Dissertations / Theses on the topic 'Reflectance fields'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 25 dissertations / theses for your research on the topic 'Reflectance fields.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Johansson, Erik. "3D Reconstruction of Human Faces from Reflectance Fields." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2365.
Full textHuman viewers are extremely sensitive to the appearanceof peoples faces, which makes the rendering of realistic human faces a challenging problem. Techniques for doing this have continuously been invented and evolved since more than thirty years.
This thesis makes use of recent methods within the area of image based rendering, namely the acquisition of reflectance fields from human faces. The reflectance fields are used to synthesize and realistically render models of human faces.
A shape from shading technique, assuming that human skin adheres to the Phong model, has been used to estimate surface normals. Belief propagation in graphs has then been used to enforce integrability before reconstructing the surfaces. Finally, the additivity of light has been used to realistically render the models.
The resulting models closely resemble the subjects from which they were created, and can realistically be rendered from novel directions in any illumination environment.
Gutsche, Marcel [Verfasser], and Christoph [Akademischer Betreuer] Garbe. "Light Fields Reconstructing Geometry and Reflectance Properties / Marcel Gutsche ; Betreuer: Christoph Garbe." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252864/34.
Full textAng, Jason. "Offset Surface Light Fields." Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/1100.
Full textSanches, Ieda Del'Arco. "Hyperspectral proximal sensing of the botanical composition and nutrient content of New Zealand pastures : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science." Massey University, 2009. http://hdl.handle.net/10179/1194.
Full textLaMarr, John Henry. "Diffuse light correction for field reflectance measurements." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/279899.
Full textKusumo, Bambang Hari. "Development of field techniques to predict soil carbon, soil nitrogen and root density from soil spectral reflectance : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1015.
Full textDavis, Michael H. "A CCD based bidirectional spectral reflectance field instrument /." Online version of thesis, 1990. http://hdl.handle.net/1850/10935.
Full textMacArthur, Alasdair Archibald. "Field spectroscopy and spectral reflectance modelling of Calluna vulgaris." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6253.
Full textJenkins, Toni E. "Introgression of genes from rape to wild turnip." Lincoln University, 2005. http://hdl.handle.net/10182/1844.
Full textBryant, Chet Kaiser. "Chemical vapor identification using field-based attenuated total reflectance Fourier transform infrared detection and solid phase microextraction /." Download the dissertation in PDF, 2005. http://www.lrc.usuhs.mil/dissertations/pdf/Bryant2005.pdf.
Full textLouw, Markus. "A population Monte Carlo approach to estimating parametric bidirectional reflectance distribution functions through Markov random field parameter estimation." Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/5179.
Full textKim, Youngmin. "Optical studies of the charge localization and delocalization in conducting polymers." Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1104360957.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvi, 145 p.; also includes graphics (some col.) Includes bibliographical references (p. 137-145).
Kulkarni, Anil Vishnupant. "A field study of the visible and near-infrared spectral reflectance and attenuation of solar radiation by snow / by Anil Vishnupant Kulkarui." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66224.
Full textWang, Huan, and Huan Wang. "Flow Field Penetration in Thin Nanoporous Polymer Films under Laminar Flow by Förster Resonance Energy Transfer Coupled with Total Internal Reflectance Fluorescence Microscopy." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/565916.
Full textBuchhorn, Marcel. "Ground-based hyperspectral and spectro-directional reflectance characterization of Arctic tundra vegetation communities : field spectroscopy and field spectro-goniometry of Siberian and Alaskan tundra in preparation of the EnMAP satellite mission." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/7018/.
Full textDie arktische Tundra ist mit circa 5,5 % der Landoberfläche eines der letzten großen verbliebenen fast unberührten Ökosysteme unserer Erde. Nur die Fernerkundung ist in der Lage, benötigte Informationen über Struktur und Zustand dieses Ökosystems großräumig und in regelmäßigen Zeitabständen zur Verfügung zu stellen. Aber fast alle natürlichen Oberflächen zeigen individuelle anisotrope Reflexionsverhaltensweisen, welche durch die bidirektionale Reflektanzverteilungsfunktion (englisch: BRDF) beschrieben werden können. Dieser Effekt kann zu erheblichen Veränderungen im gemessenen Reflexionsgrad der Oberfläche in Abhängigkeit von den solaren Beleuchtung- und Blickrichtungsgeometrien führen. Zielstellung dieser Arbeit ist die hyperspektrale und spektro-direktionale Charakterisierung der Oberflächenreflexion wichtiger und repräsentativer arktischer Pflanzengesellschaften in Sibirien und Alaska, als Grundlage für die Extraktion von Vegetationsparametern und die Normalisierung von BRDF-Effekten in Off-Nadir und multi-temporalen Fernerkundungsdaten. In Vorbereitung auf die bevorstehende nationale EnMAP Satellitenmission ist ein Grundverständnis der BRDF-Effekte in der arktischen Tundra von wesentlicher Bedeutung für die Erstellung von hochqualitativen, konsistenten und damit vergleichbaren Datensätzen. Die in dieser Arbeit genutzten Daten beruhen auf geländespektroskopische und geländespektro-goniometrische Untersuchungen von repräsentativen Messflächen in Sibirien und Alaska. Die Entwicklung eines leichten, transportablen und einfach anzuwendenden Geländespektro-Goniometers, welches dennoch zuverlässig Daten liefert, war die erste Aufgabe. Hierfür habe ich ein Gerät mit der Bezeichnung ManTIS („Manual Transportable Instrument platform for ground-based Spectro-directional observations“) entwickelt. Die Ergebnisse der geländespektro-radiometrischen Messungen entlang wichtiger ökologischer Gradienten (regionales Klima, pH-Wert des Bodens, Bodenfeuchte, Toposequenz) zeigen, dass die Pflanzengesellschaften sich anhand ihrer Nadir-Reflektanzen unterscheiden lassen. Insbesondere die Möglichkeit der Differenzierung im sichtbaren (VIS) blauen und roten Wellenlängenbereich. Die Nah-Infrarot (NIR) Schulter und das NIR-Reflektanzplateau sind trotz ihrer niedrigeren Reflektanzwerte eine wertvolle Informationsquelle, die genutzt werden kann um die Pflanzengesellschaften entsprechend ihrer Biomasse und der Vegetationsstruktur voneinander zu unterscheiden. Im Allgemeinen zeigen die verschiedenen Pflanzengesellschaften der Tundra: (i) eine niedrige maximale NIR-Reflektanz; (ii) ein schwaches oder nicht sichtbares lokales Reflektanzmaximum im grünen VIS-Spektrum; (iii) einen schmalen „red-edge“ Bereich zwischen dem roten und NIR-Wellenlängenbereich und (iv) kein deutliches NIR-Reflektanzplateau. Diese gemeinsamen Nadir-Reflektanzeigenschaften sind entscheidend für das Verständnis der Variabilität der BRDF-Effekte in der arktischen Tundra. Keine der untersuchten Pflanzengesellschaften wies isotrope Reflektanzeigenschaften auf. Im Allgemeinen zeigt Tundravegetation: (i) die höchsten BRDF-Effekte in der solaren Hauptebene; (ii) die maximalen Reflexionsgrade in den rückwärts gerichteten Blickrichtungen; (iii) höhere Grade an Anisotropie im VIS-Spektrum als im NIR-Spektrum und (iv) schüsselförmige Reflexionsgradverteilungen in den längeren Wellenlängenbereichen (>700 nm). Die Analyse des Einflusses von hohen Sonnenzenitwinkeln auf die Anisotropie der Rückstrahlung zeigt, dass sich mit zunehmenden Sonnenzenitwinkeln die Anisotropie-Eigenschaften in azimutal-symmetrische schüsselförmige Reflexionsgradverteilungen ändern. Auch ergeben die spektro-direktionalen Analysen, dass Fernerkundungsprodukte wie der NDVI oder die relative Absorptionstiefe stark von BRDF-Effekten beeinflusst werden. Die anisotropen Eigenschaften der Fernerkundungsprodukte können sich erheblich von den beobachteten BRDF-Effekten in den ursprünglichen Reflektanzdaten unterscheiden. Auch lässt sich aus den Ergebnissen ableiten, dass der NDVI relativ gesehen die blickrichtungsabhängigen BRDF-Effekte minimieren kann. Für die untersuchten Pflanzengesellschaften der Tundra weichen die Off-Nadir NDVI-Werte nie mehr als 10 % von den Nadir-NDVI-Werten ab. Im Resümee dieser Studie wird nachgewiesen, dass Änderungen in der Sonnen-Objekt-Sensor-Geometrie direkt zu Reflektanzveränderungen in den Fernerkundungsdaten von arktischen Pflanzengesellschaften der Tundra entsprechend ihrer objekt-spezifischen BRDF-Charakteristiken führen. Da die verschiedenen Arten der Tundravegetation nur kleine, aber signifikante Unterschiede in der Oberflächenreflektanz zeigen, ist es wichtig die spektro-direktionalen Reflexionseigenschaften bei der Entwicklung von Algorithmen für Fernerkundungsprodukte zu berücksichtigen.
Buchhorn, Marcel [Verfasser], and Hans-Wolfgang [Akademischer Betreuer] Hubberten. "Ground-based hyperspectral and spectro-directional reflectance characterization of Arctic tundra vegetation communities : field spectroscopy and field spectro-goniometry of Siberian and Alaskan tundra in preparation of the EnMAP satellite mission / Marcel Buchhorn. Betreuer: Hans-Wolfgang Hubberten." Potsdam : Universitätsbibliothek der Universität Potsdam, 2014. http://d-nb.info/1049328353/34.
Full textToufarová, Tereza. "Testování prostorové akustiky." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219093.
Full textLo, Justin. "Development of a Wide Field Diffuse Reflectance Spectral Imaging System for Breast Tumor Margin Assessment." Diss., 2012. http://hdl.handle.net/10161/6127.
Full textBreast conserving surgery (BCS) is a common treatment option for breast cancer patients. The goal of BCS is to remove the entire tumor from the breast while preserving as much normal tissue as possible for a better cosmetic outcome after surgery. Specifically, the excised specimen must have at least 2 mm of normal tissue surrounding the diseased mass. Unfortunately, a staggering 20-70% of patients undergoing BCS require repeated surgeries due to the incomplete removal of the tumor diagnosed post-operatively. Due to these high re-excision rates as well as limited post-operative histopathological sampling of the tumor specimen, there is an unmet clinical need for margin assessment. Quantitative diffuse reflectance spectral imaging has previously been explored as a promising, method for providing real-time visual maps of tissue composition to help surgeons determine breast tumor margins to ensure the complete removal of the disease during breast conserving surgery. We have leveraged the underlying sources of contrast in breast tissue, specifically total hemoglobin content, beta-carotene content, and tissue scattering, and developed various fiber optics based spectral imaging systems for this clinical application. Combined with a fast inverse Monte Carlo model of reflectance, previous studies have shown that this technology may be able to decrease re-excision rates for BCS. However, these systems, which all consist of a broadband source, fiber optics probes, an imaging spectrograph and a CCD, have severe limitations in system footprint, tumor area coverage, and speed for acquisition and analysis. The fiber based spectral imaging systems are not scalable to smaller designs that cover a large surveillance area at a very fast speed, which ultimately makes them impractical for use in the clinical environment. The objective of this dissertation was to design, develop, test, and show clinical feasibility of a novel wide field spectral imaging system that utilizes the same scientific principles of previously developed fiber optics based imaging systems, but improves upon the technical issues, such as size, complexity, and speed,to meet the demands of the intra-operative setting.
First, our simple re-design of the system completely eliminated the need for an imaging spectrograph and CCD by replacing them with an array of custom annular photodiodes. The geometry of the photodiodes were designed with the goal of minimizing optical crosstalk, maximizing SNR, and achieving the appropriate tissue sensing depth of up to 2 mm for tumor margin assessment. Without the imaging spectrograph and CCD, the system requires discrete wavelengths of light to launch into the tissue sample. A wavelength selection method that combines an inverse Monte Carlo model and a genetic algorithm was developed in order to optimize the wavelength choices specifically for the underlying breast tissue optical contrast. The final system design consisted of a broadband source with an 8-slot filter wheel containing the optimized set of wavelength choices, an optical light guide and quartz light delivery tube to send the 8 wavelengths of light in free space through the back apertures of each annular photodiode in the imaging array, an 8-channel integrating transimpedance amplifier circuit with a switch box and data acquisition card to collect the reflectance signal, and a laptop computer that controls all the components and analyzes the data.
This newly designed wide field spectral imaging system was tested in tissue-mimicking liquid phantoms and achieved comparable performance to previous clinically-validated fiber optics based systems in its ability to extract optical properties with high accuracy. The system was also tested in various biological samples, including a murine tumor model, porcine tissue, and human breast tissue, for the direct comparison with its fiber optics based counterparts. The photodiode based imaging system achieved comparable or better SNR, comparable extractions of optical properties extractions for all tissue types, and feasible improvements in speed and coverage for future iterations. We show proof of concept in performing fast, wide field spectral imaging with a simple, inexpensive design. With a reduction in size, cost, number of wavelengths used, and overall complexity, the system described by this dissertation allows for a more seamless scaling to higher pixel number and density in future iterations of the technology, which will help make this a clinically translatable tool for breast tumor margin assessment.
Dissertation
Hu, Fang-Yao. "Noninvasive Vascular Characterization with Low-cost, Label-free Optical Spectroscopy and Dark Field Microscopy Enables Head and Neck Cancer Diagnosis and Prognosis." Diss., 2016. http://hdl.handle.net/10161/13397.
Full textWorldwide, head and neck squamous cell cancers (HNSCC) account for over 375,000 deaths annually. The majority of these cancers arise in the outermost squamous cells which progress through a series of precancerous changes before developing into invasive HNSCC. It is widely accepted that prognosis is strongly correlated to the stage of diagnosis, with early detection more than doubling the patient’s chance of survival. Currently, however, 60% of HNSCCs are diagnosed when they have already progressed to stage 3 or stage 4 disease. The current diagnostic method of visual examination often fails to recognize early indicators of HNSCC, thereby missing an important prevention window.
Determination of cancer from non-malignant tissues is dependent on pathological examination of lesion biopsies. Thus, all patients with any clinically suspicious lesions undergo surgical biopsies. Furthermore, these surgical biopsies carry risks. In addition to the risk of general anesthesia for patients undergoing panedoscopy, some patients have poor healing and develop ulcerations or infections as a result of surgical biopsy at any anatomical site. Additionally, studies have shown that approximately 50% of suspected biopsies are later pathologically confirmed normal. An enormous amount of labor, facility, and monetary resources are expended on non-malignant biopsies and patients who ultimately have no malignancy. It would be of immense overall benefit to clinicians and patients to have a non-invasive and portable technique that could rapidly identify those patients that would benefit from further surgical biopsy from those that only need follow-up clinical observations.
Once carcinoma is confirmed in a patient, treatment currently involves modalities of surgery, radiation, and chemotherapy. Radiotherapy plays a significant role, particularly in the management of localized HNSCC, because it is a non-invasive and function-preserving modality. However, the effectiveness of radiotherapy is limited by hypoxia. Previous studies showed that tumors reoxygenated during radiotherapy treatment may have a better prognosis. Despite decades of work, there is still no reliable, cost-effective way for measuring tumor hypoxia over multiple time points to estimate the prognosis.
To address these unmet clinical needs, three aims were proposed. The first aim was to improve early detection by identifying biomarkers of early pre-cancer as well as developing an objective algorithm to detect early disease. Neovasculature is an important biomarker for early cancer diagnosis. Even before the development of a clinically detectable lesion, the tumor vasculature undergoes structural and morphological changes in response to oncogenic signaling pathways [8]. Without receiving a sufficient supply of oxygen and nutrients to proliferate, early tumor growth is limited to only 1-2 mm. High-resolution optical imaging is well suited to characterize the earliest neovascularization changes that accompany neoplasia owing to its sensitivity to hemoglobin absorption and resolution to visualize capillary level architecture. Dark field microscopy is a low-cost and robust method to image the neovasculature. We imaged neovascularization in vivo in a spontaneous hamster oral mucosa carcinogen model using a label-free, reflected-light spectral dark field microscope. Hamsters’ cheek pouches were painted with 7, 12-Dimethylbenz[a]anthracene (DMBA) to induce precancerous to cancerous changes, or mineral oil as control. Spectral dark field images were obtained during carcinogenesis and in control oral mucosa, and quantitative vascular features were computed. Vascular tortuosity increased significantly in oral mucosa diagnosed as hyperplasia, dysplasia and squamous cell carcinoma (SCC) compared to normal. Vascular diameter and area fraction decreased significantly in dysplasia and SCC compared to normal. The areas under the receiver operative characteristic (ROC) curves (AUC) computed using a Support Vector Machine (SVM) were 0.95 and 0.84 for identifying SCC or dysplasia, respectively, vs. normal and hyperplasia oral mucosa combined. To improve AUCs for identifying dysplasia, quantitative vascular features were computed again after the vessels were split into large and small vessels based on diameter. The large vessels preserved the same significant trends, while small vessels demonstrated the opposite trends. Significant increases in diameter and decreases in area fraction were observed in SCC and dysplasia. The AUCs were improved to 0.99 and 0.92 for identifying SCC and dysplasia. These results suggest that dark field vascular imaging is a promising tool for pre-cancer detection.
Optical imaging can also be applied to quantifying other important characteristics of solid tumors in head and neck cancer (HNC), such as hypoxia, abnormal vascularity and cell proliferation. Diffuse reflectance spectroscopy is a simple and robust method to measure tissue oxygenation, vascularity and cell density. It is particularly suitable for applications in the operation room because of its compact design and portability. In addition, a fiber probe-based system is ideal for obtaining measurements at suspicious lesions in the head and neck area during surgery. Thus, my second aim was to reduce the number of unnecessary HNSCC biopsies by developing a robust tool and rapid analysis method appropriate for clinical settings. We propose the use of morphological optical biomarkers for rapid detection of human HNSCC by leveraging the underlying tissue characteristics in the aerodigestive tracts Prior to biopsy, diffuse reflectance spectra were obtained from malignant and contra-lateral non-malignant tissues of 57 patients undergoing panendoscopy. Oxygen saturation (SO2), total hemoglobin concentration ([THb]), and the reduced scattering coefficient were extracted using an inverse Monte Carlo (MC) method previously developed by former student in our lab. Differences in malignant and non-malignant tissues were examined based on two different groupings: by anatomical site and by morphological tissue type. Measurements were acquired from 252 sites, 51 of which were pathologically classified as SCC. Optical biomarkers exhibited statistical differences between malignant and non-malignant samples. Contrast was enhanced when parsing tissues by morphological classification rather than by anatomical subtype for unpaired comparisons. Corresponding linear discriminant models using multiple optical biomarkers showed improved predictive ability when accounting for morphological classification, particularly in node-positive lesions. The false-positive rate was retrospectively found to decrease by 34.2% in morphologically- vs. anatomically-derived predictive models. In glottic tissue, the surgeon exhibited a false-positive rate of 45.7% while the device showed a lower false-positive rate of only 12.4%. Additionally, comparisons of optical parameters were made to further understand the physiology of tumor staging and potential causes of high surgeon false-positive rates. Optical spectroscopy is a user-friendly, non-invasive tool capable of providing quantitative information to discriminate malignant from non-malignant head and neck tissues. Predictive models demonstrated promising results for diagnostics. Furthermore, the strategy described appears to be well suited to reduce the clinical false-positive rate.
To further improve the speed for extracting the tissue oxygenation and [THb] to reduce the time when patients were under anesthesia, the third aim was to develop a rapid heuristic ratiometric analysis for estimating tissue [THb] and SO2 from measured tissue diffuse reflectance spectra. The analysis was validated in tissue-mimicking phantoms and applied to clinical measurements in head and neck, cervical and breast tissues. The analysis works in two steps. First, a linear equation that translates the ratio of the diffuse reflectance spectra at 584 nm to 545 nm to estimate the tissue [THb] using a Monte carlo (MC)-based lookup table was developed. This equation is independent of tissue scattering and oxygen saturation. Second, SO2 was estimated using non-linear logistic equations that translate the ratio of the diffuse reflectance spectra at 539 nm to 545 nm into the tissue SO2. Correlations coefficients of 0.89 (0.86), 0.77 (0.71) and 0.69 (0.43) were obtained for the tissue hemoglobin concentration (oxygen saturation) values extracted using the full spectral MC and the ratiometric analysis, for clinical measurements in head and neck, breast and cervical tissues, respectively. The ratiometric analysis was more than 4000 times faster than the inverse MC analysis for estimating tissue [THb] and SO2 in simulated phantom experiments. In addition, the discriminatory power of the two analyses was similar. These results show the potential of such empirical tools to rapidly estimate tissue hemoglobin and oxygenation for real-time applications.
In addition to its use as a diagnostic marker for various cancers, tissue oxygenation is believed to play a role in the success of cancer therapies, particularly radiotherapy. However, since little effort has been made to develop tools to exploit this relationship, the fourth aim was to estimate patient prognosis by measuring tumor hypoxia over multiple time points so physicians are able to develop more informed and effective clinical treatment plan. To test if oxygenation kinetics correlates with the likelihood for local tumor control following fractionated radiotherapy, we again used diffuse reflectance spectroscopy to noninvasively measure tumor vascular oxygenation and [THb] associated with radiotherapy of 5 daily fractions (7.5, 9 or 13.5 Gy/day) in FaDu xenografts. Spectroscopy measurements were obtained immediately before each daily radiation fraction and during the week after radiotherapy. SO2 and [THb] were computed using an inverse MC model. Oxygenation kinetics during and after radiotherapy, but before a change in tumor volume, was associated with local tumor control. Locally controlled tumors exhibited significantly faster increases in oxygenation after radiotherapy (days 12-15) compared with tumors that recurred locally. (2) Within the group of tumors that recurred, faster increases in oxygenation during radiotherapy (days 3-5) were correlated with earlier recurrence times. An AUC of 0.74 was achieved when classifying the local control tumors from all irradiated tumors using the oxygen kinetics with a logistic regression model. (3) The rate of increase in oxygenation was radiation dose dependent. Radiation doses ≤9.5 Gy/day did not initiate an increase in oxygenation whereas 13.5 Gy/day triggered significant increases in oxygenation during and after radiotherapy. Additional confirmation is required in other tumor models, but these results suggest that monitoring tumor oxygenation kinetics could aid in the prediction of local tumor control after radiotherapy.
Angiogenesis is a highly regulated process to support tissue growth. Neovasculature is designed by nature to grow toward areas lacking nutrition and oxygen. Cancer cells proliferate too quickly to have their nutritional and oxygen needs completely satisfied, which results in an imbalanced state of angiogenesis leading to tortuous blood vessels, hypoxic tissues and radioresistance. We characterized the tumor-induced vascular features with simple, robust and low-cost dark field microscopy and spectroscopy to enable early cancer diagnosis, improvement of surgical biopsy accuracy and better predict the prognosis of radiotherapy for HNC. Our results demonstrated that these noninvasively measured, label-free vascular features are able to detect pre-cancer, reduce unnecessary surgical biopsies and predict prognosis of radiotherapy.
Dissertation
Kim, Iltai. "Label-free mapping of near-field transport properties of micro/nano-fluidic phenomena using surface plasmon resonance (SPR) reflectance imaging." 2008. http://etd.utk.edu/2008/December2008Dissertations/KimIltai.pdf.
Full text(9410594), Ana Gabriela Morales Ona, James Camberato (9410608), and Robert Nielsen (9410614). "Using UAV-Based Crop Reflectance Data to Characterize and Quantify Phenotypic Responses of Maize to Experimental Treatments in Field-Scale Research." Thesis, 2020.
Find full textUnmanned aerial vehicles (UAV) have revolutionized data collection in large scale agronomic field trials (10+ ha). Vegetative index (VI) maps derived from UAV imagery are a potential tool to characterize temporal and spatial treatment effects in a more efficient and non-destructive way compared to traditional data collection methods that require manual sampling. The overall objective of this study was to characterize and quantify maize responses to experimental treatments in field-scale research using UAV imagery. The specific objectives were: 1) to assess the performance of several VI as predictors of grain yield and to evaluate their ability to distinguish between fertilizer treatments, and the effects of removing soil and shadow background, 2) to assess the performance of VI and canopy cover fraction (CCF) as predictors of maize biomass at vegetative and reproductive growth stages under field-scale conditions, and 3) to compare the performance of VI derived from consumer-grade and multispectral sensors for predicting grain yield and identifying treatment effects. For the first objective, the results suggest that most VI were good indicators of grain yield at late vegetative and early reproductive growth stages, and that removing soil background improved the characterization of maize responses to experimental treatments. For objective two, overall, CCF was the best to predict biomass at early vegetative growth stages, while VI at reproductive growth stages. Finally, for objective three, performance of consumer-grade and multispectral derived VI were similar for predicting grain yield and identifying treatment effects.
Wilson, Miranda Hanli. "Assessing the feasiblility of combining reflectance spectrometry with phytogeochemical exploration techniques for the discrimination of three geologies on the Witwatersrand basin gold field, South Africa." Thesis, 2017. https://hdl.handle.net/10539/24936.
Full textMineral exploration is expensive, logistically challenging and can be detrimental to the environment. In addition to the physical disturbed of geological sampling, artisanal miners, charcoal burners and poachers follow in the wake of geological exploration teams, resulting in severe environmental degradation. The remote sensing of geological features is used in conjunction with geophysics to help refine the amount of ground based sampling where the surface geology is exposed (e.g. deserts, barren surfaces and rocky outcrops). However, it is not feasible to use these geological remote sensing techniques the earth’s surface is covered with vegetation. Studies have shown that plants respond to mineral nutrients or conversely toxicities in their growing environment, including metal concentrations in the soil, either through the presence or absence of particular species, or by exhibiting physiological or phenological changes in response to depleted or elevated substrate metal concentrations. The use of plant species composition and foliar elemental contents (methods known collectively as phytogeochemical exploration) have been successfully used to detect ore-bodies. Visible changes in leaf structure and chemical composition as a result of deficiencies in elemental nutrition or toxicities have been well-researched from botanical and soil science aspects, and are widely used for agronomic applications, but have yet to be exploited for mineral exploration. This study assessed the feasibility of using remotely-sensed spectral reflectance signatures of tree foliage to detect changes in substrate elemental concentrations across three geologies on the Witwatersrand Basin. The study comprises of an outcropping metal-rich ore body, the Black Reef (quartzite), flanked by dolomite to the South East and Ventersdorp Lavas to the North West. The soils of these three parent geologies can be expected to exhibit differences in plant nutrient availability, as well as deficiencies or toxicities. Each geology on the study site was characterised and classified into landscape functional types to account for aspect, position on the catena and soils characteristics, all of which could mask, conflict or auto correlate with any observed changes in vegetation stress spectral signatures associated with the changing geology. Three tree species with continuous across the study site were selected: Searsia lancea (L.f.) Moffet (previously Rhus lancea), Euclea crispa (Thunb.) Guerke var crispa and Acacia karroo Hayne. The study determined how the foliar and substrate elemental concentrations and uptake ratios differed between the three tree species, the three geologies and the landscape functional types. The study then related plant spectral response of three tree species to geology, landscape function type and to the foliar and substrate elemental content. Soil elemental concentrations were analysed and it was found that the three parent geologies could be classified by their relative concentrations of Mn, Cr, Ti, Cu Cr, Pb, Ba, Fe, and Zr in the soils. The findings revealed that the plants showed changes in physiological status associated with geology which were detectable through the use of vegetation indices. The study made use of eight different vegetation indices (NDVI, NDWI, PSRI, Red-edge NDVI, red-edge position, red-edge inflection point, and the 725/702 ratio of the first and second derivative), derived from handheld hyperspectral data. The three species differed in their spectral response to the changes in geology and in their stress response to elevated metal content on the Black Reef (p < 0.05). Regression (linear and non-parametric) was used to identify which foliar and substrate elemental concentrations most affected spectral response. The A. karroo samples were found to be most affected by Mn, Ti, Fe and Sr. The S. lancea samples were found to be most affected by As, Cu, Pb and Sn and the E. crispa response was found to be most affected by Cu, Mn, Na, Ni, Rb, Zn, and Zr (p < 0.01). In order to identify the changes in geology, it was found to be necessary to first classify the spectral response of the three species, and then detect spectral variations within each species class, as the species-specific spectral responses to changes in geology were significantly different (p< 0.05). The study successfully classified the three tree species according to their spectral response through the combined use of the eight vegetation indices. However, it was found that a subset of the samples which had either much higher or much lower elemental concentrations in the leaves and soils than the remaining samples for that species, showed a plant stress response which affected the spectral response of the plants sufficiently to result in an incorrect species classification. In conclusion, the finding of this study showed that VIs can be used to detect differences in spectral response between trees growing on different geologies. It was found that the combination of vegetation indices can be used to determine a “typical” spectral response per species, but that where the growing conditions were particularly stressful, the stress response could alter the plant spectral response sufficiently to result in a misclassification of the sample by species. Further work is required to validate this observation, and to investigate how more sophisticated spectral analysis could be used to distinguish between taxonomic and substrate induced spectral variation, before it would be possible to scale this work up to a canopy-scale remote sensing tool.
XL2018
"Field spectroscopy of plant water content in Eucalyptus grandis forest stands in KwaZulu-Natal, South Africa." Thesis, 2008. http://hdl.handle.net/10413/263.
Full textThesis (M.Sc.) - University of KwaZulu-Natal, Pietermaritzburg, 2008.
(9224231), Dongdong Ma. "Ameliorating Environmental Effects on Hyperspectral Images for Improved Phenotyping in Greenhouse and Field Conditions." Thesis, 2020.
Find full textČervená, Lucie. "Využití laboratorní/terénní spektroskopie a obrazových dat dálkového průzkumu Země pro studium vegetace." Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-391375.
Full text