Academic literature on the topic 'Reflection amplifier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reflection amplifier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reflection amplifier"
Chan, Pak, and Vincent Fusco. "Full duplex reflection amplifier tag." IET Microwaves, Antennas & Propagation 7, no. 6 (2013): 415–20. http://dx.doi.org/10.1049/iet-map.2012.0441.
Full textPochiraju, T., and V. Fusco. "Reflection amplifier phase conjugation properties." Electronics Letters 46, no. 12 (2010): 850. http://dx.doi.org/10.1049/el.2010.1009.
Full textAdams, M. J. "Optical amplifier bistability on reflection." Optical and Quantum Electronics 19, S1 (1987): S37—S45. http://dx.doi.org/10.1007/bf02034350.
Full textLester, C., K. Schusler, B. Pedersen, O. Lumholt, A. Bjarklev, and J. H. Povlsen. "Reflection insensitive erbium-doped fiber amplifier." IEEE Photonics Technology Letters 7, no. 3 (1995): 293–95. http://dx.doi.org/10.1109/68.372750.
Full textTsai, H. S., and R. A. York. "Polarisation-rotating quasioptical reflection amplifier cell." Electronics Letters 29, no. 24 (1993): 2125. http://dx.doi.org/10.1049/el:19931421.
Full textCantú, H. I., V. F. Fusco, and S. Simms. "Microwave reflection amplifier for detection and tagging applications." IET Microwaves, Antennas & Propagation 2, no. 2 (2008): 115–19. http://dx.doi.org/10.1049/iet-map:20070122.
Full textVesterinen, V., J. Hassel, and H. Seppa. "Tunable Impedance Matching for Josephson Junction Reflection Amplifier." IEEE Transactions on Applied Superconductivity 23, no. 3 (2013): 1500104. http://dx.doi.org/10.1109/tasc.2012.2227653.
Full textShen, Y., C. Wu, J. Litva, and R. Fralich. "Active radiating oscillator using a reflection amplifier module." Electronics Letters 28, no. 11 (1992): 991–92. http://dx.doi.org/10.1049/el:19920630.
Full textLee, Jongwon, and Jooseok Lee. "Noise analysis of reflection-type microwave RTD amplifier." IET Circuits, Devices & Systems 14, no. 7 (2020): 966–71. http://dx.doi.org/10.1049/iet-cds.2020.0078.
Full textKhaledian, Seiran, Farhad Farzami, Besma Smida, and Danilo Erricolo. "Two-Way Backscatter Communication Tag Using a Reflection Amplifier." IEEE Microwave and Wireless Components Letters 29, no. 6 (2019): 421–23. http://dx.doi.org/10.1109/lmwc.2019.2912299.
Full textDissertations / Theses on the topic "Reflection amplifier"
Wang, Yang. "CdS Reflection Coefficient Determination via Photocurrent Spectroscopy." Bowling Green State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1219593815.
Full textEriksson, Gustav. "Towards Long-Range Backscatter Communication with Tunnel Diode Reflection Amplifiers." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-354901.
Full textMainou, Gomez José Francisco. "Amplifier for optimal reflection Coefficient of ultrasound transducer : A study of op amp based circuits for ultrasound transducers, targeted for low reflection Coefficient, high gain, and low noise." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18347.
Full textFake, Michael. "The effect of intra-cavity reflections on optical fibre amplifier performance." Thesis, University of Essex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388155.
Full textOrndorff, Josh. "Amplified Total Internal Reflection at the Surface of Gain Medium." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1365156891.
Full textPelteku, Altin E. "Adaptive Suppression of Interfering Signals in Communication Systems." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-dissertations/138.
Full textArellano, Pinilla Cristina. "Investigation of reflective optical network units for bidirectional passive optical access networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6905.
Full textUna topología que consiste en hacer llegar una única fibra para dirigirse a cada usuario reduce la cantidad de fibra requerida. Por otro lado, los componentes ópticos pasivos alivian los requisitos de mantenimiento de la red de acceso. El efecto del backscattering de Rayleigh se ha identificado como la interferencia más crítica de este tipo de transmisión, el efecto sobre el funcionamiento del sistema y las investigaciones de posibles soluciones al mencionado problema son centro de estudio de esta tesis. Los experimentos realizados, revelan que, a pesar de la interferencia causada por del effecto Rayleigh no se puede eliminar totalmente, hay diferentes técnicas capaces de atenuar dicho efecto.
El uso de los amplificadores ópticos semiconductores para implementar las funciones de transmisión-recepción agrega simplicidad al diseño de red en términos de transparencia de la longitud de onda y gracias a las capacidades de la amplificación de esta familia de dispositivos.
Los resultados experimentales presentaron en este trabajo demuestran con éxito la modulación y la detección a 1Gbit/s y 2.5Gbit/s con los dispositivos basados en semiconductores, en enlaces de hasta 30km e incluso de hasta 50km de longitud. Nuevos prototipos son potencialmente capaces de transmitir a 10Gbit/s.
Estructuras reflectoras basadas en amplificadores ópticos semiconductores reflectores son los candidatos mas adecuados.
Éstos, realizan funciones de transmisión eficientemente y proporcionan la amplificación adecuada. Sin embargo, es necesario el diseño de nuevos diseños capaces de transmitir datos a una velocidad mayor. Una estrategia de comunicación bidireccional mediante una única fibra es la arquitectura más interesante los términos de reducción de costes por usuario (CAPEX). Por estos motivos, la ONU se convierte en un elemento clave en redes de acceso y un área muy interesante de investigación.
Para una evolución exitosa de FTTH el diseño de la unidad de red debe ser simple, robusto, flexible y bajo coste para el cliente final.
La traducción de los requisitos anteriormente mencionados en especificaciones técnicas establece las pautas siguientes para el diseño del FTTH ONU
- Una única fibra por cada usuario para reducir tamaño de la red de acceso
- Independencia de la longitud de onda para permitir una operación transparente en redes WDM
- Que no haya fuente de luz activa en las dependencias de usuario para prevenir el mantenimiento en el lado del usuario
- Con amplificación y así poder aumentar el número de usuarios y alcanzar mayores distancias
De esta manera, el objetivo principal de esta tesis es la investigación de unidades ópticas de red reflectoras, especialmente las basadas en amplificadores ópticos de semiconductor, así como su funcionamiento en redes de FTTH, basadas en tecnología de acceso WDM-PON. Esto implica fundamentalmente
- Identificar arquitecturas y dispositivos propuestos por medio de la investigación del trabajo publicado relacionado y destacar limitaciones y requisitos de los sistemas actuales
- evaluar las diversos alternativas para la ONU y para proponer soluciones mejoradas, demostradas con simulaciones y experimentos
- investigar limitaciones posibles de los sistemas transmisión bidireccionales y desarrollar soluciones para la mejora de la transmisión
- desarrollar descripciones analíticas de las señales implicadas en la transmisión
This research was conducted to deal with the problem of finding cost-effective solutions for Fibre-to-the-Home (FTTH) network deployment. In the FTTH network, the transceiver at the user premises and the deployment of fibre at the last mile are the major barriers.
A single-fibre topology to address each user reduces the amount of fibre required; passive optical components alleviate maintenance requirements in the access network.
The Rayleigh backscattering effect is identified as the most critical crosstalk in such transmission, the effect on the system performance and the investigations of possible solutions are presented in this thesis. The studies reveal that despite the Rayleigh backscattering crosstalk can not be totally eliminated, several techniques can mitigate the effect.
The use of the semiconductor optical amplifiers to feature transceiver tasks at the user premises adds simplicity to the network design in terms of wavelength transparency and amplification capabilities. We propose implementations with semiconductor amplifiers and test modulation and detection potentials inside the optical network.
The experimental results successfully demonstrate modulation and detection at 1Gbit/s and 2.5Gbit/s with semiconductor-based devices, in links of 30km and even though of 50km length; bit rate of 10Gbit/s is feasible with novel prototypes as well.
Reflective structures based on reflective semiconductor optical amplifiers are potential candidates, as they perform transmission functions efficiently and provide adequate amplification however, it is necessary the design of further structures capable of transmitting at a higher bit rates.
Thayyil, Manu Viswambharan, Songhui Li, Niko Joram, and Frank Ellinger. "A K-band SiGe Super-Regenerative Amplifier for FMCW Radar Active Reflector Applications." Institute of Electrical and Electronics Engineers, Inc. (IEEE), 2018. https://tud.qucosa.de/id/qucosa%3A35127.
Full textLabukhin, Dmitry Li Xun. "Modelling, design, and simulation of facet reflection and gain polarization dependence in semiconductor optical amplifiers." *McMaster only, 2007.
Thayyil, Manu Viswambharan, Hatem Ghaleb, Niko Joram, and Frank Ellinger. "A 28 GHz Superregenerative Amplifier for FMCW Radar Reflector Applications in 45 nm SOI CMOS." Institute of Electrical and Electronics Engineers (IEEE), 2018. https://tud.qucosa.de/id/qucosa%3A35128.
Full textBooks on the topic "Reflection amplifier"
Fiore, Mark Steven. High power reflection amplifier design in the 8-12 GHz frequency range. Cornell University, 1988.
Gardner, P. An investigation into microwave low noise negative resistance reflection amplifiers using GaAs field effect transistors. UMIST, 1990.
Bodroghkozy, Aniko. The Chosen Instrument of the Revolution? University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252036682.003.0003.
Full textBook chapters on the topic "Reflection amplifier"
Mishra, L. P., and M. Mitra. "Design and Characterization of Ka-Band Reflection-Type IMPATT Amplifier." In Advances in Intelligent Systems and Computing. Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2012-1_51.
Full textLiu, Zhenlin, Hidetoshi Murakami, Toshimasa Kozeki, Hideyuki Ohtake, and Nobuhiko Sarukura. "Reflection-double-pass, Ti:sapphire continuous-wave amplifier delivering 5.77-W average power, 82-MHz repetition rate, 100-fs pulse." In Ultrafast Phenomena XII. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56546-5_26.
Full textTotović, Angelina, and Dejan Gvozdić. "Traveling-Wave and Reflective Semiconductor Optical Amplifiers." In Handbook of Optoelectronic Device Modeling and Simulation. CRC Press, 2017. http://dx.doi.org/10.1201/9781315152301-21.
Full textMaji, K., K. Mukherjee, and Asif Raja. "Performance of All-Optical Logic Soliton-Based AND Gate Using Reflective Semiconductor Optical Amplifier (RSOA)." In Lecture Notes in Electrical Engineering. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0829-5_27.
Full textWardle, Heather. "Introduction." In Games Without Frontiers? Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74910-1_1.
Full textMaji, Kajal, Kousik Mukherjee, and Mrinal Kanti Mandal. "Simulative Performance Analysis of All Optical Universal Logic TAND Gate Using Reflective Semiconductor Optical Amplifier (RSOA)." In Advances in Intelligent Systems and Computing. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7834-2_9.
Full textYip, Ching Wen. "The Design and Modeling of 2.4 GHz and 3.5 GHz MMIC LNA." In Advances in Monolithic Microwave Integrated Circuits for Wireless Systems. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60566-886-4.ch007.
Full textMustaffa, Mohd Tafir. "Multi-Standard Multi-Band Reconfigurable LNA." In Advances in Monolithic Microwave Integrated Circuits for Wireless Systems. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60566-886-4.ch001.
Full text"Reflective Semiconductor Optical Amplifiers (RSOA)." In Semiconductor Optical Amplifiers. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814489041_0012.
Full textCandy, Linda. "Digitally amplified reflective practice." In The Creative Reflective Practitioner. Routledge, 2019. http://dx.doi.org/10.4324/9781315208060-5.
Full textConference papers on the topic "Reflection amplifier"
Sharma, Pankaj, Laurent Syavoch Bernard, Antonios Bazigos, Arnaud Magrez, Laszlo Forro, and Adrian M. Ionescu. "Reflection amplifier based on graphene." In ESSDERC 2016 - 46th European Solid-State Device Research Conference. IEEE, 2016. http://dx.doi.org/10.1109/essderc.2016.7599587.
Full textSharma, Pankaj, Laurent Syavoch Bernard, Antonios Bazigos, Arnaud Magrez, Laszlo Forro, and Adrian M. Ionescu. "Reflection amplifier based on graphene." In ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference. IEEE, 2016. http://dx.doi.org/10.1109/esscirc.2016.7598243.
Full textVenger, A. P., H. L. Medina, R. Chavez, and A. Velasquez. "Reflection transistor amplifier for decimeter waveband." In 2003 13th International Crimean Conference 'Microwave and Telecommunication Technology' Conference Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/crmico.2003.158773.
Full textKimionis, John, Manos M. Tentzeris, Apostolos Georgiadis, and Ana Collado. "Inkjet-printed reflection amplifier for increased-range Backscatter radio." In 2014 44th European Microwave Conference (EuMC). IEEE, 2014. http://dx.doi.org/10.1109/eumc.2014.6986355.
Full textWeglein, R. D., and H. A. Leach. "The Noise Behavior of an Injection-Locked Magnetron Reflection Amplifier." In MTT-S International Microwave Symposium Digest. MTT005, 1987. http://dx.doi.org/10.1109/mwsym.1987.1132379.
Full textXue, Liang, Horacio I. Cantu, and Vincent F. Fusco. "Two-Dimensional Luneburg Lens RCS Augmentation using MMIC Reflection Amplifier." In 2007 Loughborough Antennas and Propagation Conference. IEEE, 2007. http://dx.doi.org/10.1109/lapc.2007.367436.
Full textFarzami, Farhad, Seiran Khaledian, Besma Smida, and Danilo Erricolo. "Ultra-low power reflection amplifier using tunnel diode for RFID applications." In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8073298.
Full textMeng, Hongyun, Songhao Liu, and Xiaoyi Dong. "Reflection L-band erbium-doped fiber-amplifier-based fiber loop mirror." In Asia-Pacific Optical Communications, edited by Yan Sun, Shuisheng Jian, Sang Bae Lee, and Katsunari Okamoto. SPIE, 2005. http://dx.doi.org/10.1117/12.568188.
Full textChi, Chen J., Yujie Peng, Hongpeng Su, and Yuxin Leng. "End Pumped All Internal Reflection Small-Sized Nd:YAG Slab Picosecond Laser Amplifier." In International Symposium on Ultrafast Phenomena and Terahertz Waves. OSA, 2016. http://dx.doi.org/10.1364/isuptw.2016.it2a.34.
Full textKimionis, John, Apostols Georgiadis, Sangkil Kim, Ana Collado, Kyriaki Niotaki, and Manos M. Tentzeris. "An enhanced-range RFID tag using an ambient energy powered reflection amplifier." In 2014 IEEE/MTT-S International Microwave Symposium - MTT 2014. IEEE, 2014. http://dx.doi.org/10.1109/mwsym.2014.6848653.
Full textReports on the topic "Reflection amplifier"
Davidson, F. M., P. Nigon, G. C. Gilbreath, and W. S. Rabinovich. Receiver Performance Characterization for Modulating Retro-Reflector Atmospheric Optical Links With Pulsed Lasers and Optical Pre-Amplifiers. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada470521.
Full textMayas, Magda. Creating with timbre. Norges Musikkhøgskole, 2018. http://dx.doi.org/10.22501/nmh-ar.686088.
Full text