Dissertations / Theses on the topic 'Refractory materials – Thermomechanical properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 dissertations / theses for your research on the topic 'Refractory materials – Thermomechanical properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Goodall, R. "Thermomechanical properties of highly porous, fire-resistant materials." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599499.
Full textAutio, M. (Maija). "Studies on tailoring of thermomechanical properties of composites." Doctoral thesis, Oulun yliopisto, 1999. http://urn.fi/urn:isbn:9514254473.
Full textBansal, Shubhra. "Thermomechanical characterization of materials formicrominiaturized system board requirements." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/14825.
Full textWarchal, Andrzej. "Study of the influence of additives (antioxidants) on the thermomechanical properties of carbon-bonded refractory composites." Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0050.
Full textAlumina-carbon refractories are widely used in the continuous casting of steel. They are responsible for the steel flow control and its protection against oxidation. However, to improve their own oxidation resistance, several additives such as carbides, metals, low melting point compounds and glass frits are added as antioxidants. In this study, the influence of these additives, as well as firing conditions, on the properties related to the thermal shock resistance of carbon-bonded refractories was studied. Model materials, having simplified composition compared to the real industrial ones, were investigated tofacilitate the comprehension of interactions between different constituents of the composite. Behavior of both cured (before firing) and fired materials was studied. The first part of the study proved that antioxidants may modify the properties of the refractory through different mechanisms: crystallization of the carbon bond (B4C), microcracks healing (anhydrous borax and glass frit) and formation of new phases (Al-Si). However, since the metallic additives are the most widely used antioxidants in Vesuvius' products, the second part of the study was focused on their (Al-Si, Al-Mg and Al) impact on the key properties influencing the thermal shock resistance. What is more, the impact of firing conditions (temperature and atmosphere) was also investigated. It was proved that all metallic antioxidants react with other constituents to form new phases which both rigidify the refractory and increase its value of the coefficient of thermal expansion. Unfortunately, such behavior results in worsening of the thermal shock resistance. Moreover, it turned out that the firing atmosphere has a negligible influence on the additives reactivity and thus the final properties of the refractory. Thus, firing temperature is the parameter that has the most important impact on the refractory evolution. All the obtained results facilitate the choice of antioxidants and firing condition to obtain desired properties of the refractory
Yan, Kun, and 閆琨. "Size effects on the thermo-mechanical behavior on nano-structures/ materials." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41290513.
Full textCowan, Richard Scott. "Development of tribological design strategies based on a thermomechanical wear transition model." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17976.
Full textCalcaterra, Jeffrey Ronald. "Life prediction evaluation and damage mechanism identification for SCS-6/Timetal 21S composites subjected to thermomechanical fatigue." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12548.
Full textZhang, Xiaodong. "Modeling of materials with internal variables using a thermomechanical approach." Thesis, Virginia Tech, 1992. http://hdl.handle.net/10919/45355.
Full textMaster of Science
Aronson, Joshua Boyer. "The Synthesis and Characterization of Energetic Materials From Sodium Azide." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7597.
Full textFarjam, Nazanin. "Effects of Size and Geometry on the Thermomechanical Properties of Additively-Manufactured NiTi Shape Memory Alloys." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo153333222254631.
Full textAleknevičius, Marius. "The influence of oil cracking catalyst waste on the properties of refractory castables." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20110120_134405-85598.
Full textNaftos krekinge naudotas katalizatorius yra ceolitinė medžiaga, kurios unikalios savybės mažai išnaudojamos cementinių medžiagų gamybos technologijoje. Ugniai atspariuose betonuose naudojami įvairūs priedai-modifikatoriai yra labai brangūs, todėl naudoto katalizatoriaus panaudojimas, kaip modifikuojančio betono savybes priedo, turi ne tik ekologinį (atliekų utilizavimas) bet ir ekonominį pagrindą. Vykdant šį darbą sukurti vidutinio cemento kiekio ugniai atsparūs šamotbetoniai su 70 % ir 40 % aliuminio oksido turinčiais aliuminatiniais cementais ir naudoto katalizatoriaus priedu atitinkamai 2,5 % ir 5,0 %. Darbe taip pat atskleistas efektyvus katalizatoriaus poveikis aliuminatinio cemento hidratacijai, cemento akmens struktūros susidarymui kietėjimo metu ir jos pokyčiams veikiant aukštoms temperatūroms.
Kuriakose, Sunil. "Analysis of damage in composite laminates under bending." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/12054.
Full textRowland, Harry Dwight. "Thermomechanical Manufacturing of Polymer Microstructures and Nanostructures." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14642.
Full textLin, Brian E. "Stucture and thermomechanical behavior of nitipt shape memory alloy wires." Thesis, Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28233.
Full textMorel, Bayram Murat. "Investigation Of The Effects Of Temperature On Physical And Mechanical Properties Of Monolithic Refractory Made With Pozzolanic Materials." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606700/index.pdf.
Full textC and then heated to 1100°
C. Weight, size and ultrasound velocity change, compressive strength and flexural strength tests were done to determine physical and mechanical properties of the monolithic refractories, before and after heating. Heated and non-heated specimens were pulverized for microstructural investigation with X-Ray diffraction (XRD) method. Using high alumina cement with 50 &ndash
60 % granulated blast furnace slag or granulated firebrick, by the weight of cement, and crushed firebrick as aggregate, a satisfactory monolithic refractory material was made. It was observed that, mechanical properties were decreased at the Portland cement used mortars after several times of heating and cooling cycles. Also, it was determined that the microstructure of the high alumina cement containing mortars did not deteriorate much at 1100°
C, as long as there was no change observed from the results.
Paine, Jeffrey S. "Multi-functional SMA hybrid composite materials and their applications." Diss., Virginia Tech, 1994. http://hdl.handle.net/10919/38219.
Full textPh. D.
Du, Xiangdong 1967. "Scaling laws in permeability and thermoelasticity of random media." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102973.
Full textIn the first part of this work, the finite-size scaling trend to RVE of the Darcy law for Stokesian flow is studied for the case of random porous media, without invoking any periodic structure assumptions, but only assuming the microstructure's statistics to be spatially homogeneous and ergodic. By analogy to the existing methodology in thermomechanics of solid random media, the Hill-Mandel condition for the Darcy flow velocity and pressure gradient fields was first formulated. Under uniform essential and natural boundary conditions, two variational principles are developed based on minimum potential energy and complementary energy. Then, the partitioning method was applied, leading to scale dependent hierarchies on effective (RVE level) permeability. The proof shows that the ensemble average of permeability has an upper bound under essential boundary conditions and a lower bound under uniform natural boundary conditions.
To quantitatively assess the scaling convergence towards the RVE, these hierarchical trends were numerically obtained for various porosities of random disk systems, where the disk centers were generated by a planar Poisson process with inhibition. Overall, the results showed that the higher the density of random disks---or, equivalently, the narrower the micro-channels in the system---the smaller the size of RVE pertaining to the Darcy law.
In the second part of this work, the finite-size scaling of effective thermoelastic properties of random microstructures were considered from Statistical to Representative Volume Element (RVE). Similarly, under the assumption that the microstructure's statistics are spatially homogeneous and ergodic, the SVE is set-up on a mesoscale, i.e. any scale finite relative to the microstructural length scale. The Hill condition generalized to thermoelasticity dictates uniform essential and natural boundary conditions, which, with the help of two variational principles, led to scale dependent hierarchies of mesoscale bounds on effective (RVE level) properties: thermal expansion strain coefficient and stress coefficient, effective stiffness, and specific heats. Due to the presence of a non-quadratic term in the energy formulas, the mesoscale bounds for the thermal expansion are more complicated than those for the stiffness tensor and the heat capacity. To quantitatively assess the scaling trend towards the RVE, the hierarchies are computed for a planar matrix-inclusion composite, with inclusions (of circular disk shape) located at points of a planar, hard-core Poisson point field. Overall, while the RVE is attained exactly on scales infinitely large relative to microscale, depending on the microstructural parameters, the random fluctuations in the SVE response become very weak on scales an order of magnitude larger than the microscale, thus already approximating the RVE.
Based on the above studies, further work on homogenization of heterogeneous materials is outlined at the end of the thesis.
Keywords: Representative Volume Element (RVE), heterogeneous media, permeability, thermal expansion, mesoscale, microstructure.
Kirabira, John Baptist. "Properties of Ugandan minerals and fireclay refractories." Doctoral thesis, KTH, Materials Science and Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225.
Full textDevelopment of products which can be produced from a country’s natural resources is very important as far as the industrialization of a nation and saving foreign exchange is concerned. Presently, industries in Uganda and the other states in the Lake Victoria region import all refractory-related-consumables, as the demand cannot be met locally. Based on the abundance of ceramic raw materials for high temperature applications in the region and the demand for refractories by industries it is pertinent to develop and manufacture firebricks by exploiting the locally available raw materials.
This thesis thus, concerns the characterisation of ceramic raw mineral powders from the Lake Victoria region, more particularly, Uganda, with the aim of developing firebrick refractories from the minerals. Two main deposits of kaolin and a ball clay deposit were investigated to assess their potential in the manufacture of refractory bricks. Raw- and processed sample powders were investigated by means of X-ray diffraction (XRD), thermal analysis (DTA-TG) and Scanning Electron Microscopy (SEM). In addition, the chemical composition, particle size distribution, density, and surface area of the powders were determined.
A comprehensive study on beneficiation of Mutaka kaolin was carried out using mechanical segregation of particles. The aim of the study was to explore other potential applications like in paper filling and coating. The beneficiation process improves the chemical composition of kaolin to almost pure, the major impurity being iron oxide.
A general production process scheme for manufacturing fireclay bricks starting with raw powder minerals (Mutaka kaolin and Mukono ball clay) was used to make six groups of sample fireclay brick. Experimental results from the characterization of formulated sample bricks indeed revealed the viability of manufacturing fireclay bricks from the raw minerals. Based on these results, industrial samples were formulated and manufactured at Höganäs Bjuf AB, Sweden. Kaolin from the Mutaka deposit was used as the main source of alumina while ball clay from Mukono was the main plasticizer and binder material. The formulated green body was consolidated by wet pressing and fired at 1350°C in a tunnel kiln. Characterization of the sintered articles was done by X-ray diffraction, scanning electron microscopy, and chemical composition (ICP-AES). In addition, technological properties related to thermal conductivity, thermal shock, alkali resistance, water absorption, porosity, shrinkage, permanent linear change (PLC), linear thermal expansion, refractoriness under load (RUL), and cold crushing strength were determined. The properties of the articles manufactured from the selected naturally occurring raw minerals reveal that the produced articles compare favourably with those of parallel types. Thus, the raw materials can be exploited for industrial production.
Depp, Michelle McRae. "PVA cryogel optimization and diffusion studies." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/11194.
Full textKulkarni, Ambarish J. "Atomistic Characterization and Continuum Modeling of Novel Thermomechanical Behaviors of Zinc Oxide Nanostructures." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19761.
Full textFernandez-Zelaia, Patxi. "Thermomechanical fatigue crack formation in nickel-base superalloys at notches." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48991.
Full textLuscher, Darby J. "A hierarchical framework for the multiscale modeling of microstructure evolution in heterogeneous materials." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33968.
Full textDoche, Cécile. "Elaboration et caractérisation de composites céramiques réfractaires SiAlON-nitrure de bore." Grenoble INPG, 1996. http://www.theses.fr/1996INPG4204.
Full textJohnson, Janine. "Thermomechanical modeling of porous ceramic-metal composites accounting for the stochastic nature of their microstructure." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33857.
Full textChu, Chun. "Development of polymer nanocomposites for automotive applications." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37128.
Full textMoore, Zachary Joseph. "Life modeling of notched CM247LC DS nickel-base superalloy." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24813.
Full textCommittee Chair: Dr. Richard W. Neu; Committee Member: Dr. David L. McDowell; Committee Member: Dr. W. Steven Johnson.
Narayanan, Vindhya. "Non-equilibrium Thermomechanics of Multifunctional Energetic Structural Materials." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7570.
Full textLuchini, Bruno [Verfasser], Christos G. [Akademischer Betreuer] Aneziris, Christos G. [Gutachter] Aneziris, and Victor C. [Gutachter] Pandolfelli. "Processing and properties of bulk and cellular carbon-bonded refractory materials / Bruno Luchini ; Gutachter: Christos G. Aneziris, Victor C. Pandolfelli ; Betreuer: Christos G. Aneziris." Freiberg : Technische Universität Bergakademie Freiberg, 2019. http://d-nb.info/1220636509/34.
Full textKupkovits, Robert Anthony. "Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28160.
Full textCommittee Chair: Dr. Richard W. Neu; Committee Member: Dr. David L. McDowell; Committee Member: Dr. W. Steven Johnson.
Holliday, Nathan. "Processing and Properties of SBR-PU Bilayer and Blend Composite Films Reinforced with Multilayered Nano-Graphene Sheets." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1458300045.
Full textLakrit, Mohamed. "Comportement et cinétique de transformation martensitique sous sollicitation multiaxiale des matériaux métastables." Thesis, Brest, 2016. http://www.theses.fr/2016BRES0021/document.
Full textPhase transformation considerably influences the thermomechanical properties of metastable materials. This is reflected in the numerical model that simulates the behavior of these materials for the calculation codes and require experiments.Thus, the present work concerns the characterization of the axial and multi-axial behavior of two iTRIP steels, 301L steel and 304L steel in addition to a shape memory alloy based on CuAlBe. This characterization is coupled with monitoring of phase transformation kinetics through the measurement of the electrical resistance.The first chapter is a bibliographic study of the two classes of metastable materials mentioned above as well as the phase transformation phenomenon and its characterization techniques. The second chapter deals with uniaxial thermomechanical tests on a steel iTRIP to validate the phase assay. The multiaxial thermomechanical testing performed on specimens tubular steel 304L iTrip will be presented.The third chapter is devoted to uniaxial tests performed on CuAlBe spicemens and realization phase doping in a three-phase case. Also, the validation of the assumption of linearity between the martensite volume fraction and the equivalent transformation strain in the case of proportional and non-proportional loading is done
SANTOS, WILSON N. dos. "Contribuicao ao estudo da condutividade termica do material ceramico concreto refratario utilizando a tecnica de fio quente com ajustes por regressao nao linear." reponame:Repositório Institucional do IPEN, 1988. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9901.
Full textMade available in DSpace on 2014-10-09T14:08:47Z (GMT). No. of bitstreams: 1 01638.pdf: 3040773 bytes, checksum: f18467d3dc509496522489a5bcf98007 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Samson, Gabriel. "Synthèse et propriétés des mousses minérales." Thesis, Rennes, INSA, 2015. http://www.theses.fr/2015ISAR0015/document.
Full textMineral foams are cellular materials usable as thermal insulation solution. The purpose of these PhD researches is to develop lightweight foams with good thermal and mechanical performances realized from highly concentrated mineral suspension. Surfactant addition is required for foaming. Six surfactants molecules are selected. Their abilities to reduce surface tension and to stabilize aqueous foam are evaluated. Two surfactants groups are detected based on different criteria: surface tension, CMC and aqueous foam stability. Concentrated mineral suspensions are yield stress fluids. The study of bubbles behavior in such fluids is performed with a transparent yield stress fluid, Carbopol® and an injection device with controlled pressure. Yield stress impacts bubbles creation, growth, stability and shape by changing local pressure distribution in the fluid nearby bubble. The study proposes a revised Laplace law depending on yield stress and bubble sphericity. Contact conditions between bubbles are influenced by surfactant addition allowing to control coalescence phenomena. In case of inter-bubbles membrane breakage, presence of yield stress leads to particular geometry of the coalesced bubbles. Mineral binders selected are a highly reactive anhydrous calcium sulfate, ordinary Portland and prompt cements. Mineral suspension formulations arise from expected fluidity criterion. Fresh paste is characterized by a low yield stress. Its bulk density depends on surfactant nature and content. Mineral foams are created with same composition. Two traditional foaming methods: mix-foaming and pre-foaming and an alternative one, the dissociated method are employed. Best thermo-mechanical performances are achieved with the dissociated method, a specific method of the laboratory. A surfactant group leads to lightweight foams which simultaneously fulfills both thermal and mechanical targeted objectives. For these surfactants a characteristic content is found leading to optimized mechanical performances. Visualizations performed with SEM reveal sensitive crystalline structure modifications depending on surfactant nature and content. Thinner and more homogeneous structures are associated with the best mechanical performances which demonstrates the existing link between the porous structure and mineral foams mechanical performances. To quantitatively evaluate porous structure, surface bubble-size distributions are built and then compared to volume bubble-size distributions obtained by tomography analysis. An analytic method linking 2D and 3D distributions is created based on stereology principles. A correction coefficient is proposed to take into account the analyzed representative surface. By controlling all production steps and associated physical phenomena during mineral foams production (from mineral suspension to solid foams), products satisfying all targeted objectives are realized: lightness, insulation and load-bearing ability
Tran, Manh Tien. "Caractérisation expérimentale et modélisation numérique du comportement thermomécanique à haute température des matériaux composites renforcés par des fibres." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1111/document.
Full textTRC materials, consisting of a cement matrix and a reinforcement by textiles or fibers (carbon, glass or other fibre, etc) are often used to repair or/and strengthen the loading structural elements (slab, beam, column) of old civil engineering works. They can also be used as loading elements in new structures (prefabrication element). In order to develop TRC composites with good characteristics at high temperature, a combination has been made between the carbon textiles which have a good mechanical capacity and a refractory matrix which provides a load transfer between the reinforcement textiles and thermally protects them against the action of high temperature. The thermomechanical behavior of carbon TRC composites is experimentally and numerically studied at the mesoscale in this thesis. Scientific advancement on this thesis topic would improve the fire stability of structures that are reinforced by TRC composite materials. This topic would contribute to significant social and economic interests for civil engineering worldwide in general and Vietnam in particular. My thesis work concerns the experimental characterization and numerical modeling of the high temperature thermomechanical behavior of composite materials TRC at the mesoscale. In a first experimental part, the carbon textiles (commercial products on the market), the refractory concrete matrix and the textile/matrix interface were tested at constant temperature thermomechanical regime (ranging from 25 °C to 700 °C). The results obtained showed an effect of the textile treatment on the mechanical behavior and failure mode of the carbon textiles and the textile/matrix interface. An analytical model was also used to identify the evolution of thermomechanical properties of carbon textiles as a function of temperature. The thermal transfer in the cylindrical specimen was carried out to validate the thermal properties of refractory concrete. All results obtained in this part are used as input data for the numerical model in the modeling part. The second experimental part explores the thermomechanical behavior of TRCs under two regimes: thermomechanical at constant temperature and thermomechanical at constant force. Two carbon textiles, which gave the best performance at high temperature, were chosen for the manufacture of TRCs. The experimental results showed a hardening behavior with three or two phases at moderate temperature and a brittle behavior at higher temperature of 500 °C. In thermomechanical regime at constant force, two TRC composites can resist longer than carbon textiles alone thanks to good thermal insulation of refractory matrix. By comparing the two results on the TRC specimens, the effect of textile reinforcement (reinforcement ratio, treatment product and textile geometry) on the thermomechanical behavior was analyzed. All the experimental results of this part were used to validate and compare with those obtained from the numerical model. The purpose of the numerical modeling part is to predict the global thermomechanical
COSTA, FRANCINE A. da. "Sintese e sinterizacao de pos compositos do sistema W-Cu." reponame:Repositório Institucional do IPEN, 2004. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11176.
Full textMade available in DSpace on 2014-10-09T13:57:43Z (GMT). No. of bitstreams: 1 09808.pdf: 15249724 bytes, checksum: 28b6b5cf9f351da89e42817bc182390d (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
FAPESP:00/00255-9
Malakhova-Ziablova, Irina. "Asymptotic and numerical methods for fluid-structure interaction problems and applications to the materials science and engineering." Thesis, Saint-Etienne, 2015. http://www.theses.fr/2015STET4003/document.
Full textThe goal of this multi-disciplinary thesis is to study the fluid-structure interaction problem from mathematical and physical viewpoints. Viscous fluid-structure interaction problems describe, for example, interactions between the Earth mantle and the Earth crust, the blood and the vascular wall in a blood vessels, etc. In engineering viscous fluid-structure interaction appears during colloidal solution formation when a laser pierce through the fluid influencing the substrate (laser ablation in a liquid). Selective laser melting (SLM) is used to study the behavior of residual stresses depending on the thermoelastic and mechanical properties of the material and on various forms of reloaded beads. From mathematical point of view the coupled system “viscous fluid flow-thin elastic plate” in 3D when the thickness of the plate, E, tends to zero, while the density and the Young’s modulus of the plate material are of order 1 and E-3, respectively, is considered. The plate lies on the fluid which occupies a thick domain. The multi-scale modeling is performed for the elastic part. The complete asymptotic expansion is constructed when E tends to zero. The existence, the regularity and the uniqueness of the solution for the original problem are studied by means of variational techniques. The method of asymptotic partial domain decomposition is applied for the coupled system. The error of the method is evaluated
Solarek, Johannes. "Mechanisches Verhalten von kohlenstoffgebundenen Feuerfestwerkstoffen bis 1500°C." Doctoral thesis, Technische Universität Bergakademie Freiberg, 2019. https://tubaf.qucosa.de/id/qucosa%3A37432.
Full textMichel, Grégory. "Recherche de nouveaux superalliages de fonderie pour fibrage à très haute température." Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10131.
Full textThe spinner used to product glass wool for thermal building insulation undergoes several stresses (chemical, mechanical and thermal) at high temperature. The lifetime of the spinner is limited by oxidation by hot gases, corrosion by molten glass or creep deformation. The first part of this thesis has concerned the improvement of the mechanical properties of the alloys for the fiberizing at 1200°C. First, the bulk chromium content of the usual cobalt-base alloys has been decreased to increase their refractoriness at constant microstructure. However, this reduction has degraded the oxidation behavior of these alloys. To keep a good oxidation behavior, a surface chromium enrichment of the Cr-impoverished alloys is achieved by pack-cementation technique. The creep behavior of these alloys is kept at a good level. Secondly, several new metallurgical systems were explored: alloys based on nickel and iron and reinforced by heavy elements in solid solution or by precipitates inter metallic particles. The refractoriness and the oxidation behavior appeared to be interesting but the creep deformation was disappointing. The second part of this work has concerned the improvement of the oxidation and corrosion properties of the alloys for the process at 1000-1050°C. Two ways have been explored: a chromium enrichment on the sub-surface or an addition of a reactive element, as yttrium. The second solution has given interesting results with a significant improvement of the oxidation behavior, and particularly in cyclic oxidation
Lugisani, Peter. "Identification of refractory material failures in cement kilns." Thesis, 2016. http://hdl.handle.net/10539/22336.
Full textRefractory lining failure of damaged magnesia bricks and used alumina bricks was investigated by XRF, XRD, SEM-EDS analysis and computational thermochemistry (phase diagrams). In addition, the effect of oxygen partial pressure towards the refractory lining and alkali sulphate ratio were also determined. The presence of low melting phases of KCl, (Na, K) Cl, K2SO4 and CaSO4 compromised the refractoriness of the magnesia bricks because they are liquid at temperatures below clinkerisation temperature (1450 °C). Sodium oxide and potassium oxide in the kiln feed and chlorine and sulphur in the kiln gas atmosphere migrated into the magnesia brick and react to form KCl, (Na, K) Cl and K2SO4. Components of the magnesia brick, CaO reacted with the excess sulphur in the kiln gas atmosphere forming CaSO4. The presence of these impurity phases indicated that the magnesia bricks suffered chemical attack. Potassium and part of components of high-alumina brick reacted to form K2 (MgSi5O12) impurity phase. Phase diagram predictions indicated that the presence of sodium at any given concentration automatically results in liquid formation in the high alumina brick. This confirms that the chemical attack is also the cause of the failure of the high alumina brick. The analysis of the microstructures of both unused and damaged magnesia bricks revealed that the fracture was predominantly intergranular whereas, in high alumina brick, the fracture was transgranular. The absence of evidence of micro-cracks in both magnesia and alumina bricks rules out thermal shock as a failure mechanism. The absence of clinker species and phases in the examined magnesia and alumina bricks indicated that corrosion by clinker diffusion was absent. The partial pressure of oxygen is low (1.333×10−4 atm), it indicates the stability of Fe3O4 and Mn3O4 and therefore does not favour the oxidation of Fe3O4 to formation of Fe2O3 and Mn3O4 to formation of Mn2O3. The values of alkali sulphate ratio indicated that the kiln operating conditions were favourable for chemical attack to occur.
MT2017
Luchini, Bruno. "Processing and properties of bulk and cellular carbon-bonded refractory materials." 2019. https://tubaf.qucosa.de/id/qucosa%3A35080.
Full textZhao, Dan. "Tuning Nanoparticle Organization and Mechanical Properties in Polymer Nanocomposites." Thesis, 2016. https://doi.org/10.7916/D8639Q1G.
Full text"Microstructural and Mechanical Property Characterization of Laser Additive Manufactured (LAM) Rhenium." Doctoral diss., 2012. http://hdl.handle.net/2286/R.I.14777.
Full textDissertation/Thesis
Ph.D. Materials Science and Engineering 2012
Sob, Peter Baonhe. "Modelling stain rate sensitive nanomaterials' mechanical properties: the effects of varying definitions." Thesis, 2016. http://hdl.handle.net/10352/332.
Full textPresently there exist a lot of controversies about the mechanical properties of nanomaterials. Several convincing reasons and justifications have been put forward for the controversies. Some of the reasons are varying processing routes, varying ways of defining equations, varying grain sizes, varying internal constituent structures, varying techniques of imposing strain on the specimen etc. It is therefore necessary for scientists, engineers and technologists to come up with a clearer way of defining and dealing with nanomaterials’ mechanical properties. The parameters of the internal constituent structures of nanomaterials are random in nature with random spatial patterns. So they can best be studied using random processes, specifically as stochastic processes. In this dissertation the tools of stochastic processes have been used as they offer a better approach to understand and analyse random processes. This research adopts the approach of ascertaining the correct mathematical models to be used for experimentation and modelling. After a thorough literature survey it was observed that size and temperature are two important parameters that must be considered in selecting the relevant mathematical definitions for nanomaterials’ mechanical properties. Temperature has a vital role to play during grain refinement since all severe plastic deformation involves thermomechanical processes. The second task performed in this research is to develop the mathematical formulations based on the experimental observation of 2-D grains and 3-D grains deformed by Accumulative Roll-Bonding and Equal Channel Angular Pressing. The experimental observations revealed that grains deformed by Accumulative Roll-Bonding and Equal Channel Angular Pressing are elongated when observed from the rolling direction, and transverse direction, and equiaxed when observed from the normal direction. In this dissertation, the different experimental observations for the grain size variants during grain refinement were established for 2-D and 3-D grains. This led to the development of a stochastic model of grain-elongation for 2-D and 3-D grains. The third task was experimentations and validation of proposed models. Accumulative Roll-Bonding, Equal Channel Angular Pressing and mechanical testing (tensile test) experiments were performed. The effect of size on elongation and material properties were studied to validate the developed models since size has a major effect on material’s properties. The fourth task was obtaining results and discussion of theoretical developed models and experimental results. The following facts were experimentally observed and also revealed by the models. Different approaches of measuring grain size reveal different strains that cannot be directly obtained from plots of the corresponding grain sizes. Grain elongation evolved as small values for larger grains, but became larger for smaller grains. Material properties increased with elongation reaching a maximum and started decreasing as is evident in the Hall-Petch to the Reverse Hall-Petch Relationship. This was alluded to the fact that extreme plastic straining led to distorted structures where grain boundaries and curvatures were in “non-equilibrium” states. Overall, this dissertation contributed new knowledge to the body of knowledge of nanomaterials’ mechanical properties in a number of ways. The major contributions to the body of knowledge by his study can be summarized as follows: (1) The study has contributed in developing a model of elongation for 2-D grain and 3-D grains. It has been generally reported by researchers that materials deformed by Accumulative Roll-Bonding and Equal Channel Angular Pressing are generally elongated but none of these researchers have developed a model of elongation. Elongation revealed more information about “size” during grain refinement. (2) The Transmission Electron Microscopy revealed the grain shape in three directions. The rolling direction or sliding direction, the normal direction and the transverse direction. Most developed models ignored the different approaches of measuring nanomaterials’ mechanical properties. Most existing models dealt only with the equivalent radius measurement during grain refinement. In this dissertation, the different approaches of measuring nanomaterials’ mechanical properties have been considered in the developed models. From this dissertation an accurate correlation can be made from microscopy results and theoretical results. (3) This research has shown that most of the published results on nanomaterials’ mechanical properties may be correct although controversies exist when comparing the different results. This research has also shown that researchers might have considered different approaches to measure nanomaterials’ mechanical properties. The reason for different results is due to different approaches of measuring nanomaterials’ mechanical properties as revealed in this research. Since different approaches of measuring nanomaterials’ mechanical properties led to different obtained results, this justify that most published results of nanomaterials’ mechanical properties may be correct. This dissertation revealed more properties of nanomaterials that are ignored by the models that considered only the equivalent length. (4) This research has contributed to the understanding of nanomaterials controversies when comparing results from different researchers.