Dissertations / Theses on the topic 'Reduced form Models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Reduced form Models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Monti, Francesca. "Combining structural and reduced-form models for macroeconomic forecasting and policy analysis." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209970.
Full textDoctorat en Sciences économiques et de gestion
info:eu-repo/semantics/nonPublished
Shen, Yichang. "Reduced-order models for geometrically nonlinear vibrations of thin structures." Thesis, Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAE012.
Full textWhen vibrating with large amplitudes, thin structures experience geometric nonlinearity due to the nonlinear relationship between strains and displacements. Because full-order nonlinear analysis on geometrically nonlinear models are computationally very expensive, the derivation of efficient reduced-order models (ROMs) has always been a topic of interest.In this thesis, nonlinear reduction methods for building ROMs with geometric nonlinearity in the framework of the Finite Element (FE) procedure, are investigated. Three non-intrusive nonlinear reduction methods are specifically investigated and systematically compared. They are: implicit condensation and expansion (ICE), modal derivatives (MD), and the reduction to invariant manifold. Theoretical analysis shows that the first two methods can give reliable results only if a slow/fast assumption between slave and master coordinates holds. On the other hand, reduction to invariant manifolds allows proposing a simulation-free reduction method that can be applied without restricting assumptions on the frequencies of the slave modes.Numerical comparisons and numerous applications to continuous structures discretized with the FE procedure, are given subsequently. For application of the invariant manifold-based method, the computation is based on a direct application of the normal form to the physical space and hence to the nodes of the FE mesh, a method recently developed. The examples show the advantages and drawbacks of each reduction method when deriving ROM, and the results of the theoretical comparison are validated.Finally, the analysis of the dynamics of a system with 1:2 internal resonance and cubic nonlinearity is given in the last part of the thesis. The real normal form of the problem is first derived. Then the solution branches of the problem are investigated and compared to simpler solutions with the dynamics truncated at order two. The divergent behaviour of the hardening/softening characteristics for single-mode reduction is investigated with this more complete model
Scherling, Alexander I. "Reduced-Order Reference Models for Adaptive Control of Space Structures." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1199.
Full textKolman, Marek. "Pricing and modeling credit risk." Doctoral thesis, Vysoká škola ekonomická v Praze, 2017. http://www.nusl.cz/ntk/nusl-264720.
Full textZhang, Wenxian. "Direct sensitivity techniques in regional air quality models: development and application." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52941.
Full textOguz, Hatice Dilek. "Pricing Us Corporate Bonds By Jarrow/turnbull (1995) Model." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12611174/index.pdf.
Full textReschreiter, Andreas. "Conventional and indexed UK bond returns and the macroeconomy : an empirical analysis based on asset pricing and reduced form VAR models." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271099.
Full textVogt, Jonas [Verfasser], Dominik [Akademischer Betreuer] Wied, and Walter [Gutachter] Krämer. "Reduced Form Credit Risk Models and the Second Dimension Risk Premium : Technical Foundations, Estimation and Applications / Jonas Vogt. Betreuer: Dominik Wied. Gutachter: Walter Krämer." Dortmund : Universitätsbibliothek Dortmund, 2013. http://d-nb.info/1107778700/34.
Full textGaspar, Raquel M. "Credit risk & forward price models." Doctoral thesis, Stockholm : Economic Research Institute, Stockholm School of Economics [Ekonomiska forskningsinstitutet vid Handelshögskolan i Stockholm] (EFI), 2006. http://www.hhs.se/efi/summary/686.htm.
Full textSlinko, Irina. "Essays in option pricing and interest rate models." Doctoral thesis, Stockholm : Economic Research Institute, Stockholm School of Economics [Ekonomiska forskningsinstitutet vid Handelshögskolan i Stockholm] (EFI), 2006. http://www2.hhs.se/EFI/summary/706.htm.
Full textWinkler, Niklas. "Reduced models for flows in IC-engines." Doctoral thesis, KTH, Förbränningsmotorteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-41496.
Full textQC 20110928
Bryson, James R. "Reduced models for batch and continuous distillation." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319468.
Full textHopkins, Asa Sies Mabuchi Hideo Mabuchi Hideo. "Reduced order models for open quantum systems /." Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-11182008-113904.
Full textZhou, Junjie 1979. "Reduced model for particle laden flow." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17955.
Full textIncludes bibliographical references (p. 133-138).
The flow of thin liquid films on solid surfaces is a significant phenomenon in nature and in industrial processes where uniformity and completeness of wetting are paramount in importance. It is well known that when a clear viscous fluid flows down an inclined surface under gravity, after some time, the initially straight contact line becomes unstable with respect to transverse perturbations. Clear fluid is easier to use in experiments, but industrial processes usually involve particulates in the form of either suspensions or dry granular flows. In this work, we study the flow of a thin film down an inclined plane. The particle-fluid mixture is modeled as a single fluid with effective density and viscosity, depending on the concentration of the particles. Since the flow is slow and the fluid layer is very thin, inertial effects are ignored and a lubrication approximation is applied to simplify the analysis. It is assumed that there is no variation in the transverse direction before the onset of instability, and the fluid properties and velocity are depth averaged to remove the height-dependence. The settling velocity of the particles is hindered by the presence of neighboring particles; this phenomenon is captured by the hindered velocity function that decreases with increasing concentration. The normal component of the settling velocity is neglected in this work and the resulting model is a system of two equations accounting for the film thickness and particle concentration changes as the mixture flows down the plane. Numerical simulations are performed and it is found that the mixtures with higher concentration flow more slowly. Compared to the clear viscous fluid, particle laden flow results in a bump that is much bigger and the size of the bump
(cont.) bump increases with concentration. We also observe that the front edge of the bump travels faster than the trailing edge and the bump width increases. Numerical simulations reveal that an intermediate plateau structure due to the presence of particles is formed behind the smaller bump due to surface tension. This intermediate state depends on the inclination angle and the initial concentration. When the higher order terms in our derived model are dropped, we discover that the resulting reduced model is still able to capture the bulk characteristics of the flow. The reduced model is a 2X2 system of conservation laws, in which the solutions can be obtained through classical shock theory analysis. It is found that our system involves a 1-shock at the trailing edge connected by an intermediate state to a 2-shock at the leading edge. The intermediate state as well as the shock speeds can be solved by shock theory analysis, and their values are found to agree very well with the simulations.
by Junjie Zhou.
S.M.
Reyes, Sotomayor Ricardo. "Stabilized reduced order models for low speed flows." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669102.
Full textEsta tesis presenta un modelo de orden reducido estabilizado paran fluidos a baja velocidad utilizando un enfoque de multiescala variacional. Para desarrollar esta formulación utilizamos el método de elementos finitos para el modelo no reducido y una descomposición en autovalores del mismo para construir la base. Adicional a la formulación del modelo reducido, presentamos dos técnicas que podemos formular al utilizar este enfoque: una reducción adicional del dominio, basada en la reducción de la malla, donde usamos una técnica de refinamiento adaptativa y un esquema de descomposición de dominio para el modelo reducido. Para ilustrar y probar la formulación propuesta, utilizamos cuatro diferentes modelos fisicos: una ecuación de convección-difusión-reacción, la ecuación de Navier-Stokes para fluidos incompresibles, una aproximación de Boussinesq para la ecuación de Navier-Stokes, y una aproximación para números de Mach bajos de la ecuación de Navier-Stokes.
Xu, Shaokang. "Study of reduced kinetic models for plasma turbulence." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX057/document.
Full textTurbulent transport is one of the keys to improve the energy confinement time required for thermonuclear fusion reactors. The description of the kinetic turbulence of the plasma is a problem with 3 spatial coordinates and 3 velocity coordinates. Both theory and simulation of a problem of such high dimensionality are very difficult, and reduced models are helpfull to understand turbulence in Tokamaks. A widely used technique consists into averaging the cyclotron motion, which is much faster than the turbulence time scale. Such a reduction makes it possible to simplify the problem to three spatial coordinates of the particle guide centers, a parallel velocity or energy, and a perpendicular velocity appearing as the adiabatic invariant. Nonlinear gyrokinetic description requires massively parallel high performance numerical simulations. The difficulty lies in the non-linear terms (Poisson hooks) that describe multi-scale interactions, which is a challenge for both theory and simulation. Any reduced approach, based on well-controlled hypotheses, is therefore interesting to develop.On the basis of this ambition, this thesis concerns the turbulence of particles trapped in magnetized plasma. It is a 4D system, obtained after averaging the particle distribution function on cyclotron and bounce motions, which can be considered as a reduced form of standard gyrokinetic theory. We called it "bounce averaged gyrokinetics" during this work. Even if this description is greatly reduced compared to the gyrokinetic theory, nonlinear direct simulation remains a challenge.A description of the nonlinear polar coordinate terms is chosen, with a logarithmic grid along the norm of the wave vector, while the angles are discretized on a regular grid. The use of a logarithmic grid makes it possible to take into account a wide range of wave vectors, so physics on a very small scale. In a similar way to shell models for fluid turbulence, and in order to simplify the system, only the interactions between neighboring shells are considered.In a first step, the study of the linear system is presented, in particular the paraetric dependence of the instability thresholds and the linear growth rate, allowing to recover the strong anisotropy of the growth rates of the trapped ion modes (or TIM) and the modes of trapped electrons (or TEM). These studies also make it possible to validate the non-linear numerical codes with respect to an independently developer eigenvalue solver.In a second step, the isotropic hypothesis for nonlinear terms is used. Thus, there is no exact phase information for such 1D layer models, which leaves with a free parameter in the interaction coefficients. An original power law is evidenced, which is unaffected by the value of the free parameter, measuring the intensity of the nonlinear effects relative to the linear terms.From the simulation of the isotropic model, the phase information appears very important. Since the linear instability is anisotropic for the fusion, the simulation of the anisotropic model is thus carried out in a third time. The numerically resolved system is reduced to a kinetic species, assuming that the other species are adiabatic. Two different systems can thus be studied: kinetic ions + adiabatic electrons and kinetic electrons + adiabatic ions. Different spectra are observed in each of these two cases, and the validity of the adiabatic hypothesis is discussed for each species, based on a kinetic simulation with two species
DESHMUKH, DINAR V. "PHYSICS BASED REDUCED ORDER MODELS FOR FRICTIONAL CONTACTS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1115997302.
Full textMalik, Mohammad Rafi. "Reduced-orderCombustion Models for Innovative Energy Conversion Technologies." Doctoral thesis, Universite Libre de Bruxelles, 2021. https://dipot.ulb.ac.be/dspace/bitstream/2013/318799/4/TOC.pdf.
Full textLe double défi de l'énergie et du changement climatique mettent en avant lanécessité de développer des nouvelles technologies de combustion, étantdonné que les projections les plus réalistes montrent que la plus grandeaugmentation de l'offre d'énergie pour les décennies à venir se fera à partirde combustibles fossiles. Ceci représente donc une forte motivation pour larecherche sur l'efficacité énergétique et les technologies propres. Parmicelles-ci, la combustion sans flamme est un concept nouvellementdéveloppé qui permet d'obtenir des rendements thermiques élevés avecdes économies de carburant tout en maintenant les émissions polluantes àun niveau très bas. L'intérêt croissant pour cette technologie est égalementmotivé par sa grande flexibilité de carburant, ce qui représente uneprécieuse opportunité pour les carburants à faible valeur calorifique, lesdéchets industriels à haute valeur calorifique et les combustibles à based'hydrogène. Etant donné que cette technologie est plutôt récente, elle estde ce fait encore mal comprise. Les solutions d'une application industriellesont très difficiles à transposer à d'autres. Pour améliorer les connaissancesdans le domaine de la combustion sans flamme, il est nécessaire de menerdes études fondamentales sur ce nouveau procédé de combustion afin defavoriser son développement. En particulier, il y a deux différencesmajeures par rapport aux flammes classiques :d’une part, les niveaux deturbulence rencontrés dans la combustion sans flamme sont rehaussés, enraison des gaz de recirculation, réduisant ainsi les échelles de mélange.D'autre part, les échelles chimiques sont augmentées, en raison de ladilution des réactifs. Par conséquent, les échelles turbulentes et chimiquessont du même ordre de grandeur, ce qui conduit à un couplage très fort.Après un examen approfondi de l'état de l'art sur la modélisation de lacombustion sans flamme, le coeur du projet représentera le développementd'une nouvelle approche pour le traitement de l'interaction turbulence /chimie pour les systèmes sans flamme dans le contexte des simulationsaux grandes échelles (Large Eddy Simulations, LES). Cette approche serafondée sur la méthode PCA (Principal Component Analysis) afin d'identifierles échelles chimiques de premier plan du processus d'oxydation. Cetteprocédure permettra de ne suivre sur la grille LES qu'un nombre réduit descalaires non conservés, ceux contrôlant l'évolution du système. Destechniques de régression non-linéaires seront couplées avec PCA afind’augmenter la précision et la réductibilité du modèle. Après avoir été validégrâce à des données expérimentales de problèmes simplifiés, le modèlesera mis à l'échelle afin de gérer des applications plus grandes, pertinentespour la combustion sans flamme. Les données expérimentales etnumériques seront validées en utilisant des indicateurs de validationappropriés pour évaluer les incertitudes expérimentales et numériques.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Di, Donfrancesco Fabrizio. "Reduced Order Models for the Navier-Stokes equations for aeroelasticity." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS603.
Full textThe numerical prediction of aeroelastic systems responses becomes unaffordable when parametric analyses with high-fidelity CFD are required. Reduced order modeling (ROM) methods have therefore been developed in view of reducing the costs of the numerical simulations while preserving a high level of accuracy. The present thesis focuses on the family of projection based methods for the compressible Navier-Stokes equations involving deforming meshes in the case of aeroelastic applications. A vector basis obtained by Proper Orthogonal Decomposition (POD) combined to a Galerkin projection of the system equations is used in order to build a ROM for fluid mechanics. Masked projection approaches are therefore implemented and assessed for different test cases with fixed boundaries in order to provide a fully nonlinear formulation for the projection-based ROMs. Then, the ROM is adapted in the case of deforming boundaries and aeroelastic applications in a parametric context. Finally, a Reduced Order Time Spectral Method (ROTSM) is formulated in order to address the stability issues which involve the projection-based ROMs for fluid mechanics applications
Torres, Leonardo de Gil. "On some reduced order models for packed separation processes." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338703.
Full textAnderson, Sharon Lee. "Reduced order power system models for transient stability studies." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09052009-040743/.
Full textKyriakou, S. "Reduced-bias estimation and inference for mixed-effects models." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10049958/.
Full textPau, George Shu Heng. "Reduced basis method for quantum models of crystalline solids." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40376.
Full textIncludes bibliographical references (p. 203-213).
Electronic structure problems in solids usually involve repetitive determination of quantities of interest, evaluation of which requires the solution of an underlying partial differential equation. We present in this thesis the application of the reduced basis method in accurate and rapid evaluations of outputs associated with some nonlinear eigenvalue problems related to electronic structure calculations. The reduced basis method provides a systematic procedure by which efficient basis sets and computational strategies can be constructed. The essential ingredients are (i) rapidly convergent global reduced basis approximation spaces; (ii) an offline-online computational procedure to decouple the generation and projection stages of the approximation process; and (iii) inexpensive a posteriori error estimation procedure for outputs of interest. We first propose two strategies by which we can construct efficient reduced basis approximations for vectorial eigensolutions - solutions consisting of several eigenvectors. The first strategy exploits the optimality of the Galerkin procedure to find a solution in the span of all eigenvectors at N judiciously chosen samples in the parameter space.
(cont.) The second strategy determines a solution in the span of N vectorial basis functions that are pre-processed to better represent the smoothness of the solution manifold induced by the parametric dependence of the solutions. We deduce from numerical results conditions in which these approximations are rapidly convergent. For linear eigenvalue problems, we construct a posteriori asymptotic error estimators for our reduced basis approximations - extensions on existing work in algebraic eigenvalue problems. We further construct efficient error estimation procedures that allow efficient construction of reduced basis spaces based on the "greedy" sampling procedure. We extend our methods to nonlinear eigenvalue problems, utilizing the empirical interpolation method. We also provide a more efficient construction procedure for the empirical interpolation method. Finally, we apply our methods to two problems in electronic structure calculations - band structure calculations and electronic ground state calculations. Band structure calculations involve approximations of linear eigenvalue problems; we demonstrate the applicability of our methods in the many query limit with several examples related to determination of spectral properties of crystalline solids.
(cont.) Electronic ground state energy calculations based on Density Functional Theory involve approximations of nonlinear eigenvalue problems; we demonstrate the potential of our methods within the context of geometry optimization.
by George Shu Heng Pau.
Ph.D.
Willcox, Karen E. (Karen Elizabeth). "Reduced-order aerodynamic models for aeroelastic control of turbomachines." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9265.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 138-143).
Aeroelasticity is a critical consideration in the design of gas turbine engines, both for stability and forced response. Current aeroelastic models cannot provide high-fidelity aerodynamics in a form suitable for design or control applications. In this thesis low-order, high-fidelity aerodynamic models are developed using systematic model order reduction from computational fluid dynamic (CFD) methods. Reduction techniques are presented which use the proper orthogonal decomposition, and also a new approach for turbomachinery which is based on computing Arnoldi vectors. This method matches the input/output characteristic of the CFD model and includes the proper orthogonal decomposition as a special case. Here, reduction is applied to the linearized two-dimensional Euler equations, although the methodology applies to any linearized CFD model. Both methods make efficient use of linearity to compute the reduced-order basis on a single blade passage. The reduced-order models themselves are developed in the time domain for the full blade row and cast in state-space form. This makes the model appropriate for control applications and also facilitates coupling to other engine components. Moreover, because the full blade row is considered, the models can be applied to problems which lack cyclic symmetry. Although most aeroelastic analyses assume each blade to be identical, in practice variations in blade shape and structural properties exist due to manufacturing limitations and engine wear. These blade to blade variations, known as mistuning, have been shown to have a significant effect on compressor aeroelastic properties. A reduced-order aerodynamic model is developed for a twenty-blade transonic rotor operating in unsteady plunging motion, and coupled to a simple typical section structural model. Stability and forced response of the rotor to an inlet ow disturbance are computed and compared to results obtained using a constant coefficient model similar to those currently used in practice. Mistuning of this rotor and its effect on aeroelastic response is also considered. The simple models are found to inaccurately predict important aeroelastic results, while the relevant dynamics can be accurately captured by the reduced-order models with less than two hundred aerodynamic states. Models are also developed for a low-speed compressor stage in a stator/rotor configuration. The stator is shown to have a significant destabilizing effect on the aeroelastic system, and the results suggest that analysis of the rotor as an isolated blade row may provide inaccurate predictions.
by Karen Elizabeth Willcox.
Ph.D.
Rabin, Gregory S. "A reduced-form statistical climate model suitable for coupling with economic emissions projections." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41672.
Full textIncludes bibliographical references (p. 36-37).
In this work, we use models based on past data and scientific analysis to determine possible future states of the environment. We attempt to improve the equations for temperature and greenhouse gas concentration used in conjunction with the MIT Emissions Prediction and Policy Analysis (EPPA) model or for independent climate analysis based on results from the more complex MIT Integrated Global Systems Model (IGSM). The functions we generate should allow a software system to approximate the environmental variables from the policy inputs in a matter of seconds. At the same time, the estimates should be close enough to the exact values given by the IGSM to be considered meaningful.
by Gregory S. Rabin.
M.Eng.
Shrinivas, Srikrishna. "Reduced-order model identification for long-range prediction /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p1418064.
Full textVithanage, Cheran Malsri. "Graphical models and approximate inference for reduced-complexity digital communications." Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440018.
Full textDergham, Grégory. "Reduced-order models for linear dynamics and control in aerodynamics." Paris, ENSAM, 2011. http://www.theses.fr/2011ENAM0023.
Full textEn aérodynamique, les écoulements décollés sont souvent sujets à de fortes instabilités qui provoquent l'apparition de grosses structures tourbillonnaires. Ces écoulements caractérisés par des instationnarités à basses fréquences sont couramment observés dans les applications aéronautiques et entraînent des effets néfastes tels que d'importantes vibrations des structures ou la génération de bruit. Cette thèse a pour objectif de fournir des modèles d'ordre réduit de tels écoulements aérodynamiques dans le but de concevoir des dispositifs de contrôle optimaux. Un écoulement transitionnel de marche descendante est considéré comme prototype d'écoulement décollé instable. Dans un premier temps, la dynamique linéaire de l'écoulement est étudiée à l'aide d'une analyse de stabilité globale. Nous montrons que l'écoulement amplifie de manière sélective le bruit amont par l'instabilité de Kelvin-Helmholtz. Ensuite, nous utilisons des méthodes de projection pour construire des modèles d'ordre réduit de la dynamique linéaire bidimensionnelle de l'écoulement. Trois approches sont étudiées : (i) l'utilisation des modes globaux les moins stables, (ii) la Décomposition Orthogonale Propre (POD) et (iii) la troncature équilibrée. Cette thèse introduit une méthode des clichés dans le domaine fréquentiel pour calculer les modes contrôlables, observables et équilibrés dominants, ainsi que des techniques pour traiter les systèmes fluides de grande taille. Finalement, nous traitons la question du contrôle en boucle fermée de l'écoulement. Une réduction conséquente des perturbations est obtenue en utilisant une commande Linéaire Quadratique Gaussienne conçue à partir d'un modèle POD
Koc, Birgul. "Numerical Analysis for Data-Driven Reduced Order Model Closures." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103202.
Full textDoctor of Philosophy
In many realistic applications, obtaining an accurate approximation to a given problem can require a tremendous number of degrees of freedom. Solving these large systems of equations can take days or even weeks on standard computational platforms. Thus, lower-dimensional models, i.e., reduced order models (ROMs), are often used instead. The ROMs are computationally efficient and accurate when the underlying system has dominant and recurrent spatial structures. Our contribution to reduced order modeling is adding a data-driven correction term, which carries important information and yields better ROM approximations. This dissertation's theoretical and numerical results show that the new ROM equipped with a closure term yields more accurate approximations than the standard ROM.
Zou, Xi. "Simulation tools for biomechanical applications with PGD-based reduced order models." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/481988.
Full textSpottswood, Stephen Michael. "Identification of nonlinear parameters from experimental data for reduced rrder models." Cincinnati, Ohio : University of Cincinnati, 2006. http://www.ohiolink.edu/etd/view.cgi?ucin1163016945.
Full textTitle from electronic thesis title page (viewed Jan. 26, 2007). Includes abstract. Keywords: sonic fatigue; nonlinear; identification; reduced order modeling. Includes bibliographical references.
Gratton, David 1979. "Reduced-order, trajectory piecewise-linear models for nonlinear computational fluid dynamics." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16658.
Full textIncludes bibliographical references (p. 75-79).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Computational fluid dynamics (CFD) is now widely used throughout the fluid dynamics community and yields accurate models for problems of interest. However, due to its high computational cost, CFD is limited for some applications. Therefore, model reduction has been used to derive low-order models that replicate CFD behavior over a restricted range of inputs, and various frameworks have been developed. Unfortunately, the majority of those methods are limited to linear cases and do not properly handle reduction of nonlinear systems. In order to overcome restrictions of weak nonlinearity and the costly representation of the system's nonlinearity found in other nonlinear reduction approaches, a trajectory piecewise-linear (TPWL) scheme is developed for a CFD model of the two-dimensional Euler equations. The approach uses a weighted combination of linearized models to represent the nonlinear CFD system. Using a set of training trajectories obtained via a simulation of the nonlinear CFD model, algorithms are presented for linearization point selection and weighting of the models. Using the same training trajectories to provide a snapshot ensemble, the proper orthogonal decomposition (POD) is used to create a reduced-space basis, onto which the TPWL model is projected. This projection yields an efficient reduced-order model of the nonlinear system, which does not require the evaluation of any full-order system residuals, while capturing a large portion of the nonlinear space. The method is applied to the case of flow through an actively controlled supersonic diffuser. Convergence of the TPWL approach is presented for both full-order and reduced-order cases.
(cont.) The TPWL approach and the POD combine naturally to form an efficient reduction procedure and the methodology is found to yield accurate results, including cases with significant shock motion. Reduced-order PWL models are shown to be three orders of magnitude more efficient than the nonlinear CFD for simulation of a representative test case.
by David Gratton.
S.M.
Bradley, Andreas. "CFD Simulations for Film Cooling : Reduced Models at Engine Like Conditions." Licentiate thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-91716.
Full textIn the printed and electornic version is the ISBN incorrect: 978-97-7519-608-4. Correct ISBN is 978-91-7519-608-4.
Aversano, Gianmarco. "Development of physics-based reduced-order models for reacting flow applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC095/document.
Full textWith the final objective being to developreduced-order models for combustion applications,unsupervised and supervised machine learningtechniques were tested and combined in the workof the present Thesis for feature extraction and theconstruction of reduced-order models. Thus, the applicationof data-driven techniques for the detection offeatures from turbulent combustion data sets (directnumerical simulation) was investigated on two H2/COflames: a spatially-evolving (DNS1) and a temporallyevolvingjet (DNS2). Methods such as Principal ComponentAnalysis (PCA), Local Principal ComponentAnalysis (LPCA), Non-negative Matrix Factorization(NMF) and Autoencoders were explored for this purpose.It was shown that various factors could affectthe performance of these methods, such as the criteriaemployed for the centering and the scaling of theoriginal data or the choice of the number of dimensionsin the low-rank approximations. A set of guidelineswas presented that can aid the process ofidentifying meaningful physical features from turbulentreactive flows data. Data compression methods suchas Principal Component Analysis (PCA) and variationswere combined with interpolation methods suchas Kriging, for the construction of computationally affordablereduced-order models for the prediction ofthe state of a combustion system for unseen operatingconditions or combinations of model input parametervalues. The methodology was first tested forthe prediction of 1D flames with an increasing numberof input parameters (equivalence ratio, fuel compositionand inlet temperature), with variations of the classicPCA approach, namely constrained PCA and localPCA, being applied to combustion cases for the firsttime in combination with an interpolation technique.The positive outcome of the study led to the applicationof the proposed methodology to 2D flames withtwo input parameters, namely fuel composition andinlet velocity, which produced satisfactory results. Alternativesto the chosen unsupervised and supervisedmethods were also tested on the same 2D data.The use of non-negative matrix factorization (NMF) forlow-rank approximation was investigated because ofthe ability of the method to represent positive-valueddata, which helps the non-violation of important physicallaws such as positivity of chemical species massfractions, and compared to PCA. As alternative supervisedmethods, the combination of polynomial chaosexpansion (PCE) and Kriging and the use of artificialneural networks (ANNs) were tested. Results from thementioned work paved the way for the developmentof a digital twin of a combustion furnace from a setof 3D simulations. The combination of PCA and Krigingwas also employed in the context of uncertaintyquantification (UQ), specifically in the bound-to-bounddata collaboration framework (B2B-DC), which led tothe introduction of the reduced-order B2B-DC procedureas for the first time the B2B-DC was developedin terms of latent variables and not in terms of originalphysical variables
Huang, Xinming. "Development of Reduced-Order Flame Models for Prediction of Combustion Instability." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/29763.
Full textPh. D.
Kang, Lei. "Reduced-Dimension Hierarchical Statistical Models for Spatial and Spatio-Temporal Data." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259168805.
Full textSPOTTSWOOD, STEPHEN MICHAEL. "IDENTIFICATION OF NONLINEAR PARAMETERS FROM EXPERIMENTAL DATA FOR REDUCED ORDER MODELS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1163016945.
Full textVounou, Maria. "Sparse reduced-rank regression for imaging genetics studies : models and applications." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9254.
Full textAlqatari, Samar(Samar Ali A. ). "Reduced-dimension model for the Rayleigh-Taylor instability in a Hele-Shaw cell." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122316.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 93-94).
In this thesis we present a reduced-dimension model for the density-driven hydrodynamic Rayleigh-Taylor instability. We motivate the project with experimental findings of a little-understood stabilizing effect of geometry and deviations of measured instability wavelength from theoretical predictions. We present novel methods of data analysis for the experimental data. We then present a reduced-dimension model for the governing equations of the system, Stoke's equations and Fick's law, using polynomial trial functions. We discuss the results and conduct a linear stability analysis of the reduced system. We compare the model to a finite element simulation of the full governing equations using COMSOL, and propose an optimization framework for the basis functions of the reduced model. The reduced model helps in developing physical intuition for the behavior of the instability in this confined geometry, and understanding the effects of certain parameters that are difficult to study experimentally or by simulating the full equations.
by Samar Alqatari.
S.M.
S.M. Massachusetts Institute of Technology, Computation for Design and Optimization Program
Caraballo, Edgar J. "Reduced Order Model Development For Feedback Control Of Cavity Flows." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1225291592.
Full textLeroy, Thomas. "Reduced models and numerical methods for kinetic equations applied to photon transport." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066047/document.
Full textThe modeling of inertial confinement experiments involves kinetic equations whose discretization can become very costly. The research of reduced models allows to decrease the size and the complexity of these systems. The mathematical justification of such reduced models becomes an important issue. In this work we study several reduced models for the transfer equation in several contexts, from the theoretical and numerical point of view. In particular we study the relativistic transfer equation in the non-equilibrium diffusion regime, and we prove the convergence of the solution of this equation to the solution of a drift diffusion equation, in which the Doppler effects are modeled by a frequency transport term. This transport equation is discretized by a new class of well-balanced schemes, and we show that these schemes are consistant as the wave velocity tends to zero, by opposition to the Greenberg-Leroux type schemes. We also study several original reduced models for the Compton scattering (inelastic electron-photon collision). A hierarchy of nonlinear kinetic equations generalizing the Kompaneets equation for anisotropic distributions are derived and their properties are studied. The M_1 and P_1 angular moments models are derived from one of these equations, and we show that the anisotropic part of a radiation beam can modify the Bose condensation phenomena observed by caflisch and Levermore. This work ends with the reports of two side projects. The first one is a technical proof of the uniform convergence of the Gosse-Toscani scheme on unstructured meshes. This scheme is asymptotic preserving, since it preserves at the discrete level the diffusion limit of the hyperbolic heat equation, and this proof on unstructured meshes in 2D is original. The second one is devoted to the derivation of a kinetic model for the electron-ion Bremsstrahlung that preserves the thermal limit
Li, Zhengrong. "Model-based Tests for Standards Evaluation and Biological Assessments." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/29108.
Full textPh. D.
Nadalina, Jafabadi Hossein. "Investigation of Film Cooling Strategies CFD versus Experiments -Potential for Using Reduced Models." Thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-61263.
Full textKingravi, Hassan. "Reduced-set models for improving the training and execution speed of kernel methods." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51799.
Full textSyrén, Ludvig. "A method for introducing flexibility in rigid multibodies from reduced order elastic models." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160417.
Full textCooper, Rachel Gray. "Augmented Neural Network Surrogate Models for Polynomial Chaos Expansions and Reduced Order Modeling." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103423.
Full textMaster of Science
The world is an elaborate system of relationships between diverse processes. To accurately represent these relationships, increasingly complex models are defined to better match what is physically seen. These complex models can lead to issues when trying to use them to predict a realistic outcome, either requiring immensely powerful computers to run the simulations or long amounts of time to present a solution. To fix this, surrogates or approximations to these complex models are used. These surrogate models aim to reduce the resources needed to calculate a solution while remaining as accurate to the more complex model as possible. One way to make these surrogate models is through neural networks. Neural networks try to simulate a brain, making connections between some input and output given to the network. In the case of surrogate modeling, the input is some current state of the true process, and the output is what is seen later from the same system. But much like the human brain, the reasoning behind why choices are made when connecting the input and outputs is often largely unknown. Within this paper, we seek to add meaning to neural network surrogate models in two different ways. In the first, we change what each piece in a neural network represents to build large polynomials (e.g., $x^5 + 4x^2 + 2$) to approximate the larger complex system. We show that the building of these polynomials via neural networks performs much better than traditional ways to construct them. For the second, we guide the choices made by the neural network by enforcing restrictions in what connections it can make. We do this by using additional information from the larger system to ensure the connections made focus on the most important information first before trying to match the less important patterns. This guiding process leads to more information being captured when the surrogate model is compressed into only a few dimensions compared to traditional methods. Additionally, it allows for a faster learning time compared to similar surrogate models without the information.
Taghipour, Ehsan. "Development of Reduced-Order Computational Models for Digital Manufacturing of Flexible Wire Harnesses." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543404707742968.
Full textFaller, Kenneth John II. "Automated synthesis of a reduced-parameter model for 3D digital audio." FIU Digital Commons, 1996. http://digitalcommons.fiu.edu/etd/3245.
Full textBrendlinger, Jack W. "Development of Guidance Laws for a Reduced Order Dynamic Aircraft Model." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1516106170428761.
Full textTracy, Jacob N. "Reduced-Dimension Groundwater Model Emulation for Scenario Analysis and Decision Support." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573574885505114.
Full text