Academic literature on the topic 'Regenerative fuel cell'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regenerative fuel cell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Regenerative fuel cell"

1

Mitlitsky, Fred, Blake Myers, and Andrew H. Weisberg. "Regenerative Fuel Cell Systems." Energy & Fuels 12, no. 1 (January 1998): 56–71. http://dx.doi.org/10.1021/ef970151w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yifei, Dennis Y. C. Leung, Jin Xuan, and Huizhi Wang. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell." Renewable and Sustainable Energy Reviews 75 (August 2017): 775–95. http://dx.doi.org/10.1016/j.rser.2016.11.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smedley, Stuart I., and X. Gregory Zhang. "A regenerative zinc–air fuel cell." Journal of Power Sources 165, no. 2 (March 2007): 897–904. http://dx.doi.org/10.1016/j.jpowsour.2006.11.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chaurasia, P. B. L., Yuji Ando, and Tadayoshi Tanaka. "Regenerative fuel cell with chemical reactions." Energy Conversion and Management 44, no. 4 (March 2003): 611–28. http://dx.doi.org/10.1016/s0196-8904(02)00066-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yifei, Dennis Y. C. Leung, Jin Xuan, and Huizhi Wang. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells." Renewable and Sustainable Energy Reviews 65 (November 2016): 961–77. http://dx.doi.org/10.1016/j.rser.2016.07.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kummer, J. T., and D. G. Oei. "A chemically regenerative redox fuel cell. II." Journal of Applied Electrochemistry 15, no. 4 (July 1985): 619–29. http://dx.doi.org/10.1007/bf01059304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bollaerts, Ilse, Jessie Van houcke, Lien Andries, Lies De Groef, and Lieve Moons. "Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System." Mediators of Inflammation 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/9478542.

Full text
Abstract:
Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.
APA, Harvard, Vancouver, ISO, and other styles
8

Gopalan, Srikanth, Guosheng Ye, and Uday B. Pal. "Regenerative, coal-based solid oxide fuel cell-electrolyzers." Journal of Power Sources 162, no. 1 (November 2006): 74–80. http://dx.doi.org/10.1016/j.jpowsour.2006.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bergen, Alvin, Thomas Schmeister, Lawrence Pitt, Andrew Rowe, Nedjib Djilali, and Peter Wild. "Development of a dynamic regenerative fuel cell system." Journal of Power Sources 164, no. 2 (February 2007): 624–30. http://dx.doi.org/10.1016/j.jpowsour.2006.10.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shapiro, Daniel, John Duffy, Michael Kimble, and Michael Pien. "Solar-powered regenerative PEM electrolyzer/fuel cell system." Solar Energy 79, no. 5 (November 2005): 544–50. http://dx.doi.org/10.1016/j.solener.2004.10.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Regenerative fuel cell"

1

Tan, Chiuan Chorng. "A new concept of regenerative proton exchange membrane fuel cell (R-­‐PEMFC)." Thesis, La Réunion, 2015. http://www.theses.fr/2015LARE0012.

Full text
Abstract:
Les travaux précédents trouvés dans la littérature ont mis l'importance sur la pile à combustible PEM ou électrolyseur PEM. Certains articles ont étudié également la pile à combustible réversible et le système d'alimentation en hydrogène par énergie solaire en intégrant à la fois la pile à combustible et électrolyseur. Contrairement à un « Unitised regenerative fuel cell (URFC)», notre conception a un compartiment individuel pour chaque système de PEM-Fuel Cell et d'electrolyseur-PEM et nommé Quasi - URFC. Grâce à ce nouveau concept, l'objectif principal est de réduire le coût de la pile à combustible régénératrice (RFC) en minimisant le rapport de surface superficielle géométrique du catalyseur de l'assemblage membrane électrodes (AME) des deux modes dans la cellule. D'ailleurs, nous visons également à construire un RFC plus compact, léger et portable par rapport à une pile à combustible ou l'électrolyseur classique. Ce travail de recherche est divisé en trois parties : la modélisation et simulation numérique, l'assemblage du prototype et le travail d'expérimentation. Quant à la partie de modélisation, un modèle physique multi-2D a été développé dans le but d'analyser les performances d'une pile à combustible à régénérée à trois-compartiments, qui se compose d'une piles à combustible et d'électrolyseur. Ce modèle numérique est basée sur la résolution des équations de conservation de masse, du momentum, des espèces et du courant électrique en utilisant une approche par éléments finis sur des grilles 2D . Les simulations permettent le calcul de la vitesse, de la concentration de gaz, la densité de courant et les distributions de potentiels en mode pile à combustible et en mode d'électrolyse, ainsi nous aider à prédire le comportement de quasi - RFC. En outre, l'assemblage du premier prototype du nouveau concept de pile à combustible à combustible régénérée a été achevée et testée au cours des trois années d'études dans le cadre d'une thèse. Les résultats expérimentaux de la 3 Compartiments R-PEMFC ont été prometteurs dans les deux modes, soit en mode piles à combustible et soit en mode d'électrolyseur. Ces résultats valideront ensuite les résultats de la simulation, obtenus auparavant par la modélisation
The past works found in the literature have focused on either PEM fuel cell or electrolyzer-PEM. Some of the papers even studied the unitised reversible regenerative fuel cell (URFC) and the solar power hydrogen system by integrating both fuel cell and electrolyzer. Unlike the URFC, our design has an individual compartment for each PEMFC and E-PEM systems and named Quasi-URFC. With this new concept, the main objective is to reduce the cost of regenerative fuel cell (RFC) by minimizing the ratio of the catalyst’s geometric surface area of the membrane electrode assembly (MEA) of both cell modes. Apart from that, we also aim to build a compact, light and portable RFC.This research work is divided into three parts: the modeling, assembly of the prototype and the experimentation work. As for the modeling part, a 2D multi-physics model has been developed in order to analyze the performance of a three chamber-regenerative fuel cell, which consists of both fuel cell and electrolyzer systems. This numerical model is based on solving conservation equations of mass, momentum, species and electric current by using a finite-element approach on 2D grids. Simulations allow the calculation of velocity, gas concentration, current density and potential's distributions in fuel cell mode and electrolysis mode, thus help us to predict the behavior of Quasi-RFC. Besides that, the assembly of the first prototype of the new concept of regenerative fuel cell has been completed and tested during the three years of PhD studies. The experimental results of the Three-Chamber RFC are promising in both fuel cell and electrolyzer modes and validate the simulation results that previously obtained by modeling
APA, Harvard, Vancouver, ISO, and other styles
2

Ito, Hiroshi. "Electrochemical studies for the development of Li-H2 thermally regenerative fuel cell." Kyoto University, 2004. http://hdl.handle.net/2433/147426.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(エネルギー科学)
甲第10980号
エネ博第91号
新制||エネ||25(附属図書館)
UT51-2004-G827
京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻
(主査)教授 伊藤 靖彦, 教授 尾形 幸生, 教授 片桐 晃
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
3

Najmi, Hussain. "Selectivity of Porous Composite Materials for Multispecies mixtures : Application to Fuel Cells." Thesis, Bourges, INSA Centre Val de Loire, 2018. http://www.theses.fr/2018ISAB0001/document.

Full text
Abstract:
L'utilisation de pile à combustible à bord d'un avion impose d'extraire des espèces légères (telles que l'hydrogène et les hydrocarbures légers) du combustible liquide qui est stocké et utilisé, éventuellement à des températures où se produit une pyrolyse du carburant. La porosité d’un matériau composite pourrait être utilisée pour filtrer les espèces sélectionnées. L'efficacité de séparation d’un matériau poreux dépend de deux facteurs qui sont: la perméance et la sélectivité.Ces facteurs sont souvent déterminés avec une configuration classique utilisant un échantillon en forme d’un disque d’un matériau poreux. Cependant, cette configuration est loin de la réalité qui est composée de tubes. Par conséquent, une étude est réalisée en considérant les deux configurations en utilisant différents types de disques poreux et un tube composite poreux. Ensuite, les résultats obtenus sont comparés et les différents facteurs affectant le processus de perméation sont étudiés.Après cela, un banc d'essai innovant est développé et utilisé afin de déterminer la distribution axiale des deux propriétés d'un tube poreux en acier inoxydable (c'est-à-dire la perméance et la sélectivité). Les effets des conditions opératoires (débit massique d'entrée et pression d'entrée) ont été étudiés. Une nouvelle forme radiale de l'équation de perméabilité aux gaz a été développée pour ce travail et sa relation avec la perméabilité de Darcy est établie. La variation de pression le long de l'axe central du tube est déterminée. Les effets de cette variation de pression sur les propriétés physiques des gaz tels que la densité et la viscosité sont déterminés et leur influence sur la sélectivité est étudiée en utilisant différents gaz tels que l'azote, le dioxyde de carbone, le méthane et l'hélium.Plus tard, un mélange binaire de dioxyde de carbone (CO2) et d'Azote (N2) est considéré sous trois compositions volumétriques différentes (50/50%, 60/40% et 70/30%) afin d'évaluer la propriété de séparation de gaz d’un tube poreux (effet de membrane). La perméabilité au gaz pur, la perméabilité du mélange, la sélectivité idéale et la sélectivité de séparation de ce tube sont déterminées pour un débit massique et une pression d'entrée différents. Les facteurs affectant les distributions de CO2 et de N2 à l'intérieur du tube poreux sont étudiés.Les résultats obtenus peuvent être utiles pour comprendre les facteurs affectant la séparation des gaz dans le cas d'un tube poreux pour des processus industriels continus
Using Fuel Cell on board of aircraft imposes to extract light species (such as Hydrogen and light hydrocarbons) from the liquid fuel which is stored and used, possibly at temperatures where a fuel pyrolysis occurs. Porosity of a composite material could be used to filtrate the selected species. The separation efficiency of a porous material depends upon two factors which are: Permeance and Selectivity.These factors are often determined with a classical configuration using a porous disk sample. However, this configuration is far from the realistic one consisting of tubes. Therefore, a study is performed considering both configurations using different types of porous disks and a porous composite tube. Then, the obtained results are compared and the different factors affecting the permeation process are studied.After that, an innovative permselectivity test bench is developed and used in order to determine the axial distribution of the two properties of a stainless steel porous tube (i.e. permeance and selectivity). The effects of the operating conditions (inlet mass flowrate and inlet pressure) have been studied. A new radial form of the gas permeability equation has been developed for this work and its relationship with Darcy‘s permeability is established. The pressure variation along the centre axis of the tube is determined. The effects of this pressure variation on the physical properties of gases such as density and viscosity are determined and their influence on the selectivity is studied using different gases such as Nitrogen, Carbon dioxide, Methane, and Helium. Later, a binary mixture of Carbon Dioxide (CO2) and of Nitrogen (N2) is considered under three different volumetric compositions (50/50%, 60/40% and 70/30%) in order to evaluate the separation property of the porous stainless steel tube (membrane effect). The pure gas permeability, the mixture permeability, the ideal selectivity and the separation selectivity of this tube are determined for a different mass flowrate and inlet pressure. The factors affecting the distributions of CO2 and N2 inside the porous tube are investigated. The obtained results can be useful to understand the factors affecting gas separation in case of a porous tube for continuous industrial processes
APA, Harvard, Vancouver, ISO, and other styles
4

Martino, Drew J. "Evaluation of Electrochemical Storage Systems for Higher Efficiency and Energy Density." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/470.

Full text
Abstract:
Lack of energy storage is a key issue in the development of renewable energy sources. Most renewables, especially solar and wind, when used alone, cannot sustain a reliably constant power output over an extended period of time. These sources generally generate variable amounts of power intermittently, therefore, an efficient electrical energy storage (EES) method is required to better temporally balance power generation to power consumption. One of the more promising methods of electrical energy storage is the unitized regenerative fuel cell (UFRC.) UFRCs are fuel cells that can operate in a charge-discharge cycle, similar to a battery, to store and then to subsequently release power. Power is stored by means of electrolysis while the products of this electrolysis reaction can be recombined as in a normal fuel cell to release the stored power. A major advantage of UFRCs over batteries is that storage capacity can be decoupled from cell power, thus reducing the potential cost and weight of the cell unit. Here we investigate UFRCs based on hydrogen-halogen systems, specifically hydrogen-bromine, which has potential for improved electrode reaction kinetics and hence cheaper catalysts and higher efficiency and energy density. A mathematical model has been developed to analyze this system and determine cell behavior and cycle efficiency under various conditions. The conventional H2-Br2 URFCs, however also so far have utilized Pt catalysts and Nafion membranes. Consequently, a goal of this work was to explore alternate schemes and materials for the H2-Br2 URFC. Thus, three generations of test cells have been created. The first two cells were designed to use a molten bromide salt, ionic liquid or anion exchange membrane as the ion exchange electrolyte with the liquids supported on a porous membrane. This type of system provides the potential to reduce the amount of precious metal catalyst required, or possibly eliminate it altogether. Each cell showed improvement over the previous generation, although the results are preliminary. The final set of results are promising for anion exchange membranes on a cost basis compared Nafion. Another promising energy storage solution involves liquid methanol as an intermediate or as a hydrogen carrier. An alternative to storing high-pressure hydrogen is to produce it on-board/on-site on demand via a methanol electrocatalytic reformer (eCRef), a PEM electrolyzer in which methanol-water coelectrolysis takes place. Methanol handling, storage, and transportation is much easier than that for hydrogen. The hydrogen produced via methanol eCref may then be used in any number of applications, including for energy storage and generation in a standard H2-O2 PEM fuel cell. The mathematical modeling and analysis for an eCref is very similar to that of the HBr URFC. In this work, a comprehensive model for the coelectrolysis of methanol and water into hydrogen is created and compared with experimental data. The performance of the methanol electrolyzer coupled with a H2-O2 fuel cell is then compared for efficiency to that of a direct methanol fuel cell data and was found to be superior. The results suggest that an efficient and small paired eCRef-fuel cell system is potentially be a cheaper and more viable alternative to the standard direct methanol fuel cell. Both the H2-Br2 URFC and the methanol eCref in combination with a H2-O2 fuel cell have significant potential to provide higher energy efficiency and energy density for EES purposes.
APA, Harvard, Vancouver, ISO, and other styles
5

Vassallo, Joseph. "Multilevel converters for regenerative fuel-cells." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Doddathimmaiah, Arun Kumar, and arun doddathimmaiah@rmit edu au. "Unitised Regenerative Fuel Cells in Solar - Hydrogen Systems for Remote Area Power Supply." RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20081128.140252.

Full text
Abstract:
Remote area power supply (RAPS) is a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. Solar-hydrogen RAPS systems commonly employ photovoltaic panels, a Proton Exchange Membrane (PEM) electrolyser, a storage for hydrogen gas, and a PEM fuel cell. Unitised Regenerative Fuel Cells (URFCs) use the same hardware for both electrolyser and fuel cell functions. Since both of these functions are not required simultaneously in a solar hydrogen RAPS system, URFCs based on PEM technology provide a promising opportunity for reducing the cost of the hydrogen subsystem used in renewable-energy hydrogen systems for RAPS. URFCs also have potential applications in the areas of aerospace, submarines, energy storage for central grids, and hydrogen cars. In this thesis, a general theoretical relationship between cell potential and current density of a single-cell PEM URFC operating in both fuel-cell (FC) and electrolyser (E) modes is developed using modified Butler-Volmer equations for both oxygen- and hydrogen-electrodes, and accounting for mass transport losses and saturation behaviour in both modes, membrane resistance to proton current, and membrane and electrode resistances to electron current. This theoretical relationship is used to construct a computer model based on Excel and Visual Basic to generate voltage-current (V-I) polarisation curves in both E and FC modes for URFCs with a range of membrane electrode assembly characteristics. The model is used to investigate the influence on polarisation curves of varying key parameters such charge transfer coefficients, exchange current densities, saturation currents, and membrane conductivity. A method for using the model to obtain best-fit values for electrode characteristics corresponding to an experime ntally-measured polarisation curve of a URFC is presented. The experimental component of the thesis has involved the design and construction of single PEM URFCs with an active area of 5 cm2 with a number of different catalyst types and loadings. V-I curves for all these cells have been measured and the performance of the cells compared. The computer model has then been used to obtain best-fit values for the electrode characteristics for the URFCs with single catalyst materials active in each mode on each electrode for the corresponding experimentally-measured V-I curves. Generally values have been found for exchange current densities, charge transfer coefficients, and saturation current densities that give a close fit between the empirical and theoretically-generated curves. The values found conform well to expectations based on the catalyst loadings, in partial confirmation of the validity of the modelling approach. The model thus promises to be a useful tool in identifying electrodes with materials and structures, together with optimal catalyst types and loadings that will improve URFC performance. Finally the role URFCs can play in developing cost-competitive solar- hydrogen RAPS systems is discussed, and some future directions for future URFC research and development are identified.
APA, Harvard, Vancouver, ISO, and other styles
7

Wojnar, Olek. "Analyzing carbohydrate-based regenerative fuel cells as a power source for unmanned aerial vehicles." Wright-Patterson AFB : Air Force Institute of Technology, 2008. http://handle.dtic.mil/100.2/ADA480693.

Full text
Abstract:
Thesis (M.S. in Aeronautical Engineering) --Air Force Institute of Technology, 2008.
Title from title page of PDF document (viewed on Aug 8, 2008). "AFIT/GAE/ENY/08-M31" Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Kavita. "Catalyseurs sans métaux nobles pour pile à combustible régénérative." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2284/document.

Full text
Abstract:
Le dihydrogène (H2) se présente comme le futur vecteur énergétique pour une économie basée sur des ressources propres et respectueuses de l'environnement. Il est le combustible idéal de la pile à combustible régénérative constituée de deux entités : un électrolyseur pour sa production, et une pile à combustible pour sa conversion directe en énergie électrique. Ce système présente l'avantage d'être compact et autonome. Cependant, l'amélioration de l'activité catalytique des matériaux, leur stabilité et l'élimination de métaux nobles dans leur composition sont nécessaires. Des catalyseurs bifonctionnels à base de métaux de transition associés au graphène ont alors été synthétisés. L'interaction oxyde-graphène a été étudiée sur un catalyseur Co3O4/NRGO. À faible teneur en cobalt, l'interaction entre les atomes de cobalt de l'oxyde et les atomes d'azote greffés sur les plans de graphène a été observée par voltammétrie cyclique. Cette interaction est responsable d'une diminution de la taille des nanoparticules de cobaltite et de l'activité de celles-ci vis-à-vis de la réaction de réduction du dioxygène (RRO). La substitution du cobalt par le nickel dans des structures de type spinelle (NiCo2O4/RGO) obtenu par voie solvothermale, a permis d'améliorer les performances électrocatalytiques vis-à-vis de la RRO et de la RDO. Ce matériau et un autre de type Fe-N-C préparé en collaboration avec un laboratoire de l'Université Technique de Berlin ont servi de cathode dans des études préliminaires réalisées en configuration pile à combustible alcaline à membrane échangeuse d'anion (SAFC)
Hydrogen, as an environmentally friendly future energy vector, is a non-toxic and convenient molecule for regenerative fuel cell, which connects two different technologies: an electrolyzer for H2 production, and a fuel cell for its direct conversion to electric energy. This kind of system possesses many advantages, such as lightness, compactness and more autonomy. However, improvement of activity and durability of electrode materials free from noble metals in their composition is needed. Thereby, bifunctional catalysts composed of transition metals deposited onto graphene-based materials were synthesized. The interaction between the metal atom of the oxide and the graphene doped heteroatom in the Co3O4/NRGO catalyst was investigated physicochemically. With a low cobalt loading, the interaction between cobalt and nitrogen was characterized by cyclic voltammetry, which revealed that it was responsible for decreasing the oxide nanoparticle size, as well as increasing the material activity towards the oxygen reduction reaction (ORR). The substitution of Co by Ni in the spinel structure (NiCo2O4/RGO) obtained by solvothermal synthesis, allowed the enhancement of the electrocatalytic performances towards the ORR and OER. Moreover, this catalyst as well as another material prepared in collaborative program with a lab from Technical University of Berlin were used as cathode in preliminary studies undertaken on solid alkaline fuel cell (SAFC)
APA, Harvard, Vancouver, ISO, and other styles
9

Hosseini-Benhangi, Pooya. "Bifunctional oxygen reduction/evolution catalysts for rechargeable metal-air batteries and regenerative alkaline fuel cells." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/60227.

Full text
Abstract:
The electrocatalysis of oxygen reduction and evolution reactions (ORR and OER, respectively) on the same catalyst surface is among the long-standing challenges in electrochemistry with paramount significance for a variety of electrochemical systems including regenerative fuel cells and rechargeable metal-air batteries. Non-precious group metals (non-PGMs) and their oxides, such as manganese oxides, are the alternative cost-effective solutions for the next generation of high-performance bifunctional oxygen catalyst materials. Here, initial stage electrocatalytic activity and long-term durability of four non-PGM oxides and their combinations, i.e. MnO₂, perovskites (LaCoO₃ and LaNiO₃) and fluorite-type oxide (Nd₃IrO₇), were investigated for ORR and OER in alkaline media. The combination of structurally diverse oxides revealed synergistic catalytic effect by improved bifunctional activity compared to the individual oxide components. Next, the novel role of alkali-metal ion insertion and the mechanism involved for performance promotion of oxide catalysts were investigated. Potassium insertion in the oxide structures enhanced both ORR and OER performances, e.g. 110 and 75 mV decrease in the OER (5 mAcm-²) and ORR (-2 mAcm-²) overpotentials (in absolute values) of MnO₂-LaCoO₃, respectively, during galvanostatic polarization tests. In addition, the stability of K⁺ activated catalysts was improved compared to unactivated samples. Further, a factorial design study has been performed to find an active nanostructured manganese oxide for both ORR and OER, synthesized via a surfactant-assisted anodic electrodeposition method. Two-hour-long galvanostatic polarization at 5 mAcm-² showed the lowest OER degradation rate of 5 mVh-¹ for the electrodeposited MnOx with 270 mV lower OER overpotential compared to the commercial γ-MnO₂ electrode. Lastly, the effect of carbon addition to the catalyst layer, e.g. Vulcan XC-72, carbon nanotubes and graphene-based materials, was examined on the ORR/OER bifunctional activity and durability of MnO₂ LaCoO₃. The highest ORR and OER mass activities of -6.7 and 15.5 Ag-¹ at 850 and 1650 mVRHE, respectively, were achieved for MnO₂-LaCoO₃-multi_walled_carbon_nanotube-graphene, outperforming a commercial Pt electrode. The factors affecting the durability of mixed-oxide catalysts were discussed, mainly attributing the performance degradation to Mn valence changes during ORR/OER. A wide range of surface analyses were employed to support the presented electrochemical results as well as the proposed mechanisms.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
10

Jamal, Al-Maleek. "Studies of pancreatic islet plasticity : a new paradigm in tissue regeneration." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85920.

Full text
Abstract:
The morphogenetic plasticity of adult pancreatic islets of Langerhans has been implicated in the development of pancreatic adenocarcinomas and in islet transplant failure. The objective of this doctoral work was to investigate the extent of this plasticity and to characterize the unknown cell types and intracellular mechanisms involved in changes of adult islet phenotype.
In the first published study, isolated adult canine islets were induced to undergo a phenotypic switch into highly proliferative duct-like structures through a two-stage process entailing beta-cell death and the dedifferentiation of the resulting cells. The transformed islets were no longer immunoreactive for islet cell hormones, but now expressed markers of pancreatic duct epithelial cells. Pharmacologic inhibition of signal transduction demonstrated that the balance in signalling activity between ERK/Akt and JNK/caspase-3 appears to be an important regulator of islet cell death and differentiation.
In the second published study, quiescent adult human islets were induced to undergo a similar phenotypic switch into highly proliferative duct-like structures in a process that implicated glucagon- and somatostatin-expressing cells, and was characterized by a loss of expression of islet-specific hormones and transcription factors as well as a temporally-related rise in expression of markers of stermness and duct epithelium. Short-term treatment of these primitive duct-like structures with the islet neogenic factor INGAP 104-118 induced their scalable reversion back to islet-like structures in a P13-kinase-dependent manner. These neoislets resembled freshly isolated human islets with respect to the presence and topological arrangement of the four endocrine cell-types, islet gene expression and hormone production, insulin content and glucose-responsive insulin secretion. The demonstration that adult human islets are able to regenerate themselves establishes a new paradigm in the context of tissue regeneration and diabetes therapy.
These original findings may have important clinical implications for understanding and controlling pancreatic carcinogenesis and islet neogenesis in the adult human pancreas.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Regenerative fuel cell"

1

Martin, R. E. Integrated regenerative fuel cell experimental evaluation: Final report. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Levy, Alexander. Regenerative fuel cell study for satellites in GEO orbit. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maloney, Thomas M. Modeling and optimization of a regenerative fuel cell system using the ASPEN process simulator. [Washington, D.C.]: National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martin, R. E. Regenerative fuel cell energy storage system for a low earth orbit space station: Topical report. [South Windsor, Conn.]: United Technologies Corporation, Power Systems Division, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frank, David George. The effects of cell design and materials of construction on the electrolysis performance of a proton exchange membrane unitized regenerative fuel cell. Ottawa: National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kúš, Peter. Thin-Film Catalysts for Proton Exchange Membrane Water Electrolyzers and Unitized Regenerative Fuel Cells. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20859-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Regenerative fuel cell study for satellites in GEO orbit. [Washington, DC]: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bei-Jiann, Chang, and NASA Glenn Research Center, eds. Regenerative fuel cell test rig at Glenn Research Center. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Center, NASA Glenn Research, ed. High energy density regenerative fuel cell systems for terrestrial applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The fuel cell in space: Yesterday, today and tomorrow. Cleveland, Ohio: Lewis Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Regenerative fuel cell"

1

Müller, Martin. "Regenerative Fuel Cells." In Fuel Cell Science and Engineering, 219–45. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527650248.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cable, T. L., J. A. Setlock, and S. C. Farmer. "Regenerative Operation of the NASA Symmetrical Support Solid Oxide Fuel Cell." In Advances in Solid Oxide Fuel Cells III, 103–13. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470339534.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Hong Ki, Sung Wan Hong, Sung Won Yang, Woo Min Lee, and Jeong Mo Yoon. "Increase of Electrolysis Cell Performance by Addition of PVDF and Graphite Powder on MEA for Regenerative Fuel Cells." In Advanced Materials Research, 849–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-463-4.849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ioroi, Tsutomu. "Regenerative Fuel Cells." In Encyclopedia of Applied Electrochemistry, 1806–8. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shabani, B., R. Omrani, S. Seif Mohammadi, B. Paul, and J. Andrews. "Chapter 9. Unitised Regenerative Fuel Cells." In Electrochemical Methods for Hydrogen Production, 306–49. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016049-00306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elbaset, Adel A., and Salah Ata. "Regenerative Fuel Cells as a Backup Power Supply." In Hybrid Renewable Energy Systems for Remote Telecommunication Stations, 19–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66344-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tanner, Claire, and Megan Munsie. "Seeing the Full Picture: The Hidden Cost of the Stem Cell and Regenerative Medicine Revolution." In Stem Cell Biology and Regenerative Medicine, 291–304. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0787-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moortgat, Peter, Mieke Anthonissen, Ulrike Van Daele, Jill Meirte, Tine Vanhullebusch, and Koen Maertens. "Shock Wave Therapy for Wound Healing and Scar Treatment." In Textbook on Scar Management, 485–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_55.

Full text
Abstract:
AbstractShock Wave Therapy (SWT) meets all the requirements for the ideal non-invasive scar treatment. It is safe, well tolerated by patients, cost-effective, easy to apply, has low complication rates, and can be used in an outpatient setting. The overall effect of SWT is an improvement of tissue homeostasis, accompanied by an improvement of the tissue self-healing abilities, and it seems to focus on inducing tissue regeneration and matrix remodeling in vivo by means of mechanotransduction.SWT has a beneficial effect on wound healing and is characterized by an upregulation of the angio-active factors as nitric oxide (NO) and vascular endothelial growth factor (VEGF) leading to induced angiogenesis. A downregulation of alpha-SMA expression, myofibroblast phenotype, TGF-β1 expression, fibronectin, and collagen type I are measured after SWT on scars, leading to improvement of several relevant scar parameters like height, pliability, vascularity, and pigmentation, and thus ameliorating function.For a full treatment outline, the energy flux density (EFD), the number of pulses, the pulse frequency, and the number and interval of treatments are the most relevant parameters. The EFD for soft tissue indications is typically in the range of 0.08–0.25 mJ/mm2, while scars and fibrosis are treated with an EFD ranging between 0.15 and 0.33 mJ/mm2. These settings seem to be ideal to induce the optimal cell responses for each indication.All the presented findings are fundamental knowledge for further investigation of SWT to reduce the fibrous component in regenerating and remodeling tissues. However, the full potential of SWT in wound healing and scar treatment needs further unraveling.
APA, Harvard, Vancouver, ISO, and other styles
9

"Fundamentals of Regenerative Braking." In Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, 333–45. CRC Press, 2004. http://dx.doi.org/10.1201/9781420037739.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Fundamentals of Regenerative Breaking." In Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, 1–20. CRC Press, 2017. http://dx.doi.org/10.1201/9781420054002-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Regenerative fuel cell"

1

Burke, Kenneth. "Unitized Regenerative Fuel Cell System Development." In 1st International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-5939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roy, Prodyot, Samir A. Salamah, Jerry Maldonado, and Regina S. Narkiewicz. "‘‘HYTEC’’—A thermally regenerative fuel cell." In Proceedings of the tenth symposium on space nuclear power and propulsion. AIP, 1993. http://dx.doi.org/10.1063/1.43117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Littman, Franklin D., Robert L. Cataldo, James F. McElroy, and Jay K. Stedman. "Long Life Regenerative Fuel Cell Technology Development Plan." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lakeman, J. B., P. Barnes, W. Cranstone, S. Male, I. Whyte, G. E. Cooley, and P. Mitchell. "The Regenerative Fuel Cell For Air Independent Power." In Warship 99. RINA, 1999. http://dx.doi.org/10.3940/rina.ws.1999.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garrard, A., S. Beck, and P. Styring. "Numerical Model of a Single Phase, Regenerative Fuel Cell." In ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2455.

Full text
Abstract:
A code for numerical simulating the fluid flow and electrochemistry of a single phase regenerative fuel cell is presented. Due to the potentially tiny geometries and complex multi-physical interactions, modeling presents a chance to obtain detailed quantitative data and much needed understanding about physics within the reactor. The Regenesys XL200 fuel cell has the industrial application of large scale energy storage and is the focus of this work. A two dimensional, binary reduction reaction system has been created to represent the XL200 and test the code. Commercially available CFD software Fluent was used to calculate the flow field and subroutines were used to create the dynamic calculation of electrochemistry at the reaction surface. The effect of changing the total applied potential across the domain on the potential and species concentration distribution within the domain was investigated. Results show that the code is producing qualitatively feasible results that represent the tight multi-physical coupling. The code is currently not validated against physical experimental results and this will be the focus of future work.
APA, Harvard, Vancouver, ISO, and other styles
6

Ferrari, Giorgio Luigi, Stewart Pelle, Massimiliano Antonini, Manuel Cabrera, Marco Armandi, Barbara Bonelli, and Cristina Zanzottera. "Energy Storage: Regenerative Fuel Cell Systems for Space Exploration." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-01-2624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burke, Kenneth A., and Ian Jakupca. "Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development." In Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-3168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Van Dine, Leslie, Olga Gonzalez-Sanabria, and Alexander Levy. "Regenerative Fuel Cell Study for Satellites in GEO Orbit." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mittelsteadt, Cortney, and William Braff. "Advanced Unitized Regenerative Fuel Cell Technology for Lunar Missions." In 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okaya, Shunichi. "Regenerative Fuel Cell for High Power Space System Applications." In 11th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3923.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Regenerative fuel cell"

1

Michael A. Inbody, Rodney L. Borup, James C. Hedstrom, Jose Tafoya, Byron Morton, Lois Zook, and Nicholas E. Vanderborgh. Regenerative fuel cell engineering - FY99. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/752398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ayers, Katherine E. Improved Round Trip Efficiency for Regenerative Fuel Cell Systems. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada535784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ayers, Katherine E. Improved Round Trip Efficiency for Regenerative Fuel Cell Systems. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada540745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ayers, Katherine E. Improved Round Trip Efficiency for Regenerative Fuel Cell Systems. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada546147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ayers, Katherine E. Improved Round Trip Efficiency for Regenerative Fuel Cell Systems. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada545374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ayers, Katherine E. Improved Round Trip Efficiency for Regenerative Fuel Cell Systems. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada554860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

James F. McElroy, Darren B. Hickey, and Fred Mitlitsky. Optimization and Demonstration of a Solid Oxide Regenerative Fuel Cell System. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/914417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ayers, Katherine E. Improved Round Trip Efficiency for Air Independent Regenerative Fuel Cell Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada530960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ayers, Katherine E. Improved Round Trip Efficiency for Air Independent Regenerative Fuel Cell Systems. Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada553513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Voecks, G. E., N. K. Rohatgi, and S. H. Moore. Operation of the 25 kW NASA Lewis Solar Regenerative Fuel Cell Testbed Facility. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography