Academic literature on the topic 'Rectenna'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rectenna.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rectenna"
Huang, Dajiu, Jincheng Li, Ziqiang Du, Changjun Liu, Zhongqi He, and Ji Zhang. "A Compact and High-Power Rectenna Array for Wireless Power Transmission Applications." Energies 17, no. 23 (November 29, 2024): 6008. http://dx.doi.org/10.3390/en17236008.
Full textAmri, Muhammad Miftahul, and Liya Yusrina Sabila. "2.4 GHz Rectifier Antenna for Radiofrequency-based Wireless Power Transfer: Recent Developments, Opportunities, and Challenges." Jurnal Elektronika dan Telekomunikasi 23, no. 1 (August 31, 2023): 16. http://dx.doi.org/10.55981/jet.541.
Full textAlieksieiev, V. O., D. V. Gretskih, D. S. Gavva, V. G. Lykhograi, and I. A. Khan. "Rectennas of electromagnetic power harvesting systems from the surrounding space." Radiotekhnika, no. 215 (December 25, 2023): 86–105. http://dx.doi.org/10.30837/rt.2023.4.215.09.
Full textPradeep Dhanawade, Shivajirao M. Sangale, Pritam Nikam, and Jayendra Kumar. "Rectifiers Configurations for Rectenna Design." International Research Journal on Advanced Engineering Hub (IRJAEH) 2, no. 02 (February 23, 2024): 66–72. http://dx.doi.org/10.47392/irjaeh.2024.0014.
Full textJing, Jianwei, Junlin Mi, Huaiqing Zhang, and Changjun Liu. "An S-Band Compact Meander-Line Dual-Polarized Rectenna Array Design and Application Demonstration." International Journal of RF and Microwave Computer-Aided Engineering 2023 (June 6, 2023): 1–6. http://dx.doi.org/10.1155/2023/4878949.
Full textTakhedmit, Hakim, Laurent Cirio, Boubekeur Merabet, Bruno Allard, François Costa, Christian Vollaire, and Odile Picon. "A 2.45-GHz dual-diode rectenna and rectenna arrays for wireless remote supply applications." International Journal of Microwave and Wireless Technologies 3, no. 3 (June 2011): 251–58. http://dx.doi.org/10.1017/s1759078711000523.
Full textFernandez-Munoz, Miguel, Mohamed Missous, Mohammadreza Sadeghi, Pablo Luis Lopez-Espi, Rocio Sanchez-Montero, Juan Antonio Martinez-Rojas, and Efren Diez-Jimenez. "Fully Integrated Miniaturized Wireless Power Transfer Rectenna for Medical Applications Tested inside Biological Tissues." Electronics 13, no. 16 (August 10, 2024): 3159. http://dx.doi.org/10.3390/electronics13163159.
Full textShrestha, Sika, Sun-Kuk Noh, and Dong-You Choi. "Comparative Study of Antenna Designs for RF Energy Harvesting." International Journal of Antennas and Propagation 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/385260.
Full textSaeed, Warda, Nosherwan Shoaib, Hammad M. Cheema, and Muhammad U. Khan. "RF Energy Harvesting for Ubiquitous, Zero Power Wireless Sensors." International Journal of Antennas and Propagation 2018 (2018): 1–16. http://dx.doi.org/10.1155/2018/8903139.
Full textXu, Lei Jun, Chang Shuo Wang, and Xue Bai. "Design of an Energy Harvesting Rectenna for Low-Power Wireless Sensor." Applied Mechanics and Materials 687-691 (November 2014): 3391–94. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.3391.
Full textDissertations / Theses on the topic "Rectenna"
Efthymakis, Panagiotis. "A RECTENNA FOR 5G ENERGY HARVESTING." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5485.
Full textTeru, Agboola Awolola. "Efficient rectenna circuits for microwave wireless power transmission." Thesis, University of Fort Hare, 2010. http://hdl.handle.net/10353/481.
Full textSarehraz, Mohammad. "Novel rectenna for collection of infrared and visible radiation." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001124.
Full textTan, Lee Meng Mark. "Efficient rectenna design for wireless power transmission for MAV Applications." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Dec%5FTan%5FMark.pdf.
Full textThesis Advisor(s): David C Jenn, Richard Harkins. Includes bibliographical references (p.119-122). Also available online.
Adami, Salah-Eddine. "Optimisation de la récupération d'énergie dans les applications de rectenna." Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00967525.
Full textEtor, David. "Optimising the structure of metal-insulator-metal diodes for rectenna applications." Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11903/.
Full textLiu, Chun-Yi. "An improved rectenna for wireless power transmission for unmanned air vehicles." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5561.
Full textThis thesis continues an NPS project related to wireless power transmission for micro air vehicles (MAVs). The conversion of radio-frequency (rf) power into usable direct-current (dc) power is performed by a rectifying antenna, or rectenna. The emphasis of this thesis is the simulation and experimental study of various rectenna designs to determine which best provides high efficiency, stable output power, and lightweight design. The analysis of rectenna design focuses on four subsystems: (1) the receiving antenna, (2) the matching sections, (3) the rectification, and (4) the post-rectification filter. Based on the findings of this research, the ultimate rectenna design implements a half-wave dipole antenna that performs full-wave rectification with two diodes. The post-rectification filter is implemented by a capacitor to obtain stable dc power. The final design achieved an efficiency of nearly 66% for input power in the range of 200 mW.
La, Rosa Henrry. "Investigation of a Rectenna element for infrared and millimeter wave application." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002221.
Full textHarouni, Zied. "Conception et caractérisation d'une Rectenna à double polarisation circulaire à 2.45 GHz." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00682898.
Full textDao, Justin. "Development of a Physical and Electronic Model for RuO2 Nanorod Rectenna Devices." ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/543.
Full textBooks on the topic "Rectenna"
C, Brown William. Rectenna technology program: Ultra light 2.45 GHz rectenna and 20 GHz rectenna. [Waltham, MA]: Raytheon Company, 1987.
Find full textModdel, Garret, and Sachit Grover, eds. Rectenna Solar Cells. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1.
Full textKanaujia, Binod Kumar, Neeta Singh, and Sachin Kumar. Rectenna: Wireless Energy Harvesting System. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2536-7.
Full textBrown, Alan M. Final report for construction and testing of a space ready rectenna. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textLuchinin, Viktor, and Sergey Il'in. Biointerface. Conformal nanoenergy. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/2049717.
Full textFay, Edgar H. Lunar orbiting microwave beam power system. [Washington, D.C.]: NASA, 1990.
Find full textModdel, Garret, and Sachit Grover. Rectenna Solar Cells. Springer London, Limited, 2013.
Find full textBook chapters on the topic "Rectenna"
Kanaujia, Binod Kumar, Neeta Singh, and Sachin Kumar. "Rectenna Implementation." In Advances in Sustainability Science and Technology, 99–180. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2536-7_5.
Full textHemour, Simon, Xiaoqiang Gu, and Ke Wu. "Efficiency of Rectenna." In Recent Wireless Power Transfer Technologies via Radio Waves, 95–140. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339243-6.
Full textModdel, Garret. "Will Rectenna Solar Cells Be Practical?" In Rectenna Solar Cells, 3–24. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_1.
Full textZhu, Zixu, Saumil Joshi, Sachit Grover, and Garret Moddel. "Geometric Diodes for Optical Rectennas." In Rectenna Solar Cells, 209–27. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_10.
Full textSabaawi, Ahmed M. A., Charalampos C. Tsimenidis, and Bayan S. Sharif. "Overview of Nanoantennas for Solar Rectennas." In Rectenna Solar Cells, 231–56. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_11.
Full textVandenbosch, Guy A. E., and Zhongkun Ma. "On the Solar Energy Harvesting Efficiency of Nano-antennas." In Rectenna Solar Cells, 257–76. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_12.
Full textChen, P. Y., C. Argyropoulos, and A. Alù. "Optical Antennas and Enhanced Nonlinear Effects." In Rectenna Solar Cells, 277–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_13.
Full textBareiß, Mario, Daniel Kälblein, Peter M. Krenz, Ute Zschieschang, Hagen Klauk, Giuseppe Scarpa, Bernhard Fabel, Wolfgang Porod, and Paolo Lugli. "Large-Area Fabrication of Antennas and Nanodiodes." In Rectenna Solar Cells, 297–311. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_14.
Full textPeriasamy, Prakash, Ryan P. O’Hayre, Joseph J. Berry, David S. Ginley, and Philip A. Parilla. "Point-Contact Metal-Insulator-Metal Architecture: A Facile Approach for Material Screening Studies and Beyond." In Rectenna Solar Cells, 313–36. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_15.
Full textSlafer, W. Dennis. "Techniques for Roll-to-Roll Manufacturing of Flexible Rectenna Solar Cells." In Rectenna Solar Cells, 337–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_16.
Full textConference papers on the topic "Rectenna"
Fairouz, Mohammad. "Voltage-Boosting Rectenna with Enhanced Efficiency." In 2025 IEEE International Conference on Consumer Electronics (ICCE), 1–3. IEEE, 2025. https://doi.org/10.1109/icce63647.2025.10929836.
Full textDenisov, G. G., I. V. Zotova, I. V. Zheleznov, R. M. Rozental, A. S. Sergeev, V. N. Manuilov, and M. Yu Glyavin. "MW-power "Inverted-Gyrotron" Cyclotron-resonance Rectenna." In 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10618455.
Full textShifrin, Y. S., A. I. Luchaninov, V. M. Shokalo, and A. A. Shcherbina. "Spurious Radiation of Rectenna Receiving-Rectifying Elements." In EMC_1994_Wroclaw, 068–72. IEEE, 1994. https://doi.org/10.23919/emc.1994.10833378.
Full textReddaf, Abdelmalek, Mounir Boudjerda, Badreddine Babes, and Islem Bouchachi. "Modeling of Schottky Diode for Rectenna Device." In 2024 International Conference on Advances in Electrical and Communication Technologies (ICAECOT), 1–5. IEEE, 2024. https://doi.org/10.1109/icaecot62402.2024.10829015.
Full textSokolov, V. S., A. S. Maskalskay, M. V. Stepanov, Zh V. Sokolova, A. I. Kukshin, and V. V. Yudin. "TTC OF ALTERNATIVE ENERGY SOURCES BASED ON RECTENN FOR POWER SUPPLY OF EQUIPMENT AND THE USE OF RECTENN FOR THE FORMATION OF THE ANTENNA PART OF DIGITAL ANTENNA ARRAYS OF THE 6G GENERATION." In Actual problems of physical and functional electronics, 197–99. Ulyanovsk State Technical University, 2024. http://dx.doi.org/10.61527/appfe-2024.197-199.
Full textSokolov, V. S., A. S. Maskalskay, M. V. Stepanov, Zh V. Sokolova, A. I. Kukshin, and V. V. Yudin. "DEVELOPMENT OF ALTERNATIVE ENERGY SOURCES BASED ON RECTENN FOR POWER SUPPLY OF EQUIPMENT AND THE USE OF RECTENN TO FORM THE ANTENNA PART OF DIGITAL ANTENNA ARRAYS OF THE 6G GENERATION." In Actual problems of physical and functional electronics, 194–96. Ulyanovsk State Technical University, 2024. http://dx.doi.org/10.61527/appfe-2024.194-196.
Full textZeyghami, Mehdi, Philip D. Myers, D. Yogi Goswami, and Elias Stefanakos. "Selective Emitters Design and Optimization for Energy Harvesting Using Rectennas." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59363.
Full textVisser, Hubregt J. "Miniature rectenna design." In 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES). IEEE, 2017. http://dx.doi.org/10.23919/ropaces.2017.7916326.
Full textPang, Ping, XianQi Lin, ShiLin Liu, XiaoCui Jia, and Ran Xu. "A High-Efficiency 35GHz Rectenna with compact structure for rectenna arrays." In 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2018. http://dx.doi.org/10.1109/apcap.2018.8538263.
Full textSakamoto, Tatsuya, Yu Ushijima, Eisuke Nishiyama, Ichihiko Toyoda, and Masayoshi Aikawa. "Differential Mode Rectenna Array." In 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2012. http://dx.doi.org/10.1109/aps.2012.6348554.
Full textReports on the topic "Rectenna"
Ziolkowski, Richard W. Metamaterial-Based Patch Antennas and Adaptive Rectifying Circuits for High Power Rectenna Applications. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada435786.
Full textBerland, B. Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, Final Report, 1 August 2001-30 September 2002. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/15003607.
Full text