Contents
Academic literature on the topic 'Recombinaison non homologue (NHEJ)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Recombinaison non homologue (NHEJ).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Recombinaison non homologue (NHEJ)"
Lange, Miles, Wanqin Xie, Sang Yong Hong, Zhihong Yu, Ti He, Lin Huang, Yangsheng Yu, et al. "The V(D)J recombination machinery is associated with the nuclear matrix (88.3)." Journal of Immunology 184, no. 1_Supplement (April 1, 2010): 88.3. http://dx.doi.org/10.4049/jimmunol.184.supp.88.3.
Full textGoodarzi, Aaron A., Angela T. Noon, and Penny A. Jeggo. "The impact of heterochromatin on DSB repair." Biochemical Society Transactions 37, no. 3 (May 20, 2009): 569–76. http://dx.doi.org/10.1042/bst0370569.
Full textRoussel, B., C. Prost-Squarcioni, F. Nery, L. Laroche, P. O. Schischmanoff, and F. Caux. "Délétion large de 15,9kb du gène ABHD5 par recombinaison non homologue entre des séquences LINE-1 et Alu responsable d’un syndrome de Dorfman–Chanarin." Annales de Dermatologie et de Vénéréologie 140, no. 12 (December 2013): S641. http://dx.doi.org/10.1016/j.annder.2013.09.604.
Full textDohrn, Lisa, Daniela Salles, Simone Y. Siehler, Julia Kaufmann, and Lisa Wiesmüller. "BRCA1-mediated repression of mutagenic end-joining of DNA double-strand breaks requires complex formation with BACH1." Biochemical Journal 441, no. 3 (January 16, 2012): 919–28. http://dx.doi.org/10.1042/bj20110314.
Full textDucos, Alain, Bertrand Bed'Hom, Hervé Acloque, and Bertrand Pain. "Modifications ciblées des génomes : apports et impacts potentiels des nouvelles technologies pour les espèces aviaires." Bulletin de l'Académie vétérinaire de France, 2020. http://dx.doi.org/10.3406/bavf.2020.70900.
Full textPatties, Ina, Sonja Kallendrusch, Lisa Böhme, Eva Kendzia, Henry Oppermann, Frank Gaunitz, Rolf-Dieter Kortmann, and Annegret Glasow. "The Chk1 inhibitor SAR-020106 sensitizes human glioblastoma cells to irradiation, to temozolomide, and to decitabine treatment." Journal of Experimental & Clinical Cancer Research 38, no. 1 (October 21, 2019). http://dx.doi.org/10.1186/s13046-019-1434-2.
Full textDissertations / Theses on the topic "Recombinaison non homologue (NHEJ)"
Lototska, Liudmyla. "Le rôle de la protéine RAP1 dans la protection des télomères humains." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4240.
Full textIn mammals, the shelterin complex is the guardian of telomere stability. It operates through a set of six proteins (TRF1, TRF2, POT1, RAP1, TPP1 and TIN2) that binds telomeric DNA and protects it from being recognized as DNA double-strand breaks and therefore control DNA repair and DNA damage response pathways. Among them, RAP1 and TRF2 cooperate and together protect chromosome extremities from end-to-end fusions. TRF2 is seen as a major factor to control telomere DNA topology by wrapping DNA around itself in a right handed manner. This property of TRF2 is required to promote the formation of t-loops, special DNA structures at telomeres that are considered as protective barriers to DNA damage response and fusion. Here we demonstrate two independent situations where RAP1 dysfunction is critical for telomere protection. First, in cells expressing a wrapping-deficient TRF2 allele that cannot form t-loops, RAP1 appears as a backup anti-fusion mechanism. Second, RAP1 downregulation in replicative senescent cells leads to telomere fusions and DNA damage response activation. This is consistent with similar observations in HeLa cells treated with the telomerase inhibitor BIBR1532, and in which RAP1 expression was abolished by an inducible shRNA system. In addition, we show that fusions triggered by RAP1 loss are dependent upon ligase IV, which is a key player of the classical non-homologous end-joining (c-NHEJ) repair pathway. Altogether, these results indicate that RAP1 takes over telomere protection when TRF2 cannot properly function or in the normal physiological situation, such as replicative senescence
Bordelet, Hélène. "Régulation de la résection aux cassures double-brin par l'hétérochromatine SIR dépendante." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS300.
Full textHeterochromatin is a conserved feature of eukaryotic chromosomes, with central roles in regulation of gene expression and maintenance of genome stability. How DNA repair occurs in heterochromatin remains poorly described. In Saccharomyces cerevisiae, the Silent Information Regulator (SIR) complex assembles a compact chromatin fibre. SIR-mediated repressive chromatin limits Double Strand Break (DSB) resection protecting damaged chromosome ends against the loss of genetic information. However, which of the three redundant resection complexes, MRX-Sae2, Exo1 and Sgs1-Dna2 are inhibited and by which mechanism remains to be deciphered. We show that Sir3, the histone-binding factor of yeast heterochromatin, physically interacts with Sae2-mediated resection and inhibits all its functions. Notably, this interaction limits Sae2-mediated resection, delays MRX removal from DSB ends and promotes Non-Homologous End Joining (NHEJ). In addition, SIR-mediated repressive chromatin partially inhibits the two long range resection pathways mediated by Exo1 and Sgs1-Dna2 by distinct mechanisms. Altogether SIR mediated inhibition of extensive resection and of Sae2 promotes NHEJ and limits Break-Induced Replication (BIR) preventing loss of heterozygosity at subtelomeres
Lototska, Liudmyla. "Le rôle de la protéine RAP1 dans la protection des télomères humains." Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2018. http://theses.univ-cotedazur.fr/2018AZUR4240.
Full textIn mammals, the shelterin complex is the guardian of telomere stability. It operates through a set of six proteins (TRF1, TRF2, POT1, RAP1, TPP1 and TIN2) that binds telomeric DNA and protects it from being recognized as DNA double-strand breaks and therefore control DNA repair and DNA damage response pathways. Among them, RAP1 and TRF2 cooperate and together protect chromosome extremities from end-to-end fusions. TRF2 is seen as a major factor to control telomere DNA topology by wrapping DNA around itself in a right handed manner. This property of TRF2 is required to promote the formation of t-loops, special DNA structures at telomeres that are considered as protective barriers to DNA damage response and fusion. Here we demonstrate two independent situations where RAP1 dysfunction is critical for telomere protection. First, in cells expressing a wrapping-deficient TRF2 allele that cannot form t-loops, RAP1 appears as a backup anti-fusion mechanism. Second, RAP1 downregulation in replicative senescent cells leads to telomere fusions and DNA damage response activation. This is consistent with similar observations in HeLa cells treated with the telomerase inhibitor BIBR1532, and in which RAP1 expression was abolished by an inducible shRNA system. In addition, we show that fusions triggered by RAP1 loss are dependent upon ligase IV, which is a key player of the classical non-homologous end-joining (c-NHEJ) repair pathway. Altogether, these results indicate that RAP1 takes over telomere protection when TRF2 cannot properly function or in the normal physiological situation, such as replicative senescence
Gelot, Camille. "Rôle du complexe de cohésion sur la ligature d'extrémités d'ADN non homologues et la stabilité du génome." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066300/document.
Full textDNA double-strand breaks (DSBs) repair is essential for genome stability/diversity, but can also generate genome rearrangements. Although non-homologous end-joining (NHEJ) is required for genome stability maintenance, the joining of distant double strand ends (DSE) should inexorably lead to genetic rearrangements. We analyzed the efficiency and accurency of close or distal EJ repair. Our data show that global end-joining is more efficient on close ends (34bp) compared to distal ends (3200bp) and that C-NHEJ is favored on close ends, resulting in more accurate outcome, compared to distal ends where more mutagenic A-EJ events takes place. In addition, the joining of distal ends favors the insertion/capture of DNA sequences. These data show only few kb distances between two DSEs are sufficient to jeopardize DSB repair efficiency and accuracy, leading to complex scars at the re-sealed junctions, and cell response is sufficiently sensitive to differently process such distal ends. We next addressed the question of the mechanisms preventing the joining of distant DSE. We show that depletion of the cohesin complex proteins specifically stimulates the end-joining of I-SceI-induced DSBs distant of 3200bp, while the joining of close DSEs (34bp) remained unaffected. Consistently, exome sequencing and cytogenetic analysis revealed that RAD21 ablation generates large chromosome rearrangements and a strong induction of replication stress-induced chromosome fusions. These data reveal a role for the cohesin complex in the protection against profound genome rearrangements arising through ligation of distant DSEs
Drouet, Jérôme. "Mobilisation de protéines de la voie de jonction d'extrémités non homologues en réponse aux cassures double-brin de l'ADN dans les cellules de mammifère." Toulouse 3, 2004. http://www.theses.fr/2004TOU30243.
Full textCells are constantly exposed to a variety of endogenic and exogenic factors likely to compromise their genome integrity. Among the various kinds of DNA lesions, double-strand breaks (DSB) are considered as the most cytotoxic damages due to potentially lethal, and possibly carcinogenic, effects. Facing this permanent danger, cells are equipped with adapted repairing enzymatic systems. The NHEJ (Non Homologous End Joining) is considered as the major DSB-repairing process in the case of superior eucaryotes. The precise biochemical mechanism used by the NHEJ is still not well known, and most of the present knowledge is based on in vitro experiments. In a first step, we have tested the physiological validity of the NHEJ biochemical model by an in vivo approach using optimized cell fractioning, based on a detergent-mediated extraction technique. We have confirmed the assembly of the major repairing complexes, DNA-PK and Xrcc4 / DNA ligase IV, in the presence of DSB in vivo, in several human cell lines. We have described for the first time a Xrcc4 recruitment, strictly dependent on the physical presence of DNA ligase IV, and we propose a model for the role of Xrcc4 phosphorylation on the optimized recruitment of DNA ligase IV in double-strand breakages. In addition, we observed a specific mobilization of the Xrcc4 / DNA ligase IV complex toward the nuclear matrix in response to DSB, and we propose that the nuclear matrix acts as a specialized DSB-repairing site exhibiting complex extremities. .
Despras, Emmanuelle. "LES PROTEINES KIN17, XPC, DNA-PKCS ET XRCC4 DANS LA REPONSE CELLULAIRE AUX DOMMAGES DE L'ADN. ETUDE DES RELATIONS ENTRE LA REPARATION PAR EXCISION DE NUCLEOTIDES ET LA RECOMBINAISON NON HOMOLOGUE DANS UN MODELE SYNGENIQUE HUMAIN." Phd thesis, Université René Descartes - Paris V, 2006. http://tel.archives-ouvertes.fr/tel-00432998.
Full textGrabarz, Anastazja. "Réparation des cassures double brin de l'adn chez les mammifères : rôle des protéines MRE11 et BLM dans l’initiation de la ligature d’extrémités non homologues (NHEJ )." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112172.
Full textDNA double strand breaks (DSBs) are highly cytotoxic lesions, which can lead to genetic rearrangements. Two pathways are responsible for repairing these lesions : homologous recombination (HR) and non homologous end joining (NHEJ). In our laboratory, an intrachromosomal substrate has been established in order to measure the efficiency and the fidelity of NHEJ in living cells (Guirouilh-Barbat 2004). This approach led us to identify a KU-independent alternative pathway, which uses microhomologies in the proximity of the junction to accomplish repair – the alternative NHEJ (Guirouilh-Barbat 2004, Guirouilh-Barbat et Rass 2007). The goal of my thesis consisted in identifying and characterising major actors of this pathway. In the absence of KU, alternative NHEJ would be initiated by ssDNA resection of damaged ends. We showed that the nuclease activity of MRE11 is necessary for this mechanism. MRE11 overexpression leads to a two fold stimulation of NHEJ efficiency, while the extinction of MRE11 by siRNA results in a two fold decrease. Our results demonstrate that the proteins RAD50 and CtIP act in the same pathway as MRE11. Moreover, in cells deficient for XRCC4, MIRIN – an inhibitor of the MRN complex – leads to a decrease in repair efficiency, implicating MRE11 in alternative NHEJ. We also showed that MRE11 can act in an ATM-dependent and independent manner (Rass et Grabarz Nat Struct Mol Biol 2009). The initiation of break resection needs to be pursued by a more extensive degradation of DNA, which is accomplished in yeast by the proteins Exo1 and Sgs1/Dna2. In human cells, in vitro studies have recently proposed a similar model of a two-step break resection. We chose to elucidate the role of one of the human homologs of Sgs1 – the RecQ helicase BLM – in the resection process. Our experiments show, that he absence of BLM decreases the efficiency of end joining by NHEJ, accompanied by an increase in error-prone events, especially long-range deletions (>200nt). This suggests that BLM protects against extensive resection during alternative NHEJ. Furthermore, BLM is implicated in the protection against CtIP-dependent resection at the initiation of HR. In conclusion, our results show a major role of BLM in protecting against an excess of resection, mediated by the MRN cofactor – CtIP. BLM interacts with 53BP1 at sites of damage, in an ATM-dependent manner, in order to regulate the resection process and counteract BRCA1 activity. This underlines the novel role of BLM in the protection against resection and favouring gene conversion events without crossing-over, which is substantial for maintaining genomic integrity
Tsouroula, Aikaterini. "Double strand break repair within constitutive heterochromatin." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ036/document.
Full textHeterochromatin is the tightly packed form of repetitive DNA, essential for cell viability. Its highly compacted and repetitive nature renders DSB repair a challenging process that cells need to overcome in order to maintain their genome integrity. Developing a highly specific and robust CRISPR/Cas9 system to target pericentric heterochromatin, we showed that DSBs in G1 are positionally stable and repaired by NHEJ. In S/G2, they relocate to the periphery of this domain to be repaired by HR. This relocation process is dependent of resection and RAD51 exclusion from the core domain of heterochromatin. If these breaks fail to relocate, they are repaired within heterochromatin by NHEJ or SSA. On the other hand, DSBs in centromeric heterochromatin activate both NHEJ and HR throughout the cell cycle. Our results reveal the differential repair pathway choice between centromeric and pericentric heterochromatin that also regulates the DSB position
Zhang, Lingli. "Vers la compréhension des mécanismes de réparation de l'ADN chez Streptomyces : identification d'acteurs de la recombinaison." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0104/document.
Full textDouble strand breaks (DSB) constitute the most deleterious form of DNA damage that a bacterial cell can encounter. Two major pathways can carry out DSB repair in bacteria: homologous recombination and Non-Homologous End Joining (NHEJ). Streptomyces is a model bacterium to explore the relative impact of these recombination mechanisms on genome structure and evolution; the chromosome is indeed typified by its linearity, its compartmentalized genetic organization and its remarkable genomic plasticity. The objective of this research is to identify actors involved in DSB repair mechanisms which remain mostly elusive in Streptomyces up to now. The first step of DSB repair by homologous recombination is the resection of broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB and Mycobacterium tuberculosis AdnAB. In silico analysis of Streptomyces genomes allowed to identify homologues for adnA and adnB which constitute a highly conserved locus within the genus. Attempts to disrupt these two genes were unsuccessful in Streptomyces ambofaciens as well as in Streptomyces coelicolor, unless an extra copy of adnAB was inserted in the chromosome. This indicates that AdnA and AdnB are both essential for Streptomyces growth. Complementation of an E. coli [delta]recB mutant by S. ambofaciens adnAB locus restored nuclease activity and cell survival in the presence or absence of DNA damaging agent, strongly suggesting that Streptomyces adnAB encodes a functional homologue of E. coli RecBCD. The key role of adnAB in homologous recombination and DNA replication is discussed. The NHEJ mechanism shows a sporadic distribution in bacteria and is known to involve the two proteins Ku and LigD. The Ku protein binds to the ends of the broken DNA and recruits the ATP-dependent ligase LigD which is a multifunctional protein carrying ligase, polymerase and sometimes nuclease activity. In silico analysis of Streptomyces genomes revealed a complex organization with a variable number of ku homologues (1 to 3) and of homologues encoding one of the three distinct LigD activities. These homologues define two conserved loci. S. ambofaciens possesses 3 ku (named kuA, kuB and kuC) and 2 ATP-dependent ligases (named ligC and ligD). Exposure to DNA damaging agents (mitomycin C, electron beam irradiation) of mutant strains got involved kuA and ligC, two conserved actors, but also variable genes such as kuC and ligD in DNA repair. These results open up new prospects to understand the role of NHEJ in the biology and genome evolution of Streptomyces
Delacote, Fabien. "La réparation des cassures double brin de l'ADN chez les mammifères:intervention séquentielle de la recombinaison non homologue puis de la recombinaison homologue." Paris 11, 2002. http://www.theses.fr/2002PA11T046.
Full text