Academic literature on the topic 'Reciprocating compressor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reciprocating compressor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reciprocating compressor"
Xu, Qun, and Weirong Hong. "Dynamic performance of reciprocating compressor with capacity regulation system." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233, no. 3 (April 27, 2018): 526–35. http://dx.doi.org/10.1177/0954408918772628.
Full textJarang, Hrishikesh Ganesh, and Dr R. S. Deshpande. "Design, Modeling and Analysis of Reciprocating Compressor." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 593–98. http://dx.doi.org/10.22214/ijraset.2022.43096.
Full textJarang, Hrishikesh Ganesh, and Dr R. S. Deshpande. "The Survey on Reciprocating Gas Compressor: A Review." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 775–80. http://dx.doi.org/10.22214/ijraset.2022.43097.
Full textBraga, Vitor M., and Cesar J. Deschamps. "Parametric Analysis of Gas Leakage in the Piston–Cylinder Clearance of Reciprocating Compressors." Machines 11, no. 1 (December 30, 2022): 42. http://dx.doi.org/10.3390/machines11010042.
Full textLi, Ying, Haijun Xuan, and Weirong Hong. "Analysis of rod reversal in reciprocating compressor with capacity regulating system." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231, no. 2 (August 3, 2016): 131–37. http://dx.doi.org/10.1177/0954408915578055.
Full textLi, Ting, Yuchuan Wang, Xiuli Mao, Diyi Chen, Rui Huang, and Quanke Feng. "Development and Experimental Study of the First Stage in a Two-Stage Water-Flooded Single-Screw Compressor Unit for Polyethylene Terephthalate Bottle Blowing System." Energies 13, no. 16 (August 16, 2020): 4232. http://dx.doi.org/10.3390/en13164232.
Full textWang, Yanfeng, Jin Wang, Zhilong He, Junwei Sun, Tao Wang, and Changhai Liu. "Investigation on Dynamic Characteristics of the Reed Valve in Compressors Based on Fluid-Structure Interaction Method." Applied Sciences 11, no. 9 (April 27, 2021): 3946. http://dx.doi.org/10.3390/app11093946.
Full textYusha, V. L., and S. S. Busarov. "Method for calculating actual capacity of single-stage long-stroke reciprocating compressors." Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering 4, no. 4 (2020): 9–15. http://dx.doi.org/10.25206/2588-0373-2020-4-4-9-15.
Full textLv, Qian, Xiaoling Yu, Haihui Ma, Junchao Ye, Weifeng Wu, and Xiaolin Wang. "Applications of Machine Learning to Reciprocating Compressor Fault Diagnosis: A Review." Processes 9, no. 6 (May 21, 2021): 909. http://dx.doi.org/10.3390/pr9060909.
Full textPrasad, B. G. Shiva. "Effect of Liquid on a Reciprocating Compressor." Journal of Energy Resources Technology 124, no. 3 (August 6, 2002): 187–90. http://dx.doi.org/10.1115/1.1491981.
Full textDissertations / Theses on the topic "Reciprocating compressor"
Sutton, Anthony James. "Experimental evaluation of compressor variable geometry in a turbocharger compressor." Thesis, University of Bath, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289813.
Full textSpagnuolo, Antonio Jr. "A study of reciprocating compressor finger valve dynamics." Thesis, Virginia Tech, 1985. http://hdl.handle.net/10919/45739.
Full textMaster of Science
Vansnick, Michel P. D. G. "Optimization of reciprocating compressor maintenance based on performance deterioration study." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210800.
Full textWhen we are analyzing the reliability of such equipment, as a result, there are few opportunities to crash a few pieces of equipment to actually verify component life.
Reliability is the probability that an item can perform its intended function for a specified interval of time under stated conditions and achieve low long-term cost of ownership for the system considering cost alternatives. From the economical standpoint, the overriding reliability issue is cost, particularly the cost of unreliability of existing equipment caused by failures.
Classical questions about reliability are:
·\
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Young, David Larry. "Noise transmission path identification in a reciprocating freon compressor." Thesis, Virginia Tech, 1995. http://hdl.handle.net/10919/40628.
Full textBECERRA, ELIZABET DEL CARMEN VERA. "SIMULATION OF A RECIPROCATING HERMETIC COMPRESSOR OPERATING IN TRANSIENT REGIME." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3877@1.
Full textO presente trabalho trata da simulação de um compressor hermético alternativo operando em regime transiente. O modelo desenvolvido expande, para a simulação do regime transiente, de modelos de regime permanente existentes na literatura. No presente modelo o sistema é dividido em volumes de controle (motor, compressor, muflas, câmaras de sucção e de descarga, reservatório de óleo, linha de descarga, entre outros). Adota-se o modelo de parâmetros concentrados e aplicam-se as equações fundamentais de conservação, resultando em um sistema de equações diferenciais ordinárias. Especial atenção é dedicada à formação de espuma durante a partida. Sob tais condições, pode-se chegar à sucção de óleo por parte do compressor, com conseqüentes danos às partes móveis do conjunto mecânico. Em função da ausência de informação na literatura sobre formação de espumas em compressores herméticos, construiu-se um aparato experimental para reproduzir tais condições em laboratório. Utilizou-se uma combinação de refrigerante R134a e óleo poliol-ester, que foi submetida a condições controladas de despressurização, a partir de uma pressão inicial prescrita. O processo de formação de espuma (taxa, espessura e diâmetro de bolha) foi monitorado com o auxílio de uma câmara de vídeo digital. Uma série de corridas foi efetuada para diferentes concentrações de óleo e taxas de despressurização. Os dados experimentais permitiram estabelecer um modelo semiempírico de formação de espuma no interior de um compressor hermético. Simulou- se, também, o escoamento turbulento tridimensional de refrigerante no interior da carcaça.
The present work is related to the simulation of a reciprocating hermetic compressor operating in transient regime. Hermetic compressors consist of a motor-compressor assembly hermetically sealed in a welded steel shell. Main components are: electric motor, suction and discharge mufflers, discharge line and the compressor itself, formed by the suction and discharge chambers, the pistondriving mechanism assembly and the cylinder body. The model here presented extends existing thermodynamic steady-state models for the transient operational condition. The system is divided into a number of control volumes, for which homogeneously distributed properties is assumed and fundamental conservation equations are applied. Special attention is given for foam formation, during startup. In such conditions, liquid oil can be drawn into the cylinder, causing a deterioration in the performance. Information on the phenomenon is scarce, which led to an effort of reproducing it at laboratory conditions. A saturated mixture of R134a and polyolester oil, at a given pressure, was submitted to controlled depressurization. The foam formation process (rate, height and bubble size) was measured with the help of a digital video camera. A number of runs were carried out, for different pressure drop rates and initial refrigerant concentrations. The experimental data was employed to adapt an existing model of foam formation. A new function for the volume rate of coalescence of gas bubbles was empirically determined. Computational Fluid Dynamics techniques were also used to predict the turbulent three-dimensional flow of refrigerant in the shell side.
Kelly, Allan D. "Dynamic finite element modeling and analysis of a hermetic reciprocating compressor." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-01242009-063231/.
Full textBoyle, R. J. "Valve design optimisation for a 3-cylinder semi-hermetic reciprocating refrigeration compressor." Thesis, University of Strathclyde, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381314.
Full textOng, Chin Guan. "Shaking and Balance of a Convertible One- and Two-Cylinder Reciprocating Compressor." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/31433.
Full textMaster of Science
Rose, John A. "The experimental characterization of the dynamics of a reciprocating freon compressor system." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-12302008-063244/.
Full textSOTOMAYOR, PAUL ORTEGA. "CHARACTERIZATION AND SIMULATION OF RECIPROCATING COMPRESSOR USING FLUIDS WITH LOW GLOBAL WARMING POTENTIAL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23933@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
O presente trabalho trata da caracterização e simulação de compressores alternativos dos tipos automotivo, hermético e semi-hermético, motivado pela necessidade de estudo de novos refrigerantes, com menor impacto ambiental, isto é, sem potencial de destruição da camada de ozônio e baixo potencial de efeito estufa. O estudo apresenta uma metodologia para a modelagem, mediante a qual, dependendo do tipo de compressor, este é dividido nos seguintes volumes de controle: mufla de sucção, câmara de sucção, cilindro de compressão, câmara de descarga, linha de descarga, motor elétrico, carcaça do compressor, massa metálica interna e gás escoando no interior da carcaça. Equações fundamentais de conservação, de troca de calor, de queda de pressão e de propriedades termofísicas do refrigerante são aplicadas a cada volume de controle. Buscando o desenvolvimento de modelos simples, porem, ainda capazes de identificar o desempenho do compressor operando com diferentes refrigerantes, optou-se pelo desenvolvimento de modelos semi-empíricos, determinando-se coeficientes empíricos, característicos do compressor e independentes do refrigerante ou das condições de operação. Foram efetuados ensaios calorimétricos normalizados em duas instalações laboratoriais existentes para os compressores hermético e semihermético. Para o compressor hermético foi utilizado o HFC-134a como referência e foram testados os refrigerantes HFO-1234yf e HFO-1234ze(E) e a mistura HDR-17. Para o compressor semi-hermético foi utilizada uma instalação de refrigeração comercial instrumentada do tipo ar-ar, operando com a mistura R404A (referência), tendo sido testados oito novos fluidos. Para o compressor automotivo foram utilizados dados experimentais do refrigerante HFO-1234yf, existentes na literatura. A caracterização dos compressores alternativos foi bem sucedida na medida em que os parâmetros empíricos determinados a partir de diferentes refrigerantes mostraram-se com valores suficientemente próximos. Nos testes experimentais foram identificados fluidos refrigerantes com desempenho maior e baixo potencial de aquecimento global. Atingiu-se, com a modelagem, o desenvolvimento de uma ferramenta computacional capaz de predizer as condições de operação de compressores alternativos operando com novos refrigerantes, a partir do modelo baseado em parâmetros empíricos obtidos de testes experimentais com refrigerantes convencionais, de fácil obtenção. O método de gradiente reduzido generalizado (GRG) foi utilizado na solução do sistema de equações não lineares, para a caracterização dos compressores alternativos. O modelo de simulação foi desenvolvido na linguagem Fortran. As propriedades termodinâmicas dos fluidos refrigerantes foram obtidas pelo pacote computacional REFPROP (NIST Standard Reference Database 23, Version 8.0). Os valores previstos pela simulação apresentaram boa concordância com os resultados experimentais.
This work shows a methodology for calculating the characteristic parameters of an open, a hermetic and a semi-hermetic reciprocating compressor. This study was motivated by the need to study new refrigerants with lower environmental impact with reduced global warming potential and zero ozone depletion potential. The compressor is divided in control volumes: suction muffler, suction chamber, compressor cylinder, discharge chamber, discharge line, electric motor, flowing gas through the compressor, compressor shell and inner metallic mass. Fundamental equations of conservation, heat exchange, pressure drop and thermophysical properties of the refrigerant are applied to each control volume. A semi-empirical model and standard calorimetric tests are used to obtain empirical parameters independents of refrigerant and operating conditions. For the hermetic compressor was used as reference the refrigerant HFC-134a and tested refrigerants HFO-1234yf, HFO-1234ze(E) and a mixture HDR-17. For the semihermetic compressor, an instrumented commercial refrigeration system operating with the mixture R404A was used as reference. In this system eight new fluids have been tested. For the automotive compressor experimental data from refrigerant HFO-1234yf obtained from literature were used. The characterization of the reciprocating compressors has been successful because the empirical parameters determined from different refrigerants proved to have sufficiently close values. A computational tool, able to predict the operating conditions of reciprocating compressors (open automotive, hermetic and semihermetic), working with new and untested refrigerants, was developed from the simulation models. The generalized reduced gradient (GRG) method was implemented in order to obtain a numerical solution for the characteristic parameters and the simulation computer program was developed in FORTRAN. Refrigerant properties were calculated using the software REFPROP version 8.0, developed by NIST, U.S.A.
Books on the topic "Reciprocating compressor"
J, Hoefner John, ed. Reciprocating compressors: Operation & maintenance. Houston, Tex: Gulf Pub. Co., 1996.
Find full textSummers, Roy Andrew. Mathematical modelling of reciprocating compressors for heat pumps. Birmingham: Aston University. Department of Electrical and Electronic Engineering and Applied Physics, 1988.
Find full textCastaldini, Carlo. Environmental assessment of NOx control on a compression-ignition, large-bore, reciprocating internal-combustion engine. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1986.
Find full textDepartment Of The Army Head Quarters. Compressor Unit Reciprocating Technical Manual TM 3-4310-100-20&p. Creative Media Partners, LLC, 2022.
Find full textReciprocating Compressors. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-88415-525-6.x5000-7.
Full textBloch, Heinz P., and John J. Hoefner. Reciprocating Compressors : : Operation and Maintenance. Elsevier Science & Technology Books, 1996.
Find full textThe 2006-2011 World Outlook for New Stationary Reciprocating Double-Acting Air Compressors. Icon Group International, Inc., 2005.
Find full textTroubleshooting Rotating Machinery: Including Centrifugal Pumps and Compressors, Reciprocating Pumps and Compressors, Fans, Steam Turbines, Electric Motors, and More. Wiley & Sons, Incorporated, John, 2016.
Find full textPerez, Robert X., and Andrew P. Conkey. Troubleshooting Rotating Machinery: Including Centrifugal Pumps and Compressors, Reciprocating Pumps and Compressors, Fans, Steam Turbines, Electric Motors, and More. Wiley & Sons, Limited, John, 2016.
Find full textPerez, Robert X., and Andrew P. Conkey. Troubleshooting Rotating Machinery: Including Centrifugal Pumps and Compressors, Reciprocating Pumps and Compressors, Fans, Steam Turbines, Electric Motors, and More. Wiley & Sons, Limited, John, 2016.
Find full textBook chapters on the topic "Reciprocating compressor"
Loukopoulos, Panagiotis, Suresh Sampath, Pericles Pilidis, George Zolkiewski, Ian Bennett, Fang Duan, Tariq Sattar, and David Mba. "Reciprocating Compressor Prognostics." In Design and Modeling of Mechanical Systems—III, 313–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66697-6_31.
Full textMorillo, Alfredo Hugo Valença, Paulo Roberto Gardel Kurka, and Marco Lúcio Bittencourt. "Dynamics Analysis of Reciprocating Compressor Crankshafts." In Mechanisms and Machine Science, 489–501. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99268-6_34.
Full textLi, Miaoshuo, Robin Appadoo, Wei Hu, Fengshou Gu, and Andrew Ball. "Condition Monitoring of Reciprocating Compressor Based on Acoustic Imaging." In Advances in Asset Management and Condition Monitoring, 977–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57745-2_80.
Full textLoukopoulos, Panagiotis, George Zolkiewski, Ian Bennett, Suresh Sampath, Pericles Pilidis, Fang Duan, and David Mba. "Reciprocating Compressor Valve Leakage Detection Under Varying Load Conditions." In Lecture Notes in Mechanical Engineering, 405–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95711-1_40.
Full textOkabe, Eduardo Paiva, Jaime Hideo Izuka, and Reinhard Resch. "Analysis of Analytical Hydrodynamic Bearing Models on a Reciprocating Compressor." In Mechanisms and Machine Science, 307–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99262-4_22.
Full textIannello, Victor, W. Dodd Stacy, and Herbert Sixsmith. "A Clean Helium Reciprocating Compressor Incorporating Orbital Squeeze Film Bearings." In Advances in Cryogenic Engineering, 779–85. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3368-9_2.
Full textGroza, Doru, Ioan Călin Roșca, and Gheorghe Alexandru Radu. "Balancing of a Single Stage Reciprocating Compressor with Elastic Elements." In CONAT 2016 International Congress of Automotive and Transport Engineering, 305–10. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45447-4_34.
Full textRen, Quanmin, Xiaojiang Ma, and Gang Miao. "Application of Support Vector Machines in Reciprocating Compressor Valve Fault Diagnosis." In Lecture Notes in Computer Science, 81–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539117_13.
Full textSim, H. Y., R. Ramli, and A. Saifizul. "Valve Leakage Analysis in Reciprocating Compressor by Using Acoustic Emission Technique." In Springer Proceedings in Physics, 355–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12111-2_33.
Full textFuerst, J. D. "Design, Construction, and Operation of a Two Cylinder Reciprocating Cold Compressor." In Advances in Cryogenic Engineering, 795–800. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3368-9_4.
Full textConference papers on the topic "Reciprocating compressor"
Shiva Prasad, B. G. "Effect of Liquid on a Reciprocating Compressor." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2122.
Full textMichal, Volf, and Gášpár Roman. "Modeling reciprocating compressor valve dynamics." In 36TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. Author(s), 2017. http://dx.doi.org/10.1063/1.5004383.
Full textMino, Jean. "Natural Gas Reciprocating Compressor Optimization." In SPE Production and Operations Symposium. Society of Petroleum Engineers, 2013. http://dx.doi.org/10.2118/164475-ms.
Full textMotriuk, R. W. "Reciprocating Compressor Valve Failure: Digital Modelling and Analysis." In 1996 1st International Pipeline Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/ipc1996-1907.
Full textBrun, Klaus, Sarah Simons, and Rainer Kurz. "The Impact of Reciprocating Compressor Pulsations on the Surge Margin of Centrifugal Compressors." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56025.
Full textBrun, Klaus, and Rainer Kurz. "Analysis of the Effects of Pulsations on the Operational Stability of Centrifugal Compressors in Mixed Reciprocating and Centrifugal Compressor Stations." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50540.
Full textCorbò, Simone, Tommaso Wolfler, Nicola Banchi, Ippolito Furgiuele, and Majid Farooq. "The Role of Turbomachinery in Enabling the Hydrogen Economy." In Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207312-ms.
Full textHowes, Brian, Leonard Lin, and Val Zacharias. "Experiences With Simulation of Reciprocating Compressor Valve Dynamics." In 1996 1st International Pipeline Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/ipc1996-1904.
Full textPereira dos Santos, Sidney. "Gas Compressor Service With Turbo Compressors." In 2004 International Pipeline Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ipc2004-0183.
Full textPrata, A. T., J. R. S. Fernandes, and F. Fagotti. "Piston Lubrication Model for Reciprocating Compressors." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0858.
Full textReports on the topic "Reciprocating compressor"
Broerman, Eugene, Nathan Poerner, and Willard Shade. Linear Motor Reciprocating Compressor (LMRC) for Forecourt Hydrogen Compression. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1894346.
Full textSkone, Timothy J. Wellhead Compressor, Gas-Powered Reciprocating, 200 HP. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1509238.
Full textSkone, Timothy J. Processing reciprocating compression. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1559829.
Full textSkone, Timothy J. Storage reciprocating compression. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1559844.
Full textSkone, Timothy J. Transmission reciprocating compression. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1559854.
Full textDanny M. Deffenbaugh, Klaus Brun, Ralph E. Harris, J. Pete Harrell, Robert J. Mckee, J. Jeffrey Moore, Steven J. Svedeman, et al. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT). Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/876564.
Full textAllison, Tim, Sarah Simons, and Jordan Nielson. Novel Seal Design for Effective Mitigation of Methane Emissions from Reciprocating Compressors. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1635601.
Full textSugita, Takayuki. Compressed Air as a Quality and Pollution Free Fuel Substitute in Reciprocating Engines - Effective Solutions to Improve Engine Performance. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0509.
Full text