechargeable Zinc-Air Batteries." ECS Meeting Abstracts MA2024-02, no. 9 (2024): 1435. https://doi.org/10.1149/ma2024-0291435mtgabs.
Full textPark, Seungyoung, Ziyauddin Khan, Tae Joo Shin, Youngsik Kim, and Hyunhyub Ko. "Rechargeable Na/Ni batteries based on the Ni(OH)2/NiOOH redox couple with high energy density and good cycling performance." Journal of Materials Chemistry A 7, no. 4 (2019): 1564–73. http://dx.doi.org/10.1039/c8ta10830g.
Full textMatsuno, Shinsuke, Masanobu Nakayama, and Masataka Wakihara. "Anode Material of CoMnSb for Rechargeable Li-Ion Battery." Journal of The Electrochemical Society 155, no. 1 (2008): A61. http://dx.doi.org/10.1149/1.2804421.
Full textEglitis, R. I., and G. Borstel. "Towards a practical rechargeable 5 V Li ion battery." physica status solidi (a) 202, no. 2 (2005): R13—R15. http://dx.doi.org/10.1002/pssa.200409083.
Full textGoodenough, John B., and Kyu-Sung Park. "ChemInform Abstract: The Li-Ion Rechargeable Battery: A Perspective." ChemInform 44, no. 20 (2013): no. http://dx.doi.org/10.1002/chin.201320273.
Full textWu, Shun-Ji, Wen-Hsien Li, Erdembayalag Batsaikhan, Ma-Hsuan Ma, and Chun-Chuen Yang. "Advanced Prussian Blue Cathodes for Rechargeable Li-Ion Batteries." Solids 5, no. 2 (2024): 208–26. http://dx.doi.org/10.3390/solids5020014.
Full textParmender, Singh *1 Neeta Khare 2. P.K. Chaturvedi 3. "A COMPREHENSIVE REVIEW ON LI-ION BATTERY AGEING ESTIMATION TECHNIQUES FOR GREEN ENERGY VEHICLES." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 6, no. 7 (2017): 22–39. https://doi.org/10.5281/zenodo.822950.
Full textGuo, Ai Hong, Shuang Feng, Yun Ting Mi, and Hong Zhi Li. "Synthesis and Electrochemical Properties of Rechargeable Battery Electrolyte Lithium Bis(heptafluoroisopropyl)tetrafluorophosphate." Applied Mechanics and Materials 327 (June 2013): 128–31. http://dx.doi.org/10.4028/www.scientific.net/amm.327.128.
Full textDesai, Aamod V., Vanessa Pimenta, Cara King, et al. "Conversion of a microwave synthesized alkali-metal MOF to a carbonaceous anode for Li-ion batteries." RSC Advances 10, no. 23 (2020): 13732–36. http://dx.doi.org/10.1039/d0ra01997f.
Full textZhang, Zishuai, Yu Zhou, Qiang Ru, et al. "An aqueous rechargeable dual-ion hybrid battery based on Zn//LiTi2(PO4)3 electrodes." Sustainable Energy & Fuels 4, no. 5 (2020): 2448–52. http://dx.doi.org/10.1039/d0se00122h.
Full textNguyen, O., E. Courtin, F. Sauvage, N. Krins, C. Sanchez, and C. Laberty-Robert. "Shedding light on the light-driven lithium ion de-insertion reaction: towards the design of a photo-rechargeable battery." Journal of Materials Chemistry A 5, no. 12 (2017): 5927–33. http://dx.doi.org/10.1039/c7ta00493a.
Full textTudoroiu, Roxana-Elena, Mohammed Zaheeruddin, Nicolae Tudoroiu, and Sorin-Mihai Radu. "SOC Estimation of a Rechargeable Li-Ion Battery Used in Fuel Cell Hybrid Electric Vehicles—Comparative Study of Accuracy and Robustness Performance Based on Statistical Criteria. Part II: SOC Estimators." Batteries 6, no. 3 (2020): 41. http://dx.doi.org/10.3390/batteries6030041.
Full textTian, Yangyang, Chong Lin, Zhenggong Wang, and Jian Jin. "Polymer of intrinsic microporosity-based macroporous membrane with high thermal stability as a Li-ion battery separator." RSC Advances 9, no. 37 (2019): 21539–43. http://dx.doi.org/10.1039/c9ra02308a.
Full textEglitis, Roberts. "Ab initio calculations of Li2(Co, Mn)O8 solid solutions for rechargeable batteries." International Journal of Modern Physics B 33, no. 15 (2019): 1950151. http://dx.doi.org/10.1142/s0217979219501510.
Full textMatsunami, M., T. Hashizume, and A. Saiki. "Ion-Exchange Reaction Of A-Site In A2Ta2O6 Pyrochlore Crystal Structure." Archives of Metallurgy and Materials 60, no. 2 (2015): 941–44. http://dx.doi.org/10.1515/amm-2015-0234.
Full textFleischauer, M. D., T. D. Hatchard, A. Bonakdarpour, and J. R. Dahn. "Combinatorial investigations of advanced Li-ion rechargeable battery electrode materials." Measurement Science and Technology 16, no. 1 (2004): 212–20. http://dx.doi.org/10.1088/0957-0233/16/1/028.
Full textChang, Hao-Hsun, Tseng-Hsiang Ho, and Yu-Sheng Su. "Graphene-Enhanced Battery Components in Rechargeable Lithium-Ion and Lithium Metal Batteries." C 7, no. 3 (2021): 65. http://dx.doi.org/10.3390/c7030065.
Full textYe, Hui, Zhi Fang, Prabhakar Tamirisa, Gaurav Jain, and Erik Scott. "(Digital Presentation) Thermal Acceleration Model for the Capacity Fade of a Rechargeable Li Ion Battery and Its Validation with 10+ Years of Testing Data." ECS Meeting Abstracts MA2022-01, no. 2 (2022): 388. http://dx.doi.org/10.1149/ma2022-012388mtgabs.
Full textHoang, Tuan K. A., Longyan Li, Jian Zhi, et al. "A True Non-Newtonian Electrolyte for Rechargeable Hybrid Aqueous Battery." Batteries 8, no. 7 (2022): 71. http://dx.doi.org/10.3390/batteries8070071.
Full textWang, Yuhang, Yehua Wang, Jing Tang, Yongyao Xia, and Gengfeng Zheng. "Aqueous Li-ion cells with superior cycling performance using multi-channeled polyaniline/Fe2O3 nanotube anodes." J. Mater. Chem. A 2, no. 47 (2014): 20177–81. http://dx.doi.org/10.1039/c4ta04465g.
Full textIgberaese, Simon Ejededawe. "A review of electrochemical cells and liquid metal battery (LMB) parameter development." Journal of Polymer Science and Engineering 7, no. 2 (2024): 4220. http://dx.doi.org/10.24294/jpse.v7i2.4220.
Full textLi, Yao Yao, Yin Hu, and Cheng Tao Yang. "Regulating Li<sup>+</sup> Transfer and Solvation Structure via Metal-Organic Framework for Stable Li Anode." Key Engineering Materials 939 (January 25, 2023): 123–27. http://dx.doi.org/10.4028/p-in7u78.
Full textMackereth, Matthew, Rong Kou, and Sohail Anwar. "Zinc-Ion Battery Research and Development: A Brief Overview." European Journal of Engineering and Technology Research 8, no. 5 (2023): 70–73. http://dx.doi.org/10.24018/ejeng.2023.8.5.2983.
Full textRomanenko, Konstantin, and Alexej Jerschow. "Distortion-free inside-out imaging for rapid diagnostics of rechargeable Li-ion cells." Proceedings of the National Academy of Sciences 116, no. 38 (2019): 18783–89. http://dx.doi.org/10.1073/pnas.1906976116.
Full textYun, Young Jun, Jin Kyu Kim, Ji Young Ju, et al. "A morphology, porosity and surface conductive layer optimized MnCo2O4 microsphere for compatible superior Li+ ion/air rechargeable battery electrode materials." Dalton Transactions 45, no. 12 (2016): 5064–70. http://dx.doi.org/10.1039/c5dt04975j.
Full textNi, Jie, Qiang Feng Xiao, YiKE Lei, et al. "(Digital Presentation) A Polymeric/Inorganic Composite Coatings on the Separator for High-Energy Lithium Metal Battery." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 196. http://dx.doi.org/10.1149/ma2022-023196mtgabs.
Full textSung, Geon-Kyu, and Cheol-Min Park. "Puckered-layer-structured germanium monosulfide for superior rechargeable Li-ion battery anodes." Journal of Materials Chemistry A 5, no. 12 (2017): 5685–89. http://dx.doi.org/10.1039/c7ta00358g.
Full textKondori, Alireza, Mohammadreza Esmaeilirad, Ahmad Mosen Harzandi, et al. "A room temperature rechargeable Li 2 O-based lithium-air battery enabled by a solid electrolyte." Science 379, no. 6631 (2023): 499–505. http://dx.doi.org/10.1126/science.abq1347.
Full textChoi, Seung Ho, Seung Jong Lee, Hye Jin Kim, Seung Bin Park, and Jang Wook Choi. "Li2O–B2O3–GeO2 glass as a high performance anode material for rechargeable lithium-ion batteries." Journal of Materials Chemistry A 6, no. 16 (2018): 6860–66. http://dx.doi.org/10.1039/c8ta00934a.
Full textJi, Xiulei (David). "(Invited) Unlocking Iron Metal As a Cathode for Sustainable Li-Ion Batteries By an Anion Solid-Solution." ECS Meeting Abstracts MA2024-02, no. 6 (2024): 697. https://doi.org/10.1149/ma2024-026697mtgabs.
Full textJeong, Goojin, Hansu Kim, Jong Hwan Park, et al. "Nanotechnology enabled rechargeable Li–SO2 batteries: another approach towards post-lithium-ion battery systems." Energy & Environmental Science 8, no. 11 (2015): 3173–80. http://dx.doi.org/10.1039/c5ee01659b.
Full textGandoman, Foad H., Adel El-Shahat, Zuhair M. Alaas, Ziad M. Ali, Maitane Berecibar, and Shady H. E. Abdel Aleem. "Understanding Voltage Behavior of Lithium-Ion Batteries in Electric Vehicles Applications." Batteries 8, no. 10 (2022): 130. http://dx.doi.org/10.3390/batteries8100130.
Full textKumar, Harish, Sundar Rajan, and Ashok K. Shukla. "Development of Lithium-ion Batteries from Micro-Structured to Nanostructured Materials: Its Issues and Challenges." Science Progress 95, no. 3 (2012): 283–314. http://dx.doi.org/10.3184/003685012x13421145651372.
Full textWidiyandari, H., A. Purwanto, and S. A. Widyanto. "Polyvinilidine fluoride (PVDF) nanofiber membrane for Li-ion rechargeable battery separator." Journal of Physics: Conference Series 817 (April 10, 2017): 012013. http://dx.doi.org/10.1088/1742-6596/817/1/012013.
Full textReddy, Ch V. Subba, J. Wei, Z. Quan-Yao, et al. "Cathodic performance of (V2O5+PEG) nanobelts for Li ion rechargeable battery." Journal of Power Sources 166, no. 1 (2007): 244–49. http://dx.doi.org/10.1016/j.jpowsour.2007.01.010.
Full textMorris, R. Scott, Brian G. Dixon, Thomas Gennett, Ryne Raffaelle, and Michael J. Heben. "High-energy, rechargeable Li-ion battery based on carbon nanotube technology." Journal of Power Sources 138, no. 1-2 (2004): 277–80. http://dx.doi.org/10.1016/j.jpowsour.2004.06.014.
Full textAzmi, Bustam M., Tatsumi Ishihara, Hiroyasu Nishiguchi, and Yusaku Takita. "LiVOPO4 as a new cathode materials for Li-ion rechargeable battery." Journal of Power Sources 146, no. 1-2 (2005): 525–28. http://dx.doi.org/10.1016/j.jpowsour.2005.03.101.
Full textLee, Joo Hyeong, Chong S. Yoon, Jang-Yeon Hwang, et al. "High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode." Energy & Environmental Science 9, no. 6 (2016): 2152–58. http://dx.doi.org/10.1039/c6ee01134a.
Full textKirubakaran, Kiran Preethi, Senthil Chenrayan, Lakshmanan Kumaresan, Kavibharathy Kasiviswanathan, and Kumaran Vediappan. "Sensitive mode investigations of lithium-ion cells with tavorite-type LiVXO4F (X = B, Si) as cathodes with stable cycling in low temperature operations." Applied Physics Letters 121, no. 13 (2022): 133903. http://dx.doi.org/10.1063/5.0101447.
Full text