Academic literature on the topic 'Refuse derived fuel (RDF)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Refuse derived fuel (RDF).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Refuse derived fuel (RDF)"
Nabeshima, Yoshiro. "RDF (Refuse Derived Fuel). Technical Evaluation of Refuse Derived Fuel (RDF)." Waste Management Research 7, no. 4 (1996): 294–304. http://dx.doi.org/10.3985/wmr.7.294.
Full textHaydary, Juma. "Gasification of Refuse-Derived Fuel (RDF)." GeoScience Engineering 62, no. 1 (March 1, 2016): 37–44. http://dx.doi.org/10.1515/gse-2016-0007.
Full textAyas, Gizem, and Hakan Öztop. "Thermal analysis of different Refuse Derived Fuels (RDFs) samples." Thermal Science, no. 00 (2021): 249. http://dx.doi.org/10.2298/tsci201010249a.
Full textChaerul, Mochammad, and Annisa Kusuma Wardhani. "Refuse Derived Fuel (RDF) from Urban Waste using Biodrying Process: Review." Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan 17, no. 1 (March 31, 2020): 62–74. http://dx.doi.org/10.14710/presipitasi.v17i1.62-74.
Full textNishimura, Kiyoshi. "RDF (Refuse Derived Fuel). Facility and Operation of Refuse Derived Fuel Systems for Urban Garbage." Waste Management Research 7, no. 4 (1996): 338–51. http://dx.doi.org/10.3985/wmr.7.338.
Full textHaydary, Juma, Patrik Šuhaj, and Michal Šoral. "Semi-Batch Gasification of Refuse-Derived Fuel (RDF)." Processes 9, no. 2 (February 13, 2021): 343. http://dx.doi.org/10.3390/pr9020343.
Full textLockwood, F. C., and J. J. Ou. "Review: Burning Refuse-Derived Fuel in a Rotary Cement Kiln." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 207, no. 1 (February 1993): 65–70. http://dx.doi.org/10.1243/pime_proc_1993_207_008_02.
Full textIshii, Takamitsu. "RDF (Refuse Derived Fuel). Construction of the Dream Fuel Center." Waste Management Research 7, no. 4 (1996): 326–37. http://dx.doi.org/10.3985/wmr.7.326.
Full textStępień, Paweł, Małgorzata Serowik, Jacek A. Koziel, and Andrzej Białowiec. "Waste to Carbon: Estimating the Energy Demand for Production of Carbonized Refuse-Derived Fuel." Sustainability 11, no. 20 (October 15, 2019): 5685. http://dx.doi.org/10.3390/su11205685.
Full textPaszkowski, Jarosław, Maciej Domański, Jacek Caban, Janusz Zarajczyk, Miroslav Pristavka, and Pavol Findura. "The Use of Refuse Derived Fuel (RDF) in the Power Industry." Agricultural Engineering 24, no. 3 (September 1, 2020): 83–90. http://dx.doi.org/10.1515/agriceng-2020-0029.
Full textDissertations / Theses on the topic "Refuse derived fuel (RDF)"
Brännvall, Evelina. "Accelerate ageing of refuse-derived-fuel (RDF) fly ashes." Licentiate thesis, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17584.
Full textAskor har egenskaper som kan användas, en del askor kan t ex användas vid konstruktion av tätskikt i en deponisluttäckning. En deponisluttäckning är en flerskiktskonstruktion som skyddar miljön från t.ex. växthusgaser från deponin och hindrar vatteninträngning till avfall. Naturliga täta material som lera, syntetiska som geomembraner eller bentonitmattor eller en kombination av dessa är vanligt förekommande i sluttäckningskonstruktioner på deponier. Eftersom differentialsättningar kan uppkomma och de syntetiska materialens livslängd är osäker, är det en fördel om tjocka mineraliska konstruktioner kan användas. För dessa är materialbehovet stort och det är en stor resursbesparing om alternativa material, som aska, kan användas.Aska utsätts för åldringsprocesser både när den deponeras eller användas som byggmaterial. Materialet genomgår fysiska, kemiska och mineralogiska förändringar orsakade av t.ex. variationer av temperatur och luftfuktighet, atmosfäriska gaser eller surt regn. Aska innehåller olika farliga och ofarliga kemiska föreningar. Därför måste försiktighetsåtgärder vidtas för att undvika läckage av tungmetaller i miljön. Befintliga och nybildade mineralfaser är främst ansvariga för immobilisering eller utlakning av olika metaller och salter. Nybildade mineralfaser som lermineraler är av stort intresse på grund av deras mycket höga katjonutbyteskapacitet, svällnings- och expansionsegenskaper. Förhållandena som råder i en deponisluttäckning förväntas gynna lermineralbildning.Denna avhandling är resultatet av studier av effekten av accelererad åldring på flygaska från energiutvinning. För att förutsäga stabiliteten i flygaska som används i ett deponitätskikt har laboratorieexperiment utförts för att studera effekterna av accelererad åldring under kontrollerade förhållanden. Ett reducerat faktorförsök har gjorts för att utvärdera påverkan av fem faktorer: koldioxid (CO2), temperatur, relativ luftfuktighet (RH), tid och kvalitet på tillsatt vatten. Inflytandet av dessa faktorer på mineralomvandlingen i askan, askans syraneutraliserande förmåga (ANC) och urlakningsbeteendet har analyserats och utvärderats med hjälp av bl a multivariat dataanalys. Mineraler (ettringit och hydrocalumit) som främjar fixeringen av farliga ämnen finns i både färsk aska och prover som åldrats under atmosfäriska förhållanden men försvann efter karbonatisering. Aska som åldrats under 20 % och 100 % CO2 hade kalcit, gips / anhydrit och vaterit som huvudmineraler. Förekomsten av gips och anhydrit var direkt relaterad till temperaturnivån som askan hade åldrats i. Aska som åldrades under 20 % CO2, 65 % RH, 30 °C temperatur (motsvarande förhållandena i en deponitäckning) hade kalcit och gips/bassanit som huvudmineraler. pH-värdena i proverna varierade från 7,2 till 7,6 vilket indikerar en långt fortskriden karbonatisering. Åldrandet sänkte pH-värdena från 12,4 till 7,2 och påverkar därmed urlakningsbeteendet för många lakvattenkomponenter. Barium, Ca, Cl, Cr, Cu, Pb, K och Na minskade under tiden, medan Mg, Zn och SO4 ökade jämfört med den färska askan. Inga lermineraler upptäcktes med hjälp av XRD och SEM i varken färsk eller åldrad aska. Geokemisk modellering visade dock möjligheten för dessa mineraler att bildas och fällas ut. Lermineraler som saponit, vermikulit, krysotil och hydrotalcit kunde enligt beräkningarna bildas i lakvatten från de flesta proverna som åldrades i 3, 10 och 22 månader. Smectit, montmorillonit och illit kan bildas i lakvatten från 31 månaders åldrad aska. Bildning av smectit, montmorillonit och vermikulit skulle var värdefull på grund av deras mycket höga katjonutbyteskapacitet, vilket gynnar stabilisering / immobilisering av tungmetaller i askan.
Godkänd; 2010; 20101020 (evebra); LICENTIATSEMINARIUM Ämnesområde: Avfallsteknik/Waste Science and Technology Examinator: Professor Anders Lagerkvist, Luleå tekniska universitet Diskutant: Professor Britt-Marie Steenari, Chalmers tekniska högskola Tid: Onsdag den 17 november 2010 kl 09.30 Plats: F1031, Luleå tekniska universitet
Attili, Bassam Saleem. "Manufacturer [Sic] of Densified-Refuse Derived Fuel (d-RDF) Pellets and Methods for the Determination of d-RDF Pellet Densities." Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc500977/.
Full textRobinson, Travis. "Bubbling Fluidized Bed Gasification of Biomass and Refuse Derived Fuel." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33157.
Full textBlanco, Sanchez Paula Helena. "Nickel based catalysts for hydrogen production from the pyrolysis/gasification of refuse derived fuel (RDF)." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7414/.
Full textBasov, Mykhailo. "Návrh roštového kotle s přirozenou cirkulací na spalování RDF." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319264.
Full textSampaio, Raquel Paschoal. "Estudo de caso dos possíveis efeitos deletérios causados pelo combustível derivado de resíduos (CDR) em caldeiras voltadas a produção de energia elétrica queimando principalmente bagaço de cana." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-20072015-152703/.
Full textThe state of São Paulo produces about 58,700 tons/day waste divided by its 645 municipalities in the vicinity of about 170 sugar and alcohol mills. Given this fact, the potential is evident to make the consortium use of these two fuels in power generation. This paper investigated the potential deleterious effects that the presence of chlorine, fluoride, sodium and potassium can bring the boilers focused on the production of electric power using bagasse and refuse derived fuel (RDF). A thorough search in the international literature with the view to possible deleterious effects on biomass boilers for power generation because of consortium use of residue in the boiler integrity aspect, particularly the role played by the elements chlorine, fluorine, sodium and potassium, and then a careful analysis of the results. This analysis was conducted through a case study, considering a bubbling fluidized bed (BFB) boiler of 60 MW, burning bagasse and part of the residue of a city of 600,000 inhabitants. It was found that the residue that the city produces can be turned into RDF which will feed the boiler as an auxiliary fuel, producing electricity in a clean and sustainable manner. A parameter used to set the maximum amount of burned RDF in the boiler, was the specific chlorine, measured by the ratio between the chlorine content and the lower heating value (LHV) of the fuel. Based on the literature found, the specific chlorine was limited to 40 mg/MJ, so there is no damage to the integrity of the equipment. The consortium combustion of bagasse and RDF can be an alternative to the state of São Paulo reduce the problem of landfills for waste disposal and a possibility for the sugar and alcohol mills producing electric power for a longer period in the year, saving bagasse.
Ševčík, Martin. "NEAR-INFRARED SPECTROSCOPY FOR REFUSE DERIVED FUEL : Classification of waste material components using hyperspectral imaging and feasibility study of inorganic chlorine content quantification." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42376.
Full textFUDIPO
Waite, Ian Vowles. "Refuse-derived fuel for electricity generation in the UK." Thesis, London South Bank University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323891.
Full textHaj-Mahmoud, Qasem M. (Qasem Mohammed). "Pyrolysis Capillary Chromatography of Refuse-Derived Fuel and Aquatic Fulvic Acids." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc331124/.
Full textBrooks, Cheryl L. (Cheryl Leigh). "An Analysis of Refuse Derived Fuel as an Environmentally Acceptable Fuel Alternative for the Cement Industry." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc504331/.
Full textBooks on the topic "Refuse derived fuel (RDF)"
Hecklinger, R. S. Coal/d-RDF co-firing project, Milwaukee County, Wisconsin. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1986.
Find full textHecklinger, R. S. Coal/d-RDF co-firing project, Milwaukee County, Wisconsin. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1986.
Find full textHecklinger, R. S. Coal/d-RDF co-firing project, Milwaukee County, Wisconsin. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1986.
Find full textHecklinger, R. S. Coal/d-RDF co-firing project, Milwaukee County, Wisconsin. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1986.
Find full textHecklinger, R. S. Coal/d-RDF co-firing project, Milwaukee County, Wisconsin. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1986.
Find full text(Japan), Shōbō Kenkyūjo. RDF kasai ni kansuru kenkyū hōkokusho: Heisei 15-nendo. [Mitaka-shi]: Shōbō Kenkyūjo, 2006.
Find full textRising, Bruce. Emissions assessment for refuse-derived fuel combustion. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1985.
Find full textThorndyke, S. J. Evaluation of a prototype RDF pyrolyser for Ontario Ministry of Energy. Mississauga, ON: Ontario Research Foundation, 1986.
Find full textWilley, C. R. Demonstration test of refuse-derived fuel as a supplemental fuel in cement kilns. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1985.
Find full textCraig, Saltiel, American Society of Mechanical Engineers. Fuels and Combustion Technologies Division. Fuels Processing and Alternative Fuels Subcommittee., and International Joint Power Generation Conference (1991 : San Diego, Calif.), eds. Refuse-derived fuel (RDF)--quality, standards, and processing: Presented at the 1991 International Joint Power Generation Conference, October 6-10, 1991, San Diego, California. New York, N.Y: ASME, 1991.
Find full textBook chapters on the topic "Refuse derived fuel (RDF)"
Ribeiro, André, Margarida Soares, Carlos Castro, André Mota, Jorge Araújo, Cândida Vilarinho, and Joana Carvalho. "Waste-to-Energy Technologies Applied for Refuse Derived Fuel (RDF) Valorisation." In Innovation, Engineering and Entrepreneurship, 641–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91334-6_87.
Full textBuekens, Alfons. "Refuse-Derived Fuel." In Incineration Technologies, 71–76. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5752-7_6.
Full textRiseth, Jan Åge, and Yngve Torbergsen. "A Cost-Benefit Analysis of an Alternative Waste Treatment in Northern Norway. Use of Refuse Derived Fuel (RDF) instead of Coal in an Industrial Process. A Preliminary Analysis." In Economy & Environment, 83–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-3544-5_5.
Full textHasselriis, Floyd, and Patrick F. Mahoney. "Waste-to-Energy waste-to-energy (WTE) using Refuse-Derived Fuel Waste-to-Energy using Refuse-Derived Fuel." In Encyclopedia of Sustainability Science and Technology, 11787–827. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_400.
Full textHasselriis, Floyd, and Patrick F. Mahoney. "Waste-to-Energy waste-to-energy (WTE) using Refuse-Derived Fuel Waste-to-Energy using Refuse-Derived Fuel." In Renewable Energy Systems, 1561–603. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_400.
Full textLevie, Benjamin, James P. Diebold, and Ronald West. "Pyrolysis of Single Pellets of Refuse Derived Fuel." In Research in Thermochemical Biomass Conversion, 312–26. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2737-7_24.
Full textKlavins, Maris, Dmitry Porsnov, Valdis Bisters, Juris Kalviss, and Raivo Damkevics. "Refuse Derived Fuel Gasification Possibilities in Small Scale Units." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 945–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_274.
Full textMusse, Dawit, Wondwossen Bogale, and Berhanu Assefa. "Modeling of Gasification of Refuse Derived Fuel: Optimizations and Experimental Investigations." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 82–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43690-2_7.
Full textKim, Dong-Won, Jong-Min Lee, and Jae-Sung Kim. "Co-Combustion of Refuse Derived Fuel with Anthracites in a CFB Boiler." In Proceedings of the 20th International Conference on Fluidized Bed Combustion, 262–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02682-9_37.
Full textAttili, Bassam S., Kevin D. Ingram, Chia-Hui Tai, and Kenneth E. Daugherty. "Trace Metal Analysis of Fly Ash from Combustion of Densified Refuse-Derived Fuel and Coal." In Clean Energy from Waste and Coal, 199–211. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0515.ch016.
Full textConference papers on the topic "Refuse derived fuel (RDF)"
Ribeiro, A., C. Vilarinho, J. Araújo, and J. Carvalho. "Refuse Derived Fuel (RDF) Gasification Using Different Gasifying Agents." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71268.
Full textBülow, C. "Small decentralised thermal power stations for Refuse-Derived Fuel (RDF)." In WASTE MANAGEMENT 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/wm080071.
Full textCorti, A., and L. Lombardi. "Life cycle assessment approach for refuse derived fuel (RDF) systems for Tuscany." In Environmental Health Risk 2001. Southampton, UK: WIT Press, 2001. http://dx.doi.org/10.2495/ehr010281.
Full textGarlets, G., S. Mahar, and D. Vesley. "317. Characterization of Bioaerosols in Work Areas at Two Refuse-Derived Fuel (Rdf) Facilities." In AIHce 1996 - Health Care Industries Papers. AIHA, 1999. http://dx.doi.org/10.3320/1.2764992.
Full textPethe, Samit J., Michael L. Britt, and Scott A. Morrison. "Carbon Monoxide Emission Improvements From Combustion System Upgrades at the Wheelabrator Portsmouth Refuse Derived Fuel Plant." In 20th Annual North American Waste-to-Energy Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/nawtec20-7003.
Full textZhang, Jun, Kunlei Liu, Wei-Ping Pan, John T. Riley, and Yiqian Xu. "Characterization of Ash Deposition During Co-Combustion of Coal With Refuse-Derived Fuels in a Pilot FBC Facility." In 17th International Conference on Fluidized Bed Combustion. ASMEDC, 2003. http://dx.doi.org/10.1115/fbc2003-099.
Full textAbrams, Richard F., Kevin Toupin, John T. Costa, and Ned Popovic. "2,400 Tons Per Day Refuse Derived Fuel Facility With Advanced Boiler and Air Pollution Control Systems." In 18th Annual North American Waste-to-Energy Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/nawtec18-3549.
Full textKAHAWALAGE, AMILA CHANDRA, MORTEN C. MELAAEN, and LARS-ANDRÉ TOKHEIM. "SUBSTITUTION OF COAL BY REFUSE DERIVED FUELS (RDF) IN THE PRECALCINER OF A CEMENT KILN SYSTEM." In ENERGY AND SUSTAINABILITY 2017. Southampton UK: WIT Press, 2017. http://dx.doi.org/10.2495/esus170391.
Full textSwithenbank, Jim. "SUWIC Innovations in Thermal Waste to Energy Technologies." In 12th Annual North American Waste-to-Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nawtec12-2199.
Full textEgosi, Nathiel G., Mark E. Raabe, Robert Weidner, and Gary A. Freel. "Plant Upgrade: Recovery of Non-Ferrous Metals From a Municipal RDF Facility." In 18th Annual North American Waste-to-Energy Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/nawtec18-3510.
Full textReports on the topic "Refuse derived fuel (RDF)"
Belencan, Helen, and Gary Smith. RDF (Refuse-Derived Fuel) Co-Firing Cost/Benefit Analysis Using the NCEL RDF Cost Model. Volume 2. Appendixes. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada173981.
Full textBelencan, Helen, and Gary Smith. RDF (Refuse-Derived Fuel) Co-Firing Cost/Benefit Analysis Using the NCEL RDF Cost Model. Volume 3. RDF Cost Model Manual. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada173982.
Full textBelencan, Helen, and Gary Smith. RDF (Refuse-Derived Fuel) Co-Firing Cost/Benefit Analysis Using the NCEL RDF Cost Model. Volume 1. Project Results. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada173980.
Full textPaisley, M. A., K. S. Creamer, T. L. Tweksbury, and D. R. Taylor. Gasification of refuse derived fuel in the Battelle high throughput gasification system. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5653025.
Full textChurney, K. L., and T. J. Buckley. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.4443.
Full textOhlsson, O. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 3: Appendices. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10180124.
Full textOhlsson, O. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 1: Test methodology and results. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10180121.
Full textOhlsson, O. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 2: Field data and laboratory analysis. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10180119.
Full textPhase 1, Background study results under the Council of Great Lake Governors program to perform stack sampling and analysis of emissions from densified refuse derived fuels (d-RDF). Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6774660.
Full textResults of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/6391457.
Full text