Academic literature on the topic 'Rectangular waveguides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rectangular waveguides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rectangular waveguides"

1

Deng, Jian Qin, Wan Shun Jiang, and Yue Min Ning. "Analysis and Design of a Novel High-Power W-Band Spatial Multilayer Doubler." Applied Mechanics and Materials 130-134 (October 2011): 529–33. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.529.

Full text
Abstract:
A novel spatial multilayer doubler is proposed in the paper. It is designed by tray approach in rectangular waveguide. The doubler consists of multilayer multiplier circuits, which are parallel each other. Comparing with traditional single layer doubler, the spatial multilayer doubler has higher 1dB compression point, so the output power can be increased when input power is increased. Both the input port and the output port of the doubler are rectangular waveguides. In order to achieve the transition from rectangular waveguide to planar circuit, the finline and ridge are used. Multilayer finlines act as divider, which couple power from input rectangular waveguide. Otherwise, multilayer ridges act as combiner, which combine the harmonic power to output rectangular waveguider. The passive circuits of the spatial multilayer doubler are modeled and analyzed with FDTD method. From the results, we can see that the passive circuits designed in the paper have very low insertion loss.
APA, Harvard, Vancouver, ISO, and other styles
2

Berdnik, Sergey L., Victor A. Katrich, Mikhail V. Nesterenko, and Yuriy M. Penkin. "Waveguide T-junctions with resonant coupling between sections of different dimensions." International Journal of Microwave and Wireless Technologies 9, no. 5 (2016): 1059–65. http://dx.doi.org/10.1017/s175907871600129x.

Full text
Abstract:
Electromagnetic characteristics of the E-plane T-junction for two rectangular waveguides using resonant coupling between the waveguide sections were studied by mathematical modeling. The problem of coupling between infinite and semi-infinite rectangular waveguides through a resonant slot in the end-wall of the semi-infinite waveguide in the presence of resonant monopole is solved in a strict electrodynamic formulation. The monopole with variable surface impedance is placed parallel to the narrow walls at an arbitrary position inside the infinite waveguide. The problem is solved analytically by the generalized method of induced electro-magneto-motive forces. Impedance vibrator inclusions with variable electro-physical parameters have been analyzed as control elements for waveguide junctions. To this purpose energy characteristics of the junction in the single-mode regime of the both waveguides, and also in multi-mode regime of the semi-infinite waveguide is investigated. The results may be useful for development of variety antennas and waveguide devices, which involves waveguide junctions.
APA, Harvard, Vancouver, ISO, and other styles
3

Krutskikh, V. V., A. Yu Sizyakova, M. S. Minkara, A. R. Ibrahim, A. E. Mirzoyan, and A. N. Ushkov. "Broadband Metal-Dielectric Waveguide Path with Low Losses in the EHF Range." Rocket-space device engineering and information systems 8, no. 3 (2021): 89–98. http://dx.doi.org/10.30894/issn2409-0239.2021.8.3.89.98.

Full text
Abstract:
. The present paper is devoted to the design of a new shielded metal-dielectric waveguide with low losses (less than 0.5 dB/m) and wide bandwidth for the 90–100 GHz frequency range. Various types of waveguide structures were analyzed, such as metal waveguides, oversized metal waveguides, dielectric waveguides, dielectric waveguides with a metal shield and various designs of the dielectric filling element. Estimates of loss per unit length in them are obtained. The design of a waveguide containing an oversized round metal screen and a dielectric element consisting of a plate and a rod, located in the center of symmetry of the device, is proposed. The task of creating a transition from the investigated waveguide to a standard rectangular metal waveguide is considered. It is a horn transition from a circular cross-section to a rectangular one with a length of more than 25 wavelengths with a dielectric structure continuing the dielectric element of the waveguide path. As a result of the work, the ratios of the dimensions of the structural elements of the waveguide path and the materials used were obtained that satisfy the required losses.
APA, Harvard, Vancouver, ISO, and other styles
4

Pochernyaev, V. N., and N. M. Syvkova. "EXTERNAL PARAMETERS OF THE CONNECTION OF A RECTANGULAR WAVEGUIDE PARTIALLY FILLED OF LINEAR DIELECTRIC WITH A RECTANGULAR WAVEGUIDE PARTIALLY FILLED OF NONLINEAR DIELECTRIC." Visnyk Universytetu “Ukraina”, no. 1 (28) 2020 (2020): 100–105. http://dx.doi.org/10.36994/2707-4110-2020-1-28-09.

Full text
Abstract:
. In the article, the external parameters of the connection of a rectangular waveguide partially filled of linear dielectric with a rectangular waveguide partially filled of a nonlinear dielectric are determined. Knowledge of the external parameters of such a connection ensures the design of devices with open nonlinear elements. Promising microwave paths of radio engineering systems based on rectangular waveguides partially filled of dielectric include a wide variety of active and passive microwave devices. The plane-transverse junction of these waveguides is considered for various geometric dimensions of dielectric plates and their relative permittivity. Such a junction is characterized by reactive conductivity, which is determined through the sum of the reactive conductivities of local fields. The transverse electric field at the junction is represented through the eigenvector function of the geometric surface, which coincides with the cross section of the waveguides. The scattering matrix of the plane-transverse junction is determined through the conductivity of the sections of the two waveguides and the conductivity of the plane-transverse junction. The dependences of the traveling wave coefficient and the modulus of the reflection coefficient on the geometric dimensions of the dielectric plate are plotted taking into account the local fields generated at the plane transverse junction. At the junction of two waveguides, not only changed the geometric dimensions of the dielectric plates along the wide and narrow walls of the waveguide, but also their relative permittivity. In one case, two higher types of waves were taken into account: quasi - H30 and quasi - H12, in the other case - four higher types of waves: quasi - H30, quasi - H12, quasi - E12, quasi - H50. Calculations show that an increase in the number of higher types of waves has practically no effect on the accuracy of calculations. The results obtained indicate the rapid internal convergence of the obtained solutions and the correct choice of the transverse electric eigenvector function of rectangular waveguides partially filled of dielectric as approximate the field on the junction of two waveguides.
APA, Harvard, Vancouver, ISO, and other styles
5

Uranus, Henri P., and B. M. A. Rahman. "Low-loss ARROW waveguide with rectangular hollow core and rectangular low-density polyethylene/air reflectors for terahertz waves." Journal of Nonlinear Optical Physics & Materials 27, no. 03 (2018): 1850029. http://dx.doi.org/10.1142/s0218863518500297.

Full text
Abstract:
Designing low-loss waveguides for terahertz waves is challenging as most materials are very lossy in this frequency band. Most scientists simply consider transmitting the waves through low-loss air, which however also has its own difficulties as index-guiding is not possible. In this paper, we report on the design of low-loss waveguides for terahertz waves and associated results by using a finite element leaky mode solver. These results show that waveguides designed using ARROW (anti-resonant reflecting optical waveguide) approach yield a low combined absorption and leakage loss down to only 0.05[Formula: see text]dB/cm for the q-TE[Formula: see text] fundamental mode using realistic values of refractive index at 1 THz operating frequency. The structure employs rectangular hollow-core and low-density polyethylene/air anti-resonant reflecting bilayers, which can be easily fabricated. These results are compared with those of other structures, i.e., a photonic crystal fiber-like structures using the same materials with rectangular holes, which is shown to give a higher loss of 3[Formula: see text]dB/cm and a suspended air-core waveguide with TOPAS vein offering a loss of 1[Formula: see text]dB/cm.
APA, Harvard, Vancouver, ISO, and other styles
6

YOON, KEUN BYOUNG, BYEONG-SOO BAE, and MICHAEL POPALL. "FABRICATION OF LOW-LOSS WAVEGUIDES USING ORGANIC-INORGANIC HYBRID MATERIALS." Journal of Nonlinear Optical Physics & Materials 14, no. 03 (2005): 399–407. http://dx.doi.org/10.1142/s0218863505002852.

Full text
Abstract:
The fabrication of single and multimode waveguides and optical characteristics were investigated. The singlemode waveguide was fabricated by a laser direct writing technique and a multimode waveguide was produced by means of a direct UV patterning technique using organic-inorganic hybrid materials. The fabrication of waveguide channels with these techniques are of interest for simple processes. The resulting single and multimode waveguides exhibited a near rectangular shape and low optical loss. The average propagation losses of these waveguides were 0.07 dB/cm (at 850 nm) and 0.3 dB/cm (at 1310 nm), respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Kažys, Rymantas, Egidijus Žukauskas, Liudas Mažeika, and Renaldas Raišutis. "Propagation of Ultrasonic Shear Horizontal Waves in Rectangular Waveguides." International Journal of Structural Stability and Dynamics 16, no. 08 (2016): 1550041. http://dx.doi.org/10.1142/s0219455415500418.

Full text
Abstract:
The aim of this paper is to investigate the propagation of ultrasonic shear horizontal guided waves along waveguides with a rectangular cross-section and with a finite constant and variable width and to determine the peculiarities of propagation of those waves. The dispersion curves of guided waves in finite-width waveguides were modeled by using a semi-analytical finite element (SAFE) technique. The propagation of pulsed shear horizontal ultrasonic guided waves was investigated numerically by using 3D finite element modeling. It was found that in the case of finite-width waveguides, the SH0 shear horizontal wave splits into a family of SH-type dispersive modes propagating with different phase velocities. It was also found that the number of propagating modes depends on the width-to-thickness ratio. The first time spatial distributions of pulsed displacements across the waveguide were determined for waveguides of different widths. Investigation of the waveguides with a rectangular cross-section and varying lateral dimensions was performed. It was found that by properly selecting the geometry of the transient zone of waveguides with a rectangular cross-section, it is possible to improve the performance of such waveguides, e.g. to increase the amplitude of the transmitted pulse type signal without significant distortions of the waveforms.
APA, Harvard, Vancouver, ISO, and other styles
8

Mortazy, Ebrahim, Alireza Hassani, Francois Legare, Ke Wu, and Mohamed Chaker. "Multilayer porous waveguide for microwave low-loss applications." International Journal of Microwave and Wireless Technologies 3, no. 4 (2011): 459–63. http://dx.doi.org/10.1017/s1759078711000596.

Full text
Abstract:
A novel waveguide called multilayer porous waveguide (MPW) is proposed as microwave low-loss transmission lines. MPW is a fully rectangular dielectric waveguide composed of several periodically rectangular air gaps in a bulk dielectric that can be easily formed by placing several dielectric substrates in interval with air gaps. The loss and propagating characteristics of both TE and TM modes in MPW are studied. The TE mode confined in the air gaps has a lower loss than the TM mode spread out in air gaps and dielectric; however, the loss of TM mode is still less than that of conventional microwave waveguides. Finally, MPW is an artificial material with desirable electrical permittivity and loss that can be used in structure of conventional waveguides.
APA, Harvard, Vancouver, ISO, and other styles
9

Weng, Qianru, Qian Lin, and Haifeng Wu. "An Efficient Semianalytical Modal Analysis of Rectangular Waveguides Containing Metamaterials with Graded Inhomogeneity." International Journal of Antennas and Propagation 2021 (February 2, 2021): 1–13. http://dx.doi.org/10.1155/2021/6107378.

Full text
Abstract:
Rectangular waveguides containing inhomogeneous metamaterials with graded refractive-index profiles have potential applications in bending waveguides and radiation-enhanced antennas, and accurate eigenvalue solutions are prerequisite. Commonly used commercial electromagnetic solvers such as HFSS, COMSOL, and CST could not efficiently calculate the eigenvalues of waveguides containing graded refractive-index dielectrics. In this paper, an accurate and efficient semianalytical method based on the modal expansion has been proposed to solve these waveguides. The proposed method has been employed to calculate the eigenvalues, including the cutoff wavenumbers and dispersion relations, for metamaterials with various graded refractive-index profiles. Calculated results are then validated by comparison, using commercial solver HFSS, which indicates the superiority of the proposed method in accuracy and efficiency. Below-cutoff backward wave propagation is observed in waveguides filled with graded refractive-index metamaterials, which provides a new approach for waveguide miniaturization.
APA, Harvard, Vancouver, ISO, and other styles
10

Deng, Xida, Ge Dong, Xuan Dai, and Jinxiang Deng. "Compact Full Ka-Band Waveguide Directional Coupler Based on Rectangular Aperture Array with Stairs." Micromachines 12, no. 7 (2021): 745. http://dx.doi.org/10.3390/mi12070745.

Full text
Abstract:
This article presents a compact 3 dB waveguide directional coupler with full waveguide bandwidth. It consists of a pair of rectangular waveguides with stairs structures in the coupling region. The waveguides are placed parallel to each other along their broad wall, which has a rectangular aperture array. The compact size, broad bandwidth, good in-band coupling flatness, and good return loss are achieved by using the proposed structure. For verification purposes, a prototype of the proposed coupler was designed, manufactured, and measured. The experimental results show that over the full waveguide bandwidth a return loss of input port better than 17.46 dB, coupling strength varying between −2.74 dB and −3.80 dB, power-split unbalance within 0.76 dB, and an isolation better than 20.82 dB were obtained. The length of the coupling region was only 15.82 mm.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography