Academic literature on the topic 'Réduction des systèmes différentiels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Réduction des systèmes différentiels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Réduction des systèmes différentiels"
Nourrigat, Jean. "Réduction microlocale des systèmes d'opérateurs pseudo-différentiels." Annales de l’institut Fourier 36, no. 3 (1986): 83–108. http://dx.doi.org/10.5802/aif.1061.
Full textCherruault, Y., and I. Karpouzas. "Une méthode de réduction des variables appliquée au contrôle optimal de systèmes gouvernés par des équations différentielles." RAIRO - Operations Research 21, no. 1 (1987): 51–64. http://dx.doi.org/10.1051/ro/1987210100511.
Full textMalgrange, Bernard. "L'involutivité générique des systèmes différentiels analytiques." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 7 (April 1998): 863–66. http://dx.doi.org/10.1016/s0764-4442(98)80051-7.
Full textBlouza, Adel, Frédéric Coquel, and François Hamel. "Réduction algorithmique de systèmes cinétiques raides." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 327, no. 12 (December 1998): 979–84. http://dx.doi.org/10.1016/s0764-4442(99)80164-5.
Full textCorel, Eduardo. "Relations de Fuchs pour les systèmes différentiels réguliers." Bulletin de la Société mathématique de France 129, no. 2 (2001): 189–210. http://dx.doi.org/10.24033/bsmf.2393.
Full textLaurent, Yves, and Teresa Monteiro Fernandes. "Systèmes différentiels fuchsiens le long d'une sous-variété." Publications of the Research Institute for Mathematical Sciences 24, no. 3 (1988): 397–431. http://dx.doi.org/10.2977/prims/1195175034.
Full textCorel, Eduardo. "Inégalités de Fuchs pour les systèmes différentiels réguliers." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, no. 11 (June 1999): 983–86. http://dx.doi.org/10.1016/s0764-4442(99)80310-3.
Full textCorel, Eduardo. "Relations de Fuchs pour les systèmes différentiels irréguliers." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, no. 4 (August 2001): 297–300. http://dx.doi.org/10.1016/s0764-4442(01)02060-2.
Full textVAILLANT, Jean. "Invariants des systèmes d'opérateurs différentiels et sommes formelles asymptotiques." Japanese journal of mathematics. New series 25, no. 1 (1999): 1–153. http://dx.doi.org/10.4099/math1924.25.1.
Full textRossari, Corinne, and Jacques Jayez. "Donc et les Consécutifs. Des Systèmes de Contraintes Différentiels." Lingvisticæ Investigationes. International Journal of Linguistics and Language Resources 20, no. 1 (January 1, 1996): 117–43. http://dx.doi.org/10.1075/li.20.1.06ros.
Full textDissertations / Theses on the topic "Réduction des systèmes différentiels"
Abbas, Hassane. "Contribution à l'étude de la réduction formelle des systèmes différentiels méromorphes linéaires." Phd thesis, Grenoble INPG, 1993. http://tel.archives-ouvertes.fr/tel-00343445.
Full textSaadé, Joelle. "Méthodes symboliques pour les systèmes différentiels linéaires à singularité irrégulière." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0065.
Full textThis thesis is devoted to symbolic methods for local resolution of linear differential systems with coefficients in K = C((x)), the field of Laurent series, on an effective field C. More specifically, we are interested in effective algorithms for formal reduction. During the reduction, we are led to introduce algebraic extensions of the field of coefficients K (algebraic extensions of C, ramification of the variable x) in order to obtain a finer structure. From an algorithmic point of view, it is preferable to delay as much as possible the introduction of these extensions. To this end, we developed a new algorithm for formal reduction that uses the ring of endomorphisms of the system, called "eigenring". Using the formal classification given by Balser-Jurkat-Lutz, we deduce the structure of the eigenring of an indecomposable system. These theoretical results allow us to construct a decomposition on the base field K that separates the different exponential parts of the system and thus allows us to isolate, in indecomposable subsystems in K, the different algebraic extensions that can appear in order to treat them separately. In a second part, we are interested in Miyake’s algorithm for formal reduction. This algorithm is based on the computation of the Volevic weight and numbers of the valuation matrix of the system. We provide interpretations in graph theory and tropical algebra of the Volevic weight and numbers, and thus obtain practically efficient methods using linear programming. This completes a fundamental step in the Miyake reduction algorithm. These different algorithms are implemented as libraries for the computer algebra software Maple. Finally, we present a discussion on the performance of the reduction algorithm using the eigenring as well as a comparison in terms of timing between our implementation of Miyake’s reduction algorithm by linear programming and the algorithms of Barkatou and Pflügel
Eichenmüller, Gérard. "Réduction et intégration symbolique des systèmes d'équations différentielles non-linéaires." Phd thesis, Université Joseph Fourier (Grenoble), 2000. http://tel.archives-ouvertes.fr/tel-00006744.
Full textSaadane, Allal. "Réduction des systèmes linéaires périodiques : application à la commande." Lille 1, 1990. http://www.theses.fr/1990LIL10083.
Full textMonfreda, Fabien. "Étude et résolution d'équations différentielles algébriques avec applications en génie des procédés." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2212/.
Full textThis thesis deals with the study and the resolution of several classes of differential algebraic equations (DAEs), especially involved in the process engineering field. DAEs are general differential systems which include ordinary differential equations. We establish in this work a new resolution method for linear and quasilinear DAEs. The method, called the deflation method, is an iterative symbolic process which transforms DAEs into either constrained differential equations or algebraic equations. The deflation method is provided by a symbolic algorithm. We analyse properties of this algorithm in detail. The first chapter of the thesis describes the most significant resolution methods of DAEs known in the actual literature. These methods are presented and illustrated. In the second chapter, the deflation method is studied. We show the geometric aspect of the deflation method (the method preserves the geometry of the studied systems) through the study of the equations of the n-pendulum. The deflation method is used on constrained multibody systems. We also show how the Kronecker index decreases during the application of the method. In the last chapter, we solve quasilinear DAEs provided by Rayleigh distillation models
Maddah, Sumayya Suzy. "Formal reduction of differential systems : Singularly-perturbed linear differential systems and completely integrable Pfaffian systems with normal crossings." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0065/document.
Full textIn this thesis, we are interested in the local analysis of singularly-perturbed linear differential systems and completely integrable Pfaffian systems in several variables. Such systems have a vast literature and arise profoundly in applications. However, their symbolic resolution is still open to investigation. Our approaches rely on the state of art of formal reduction of singular linear systems of ordinary differential equations (ODS) over univariate fields. In the case of singularly-perturbed linear differential systems, the complications arise mainly from the phenomenon of turning points. We extend notions introduced for the treatment of ODS to such systems and generalize corresponding algorithms to construct formal solutions in a neighborhood of a singularity. The underlying components of the formal reduction proposed are stand-alone algorithms as well and serve different purposes (e.g. rank reduction, classification of singularities, computing restraining index). In the case of Pfaffian systems, the complications arise from the interdependence of the multiple components which constitute the former and the multivariate nature of the field within which reduction occurs. However, we show that the formal invariants of such systems can be retrieved from an associated ODS, which limits computations to univariate fields. Furthermore, we complement our work with a rank reduction algorithm and discuss the obstacles encountered. The techniques developed herein paves the way for further generalizations of algorithms available for univariate differential systems to bivariate and multivariate ones, for different types of systems of functional equations
Videcoq, Etienne. "Problèmes inverses en diffusion thermique instationnaire : résolution par représentation d'état et apport de la réduction de modèle." Poitiers, 1999. http://www.theses.fr/1999POIT2355.
Full textDeya, Aurélien. "Etude de systèmes différentiels fractionnaires." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10070/document.
Full textThis PhD thesis work is devoted to the study of some finite and infinite-dimensional differential systems driven by Hölder processes. The general strategy consists in adapting the rough paths methods, originally designed to handle standard systems only. More specifically, we consider the case of the Volterra systems, as well as the case of heat equations. This work also focuses on the spin-offs of the rough paths approach as far as stochastic systems are concerned, with a special attention to the fractional Brownian motion. Finally, a detailed analysis of several approximation schemes for the solutions is provided
Mahir, Mohammed. "Sur l'intégrabilité des systèmes différentiels." Lille 1, 2005. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2005/50376-2005-29.pdf.
Full textÜrgüplü, Belma Asli. "Contributions to symbolic effective qualitative analysis of dynamical systems : application to biochemical reaction networks." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10013/document.
Full textThe goal of my research is to make algorithmic, as much as possible, the study of models composed by parametric differential equations. I focus on the algorithms based on expanded Lie point symmetries for medium size (about twenty variables) models. I present two exact simplification methods: the reduction of the number of variables of a model and its reparametrization in order to distinguish the roles of its parameters. Simplified systems are equivalent to the original ones by implicit or explicit relationships (according to the chosen method). These algorithms, thanks to some computational strategies and restriction of studied objects, are of polynomial time complexity in the input size. They are implemented in the MABSys and the ExpandedLiePointSymmetry packages. Simplified models resulting from these methods allow to perform more easily various studies such as symbolic or numerical qualitative analysis. I illustrate my work on a family of genetic networks with a single self-regulated gene by a complete symbolic qualitative analysis. Even if my principal application example belongs to genetic regulatory networks field, the methods presented in my work are not limited to intracellular biology
Books on the topic "Réduction des systèmes différentiels"
Pham, Frédéric. Singularités des systèmes différentiels de Gauss-Manin. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-1457-9.
Full textPham, Frédéric. Singularités des systèmes différentiels de Gauss-Manin. Springer, 2014.
Find full textRelier la réforme des systèmes de sécurité et la réduction de la violence armée. OECD, 2011. http://dx.doi.org/10.1787/9789264119987-fr.
Full text1956-, Gill Ravinderpal Singh, and Canada. Agriculture et agroalimentaire Canada., eds. Possibilités de réduction de la consommation d'énergie non renouvelable dans les systèmes de production agricole des prairies canadiennes. Ottawa, Ont: Agriculture et agroalimentaire Canada, 2001.
Find full textGardner, Robert B., Robert L. Bryant, P. A. Griffiths, S. S. Chern, and Hubert L. Goldschmidt. Exterior Differential Systems. Springer, 2011.
Find full textBook chapters on the topic "Réduction des systèmes différentiels"
de Monvel, L. Boutet. "Indice des systèmes différentiels." In Lecture Notes in Mathematics, 1–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/bfb0073465.
Full textPham, Frederic. "Introduction." In Singularités des systèmes différentiels de Gauss-Manin, 1–23. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-1457-9_1.
Full textPham, F. "Point de Vue Algebrique sur les Systemes Differentiels Lineaires." In Singularités des systèmes différentiels de Gauss-Manin, 25–170. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-1457-9_2.
Full textChan, Lo Kam. "Exposants de Gauss — Manin." In Singularités des systèmes différentiels de Gauss-Manin, 171–212. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-1457-9_3.
Full textPham, F. "Microlocalisation." In Singularités des systèmes différentiels de Gauss-Manin, 213–305. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-1457-9_4.
Full textMaisonobe, Ph, and J. E. Rombaldi. "Solutions du Systeme de Gauss-Manin D’un Germe de Fonction a Point Critique Isole." In Singularités des systèmes différentiels de Gauss-Manin, 307–39. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-1457-9_5.
Full text"II. Systèmes différentiels." In Thèmes pour l'Agrégation de mathématiques, 85–158. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2393-2-003.
Full text"II. Systèmes différentiels." In Thèmes pour l'Agrégation de mathématiques, 85–158. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2393-2.c003.
Full text"Chapitre VII. Systèmes différentiels linéaires." In Analyse numérique et équations différentielles, 213–38. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2004-7-008.
Full text"Chapitre VII. Systèmes différentiels linéaires." In Analyse numérique et équations différentielles, 213–38. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2004-7.c008.
Full text