Academic literature on the topic 'Regresión de Ridge'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regresión de Ridge.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Regresión de Ridge"
Pérez-Planells, Ll, J. Delegido, J. P. Rivera-Caicedo, and J. Verrelst. "Análisis de métodos de validación cruzada para la obtención robusta de parámetros biofísicos." Revista de Teledetección, no. 44 (December 22, 2015): 55. http://dx.doi.org/10.4995/raet.2015.4153.
Full textMcDonald, Gary C. "Ridge regression." Wiley Interdisciplinary Reviews: Computational Statistics 1, no. 1 (July 2009): 93–100. http://dx.doi.org/10.1002/wics.14.
Full textFearn, Tom. "Ridge Regression." NIR news 24, no. 3 (May 2013): 18–19. http://dx.doi.org/10.1255/nirn.1365.
Full textRashid, Khasraw A., and Hanaw A. Amin. "Ridge Estimates of Regression Coefficients for SoilMoisture Retention of IraqiSoils." Journal of Zankoy Sulaimani - Part A 18, no. 3 (February 25, 2016): 85–98. http://dx.doi.org/10.17656/jzs.10537.
Full textDorugade, A. V. "New ridge parameters for ridge regression." Journal of the Association of Arab Universities for Basic and Applied Sciences 15, no. 1 (April 2014): 94–99. http://dx.doi.org/10.1016/j.jaubas.2013.03.005.
Full textMunroe, Jeffrey S. "Ground Penetrating Radar Investigation of Late Pleistocene Shorelines of Pluvial Lake Clover, Elko County, Nevada, USA." Quaternary 3, no. 1 (March 20, 2020): 9. http://dx.doi.org/10.3390/quat3010009.
Full textde Boer, Paul M. C., and Christian M. Hafner. "Ridge regression revisited." Statistica Neerlandica 59, no. 4 (October 13, 2005): 498–505. http://dx.doi.org/10.1111/j.1467-9574.2005.00304.x.
Full textHertz, D. "Sequential ridge regression." IEEE Transactions on Aerospace and Electronic Systems 27, no. 3 (May 1991): 571–74. http://dx.doi.org/10.1109/7.81440.
Full textTutz, Gerhard, and Harald Binder. "Boosting ridge regression." Computational Statistics & Data Analysis 51, no. 12 (August 2007): 6044–59. http://dx.doi.org/10.1016/j.csda.2006.11.041.
Full textSundberg, Rolf. "Continuum Regression and Ridge Regression." Journal of the Royal Statistical Society: Series B (Methodological) 55, no. 3 (July 1993): 653–59. http://dx.doi.org/10.1111/j.2517-6161.1993.tb01930.x.
Full textDissertations / Theses on the topic "Regresión de Ridge"
Williams, Ulyana P. "On Some Ridge Regression Estimators for Logistic Regression Models." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3667.
Full textMahmood, Nozad. "Sparse Ridge Fusion For Linear Regression." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5986.
Full textM.S.
Masters
Statistics
Sciences
Statistical Computing
Younker, James. "Ridge Estimation and its Modifications for Linear Regression with Deterministic or Stochastic Predictors." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22662.
Full textKuhl, Mark R. "Ridge regression signal processing applied to multisensor position fixing." Ohio : Ohio University, 1990. http://www.ohiolink.edu/etd/view.cgi?ohiou1183651058.
Full textZaldivar, Cynthia. "On the Performance of some Poisson Ridge Regression Estimators." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3669.
Full textWissel, Julia. "A new biased estimator for multivariate regression models with highly collinear variables." Doctoral thesis, kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3638/.
Full textBakshi, Girish. "Comparison of ridge regression and neural networks in modeling multicollinear data." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178815205.
Full textLi, Ying. "A Comparison Study of Principle Component Regression, Partial Least Square Regression and Ridge Regression with Application to FTIR Data." Thesis, Uppsala University, Department of Statistics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-127983.
Full textLeast squares estimator may fail when the number of explanatory vari-able is relatively large in comparison to the sample or if the variablesare almost collinear. In such a situation, principle component regres-sion, partial least squares regression and ridge regression are oftenproposed methods and widely used in many practical data analysis,especially in chemometrics. They provide biased coecient estima-tors with the relatively smaller variation than the variance of the leastsquares estimator. In this paper, a brief literature review of PCR,PLS and RR is made from a theoretical perspective. Moreover, a dataset is used, in order to examine their performance on prediction. Theconclusion is that for prediction PCR, PLS and RR provide similarresults. It requires substantial verication for any claims as to thesuperiority of any of the three biased regression methods.
Silva, Tatiane Cazarin da. "Algoritmos primais-duais de ponto fixo aplicados ao problema Ridge Regression." reponame:Repositório Institucional da UFPR, 2016. http://hdl.handle.net/1884/43736.
Full textCoorientador : Profª. Drª. Gislaine Aparecida Periçaro
Tese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 08/06/2016
Inclui referências : f. 60-64
Área de concentração : Progressão matemática
Resumo: Neste trabalho propomos algoritmos para resolver uma formulação primal-dual geral de ponto fixo aplicada ao problema de Ridge Regression. Estudamos a formulação primal para problemas de quadrados mínimos regularizado, em especial na norma L2, nomeados Ridge Regression e descrevemos a dualidade convexa para essa classe de problemas. Nossa estratégia foi considerar as formulações primal e dual conjuntamente, e minimizar o gap de dualidade entre elas. Estabelecemos o algoritmo de ponto fixo primal-dual, nomeado SRP e uma reformulação para esse método, contribuição principal da tese, a qual mostrou-se mais eficaz e robusta, designada por método acc-SRP, ou versão acelerada do método SRP. O estudo teórico dos algoritmos foi feito por meio da análise de propriedades espectrais das matrizes de iteração associadas. Provamos a convergência linear dos algoritmos e apresentamos alguns exemplos numéricos comparando duas variantes para cada algoritmo proposto. Mostramos também que o nosso melhor método, acc-SRP, possui excelente desempenho numérico na resolução de problemas muito mal-condicionados quando comparado ao Método de Gradientes Conjugados, o que o torna computacionalmente mais atraente. Palavras-chave: Métodos primais-duais, Ridge Regression, ponto fixo, dualidade, métodos acelerados
Abstract: In this work we propose algorithms for solving a fixed-point general primal-dual formulation applied to the Ridge Regression problem. We study the primal formulation for regularized least squares problems, especially L2-norm, named Ridge Regression and then describe convex duality for that class of problems. Our strategy was to consider together primal and dual formulations and minimize the duality gap between them. We established the primal-dual fixed point algorithm, named SRP and a reformulation for this method, the main contribution of the thesis, which was more efficient and robust, called acc-SRP method or accelerated version of the SRP method. The theoretical study of the algorithms was done through the analysis of the spectral properties of the associated iteration matrices. We proved the linear convergence of algorithms and some numerical examples comparing two variants for each algorithm proposed were presented. We also showed that our best method, acc-SRP, has excellent numerical performance for solving very ill-conditioned problems, when compared to the conjugate gradient method, which makes it computationally more attractive. Key-words: Primal-dual methods, ridge regression, fixed point, duality, accelerated methods.
Saha, Angshuman. "Application of ridge regression for improved estimation of parameters in compartmental models /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8945.
Full textBooks on the topic "Regresión de Ridge"
Gruber, Marvin H. J. Regression estimators: A comparative study. 2nd ed. Baltimore: Johns Hopkins University Press, 2010.
Find full textSaleh, A. K. Md Ehsanes, Mohammad Arashi, and B. M. Golam Kibria, eds. Theory of Ridge Regression Estimation with Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781118644478.
Full textCoshall, John. An illustration of ridge regression using agricultural data. London: University of North London Press, 1993.
Find full textImproving efficiency by shrinkage: The James-Stein and ridge regression estimators. New York: Marcel Dekker, 1998.
Find full textGruber, Marvin H. J. Regression estimators: A comparative study. Boston: Academic Press, 1990.
Find full textGruber, Marvin H. J. Regression estimators: A comparative study. Boston: Academic Press, 1992.
Find full textRegression estimators: A comparative study. 2nd ed. Baltimore: Johns Hopkins University Press, 2010.
Find full textGruber, Marvin H. J. Regression estimators: A comparative study. 2nd ed. Baltimore: Johns Hopkins University Press, 2010.
Find full textVerallgemeinerte Ridge Regression: Eine Untersuchung von theoretischen Eigenschaften und der Operationalität verzerrter Schätzer im linearen Modell. Frankfurt am Main: A. Hain, 1986.
Find full textAhmed, S. E. (Syed Ejaz), 1957- editor of compilation, ed. Perspectives on big data analysis: Methodologies and applications : International Workshop on Perspectives on High-Dimensional Data Anlaysis II, May 30-June 1, 2012, Centre de Recherches Mathématiques, University de Montréal, Montréal, Québec, Canada. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textBook chapters on the topic "Regresión de Ridge"
Vovk, Vladimir. "Kernel Ridge Regression." In Empirical Inference, 105–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41136-6_11.
Full textVinod, H. D. "Confidence Intervals for Ridge Regression Parameters." In Time Series and Econometric Modelling, 279–300. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4790-0_19.
Full textPapadopoulos, Harris. "Cross-Conformal Prediction with Ridge Regression." In Statistical Learning and Data Sciences, 260–70. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17091-6_21.
Full textZhdanov, Fedor, and Yuri Kalnishkan. "An Identity for Kernel Ridge Regression." In Lecture Notes in Computer Science, 405–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16108-7_32.
Full textCawley, Gavin C., Nicola L. C. Talbot, and Olivier Chapelle. "Estimating Predictive Variances with Kernel Ridge Regression." In Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, 56–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11736790_5.
Full textWang, Ling, Liefeng Bo, and Licheng Jiao. "Sparse Kernel Ridge Regression Using Backward Deletion." In Lecture Notes in Computer Science, 365–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36668-3_40.
Full textShigeto, Yutaro, Ikumi Suzuki, Kazuo Hara, Masashi Shimbo, and Yuji Matsumoto. "Ridge Regression, Hubness, and Zero-Shot Learning." In Machine Learning and Knowledge Discovery in Databases, 135–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23528-8_9.
Full textOhishi, Mineaki, Hirokazu Yanagihara, and Hirofumi Wakaki. "Optimization of Generalized $$C_p$$ Criterion for Selecting Ridge Parameters in Generalized Ridge Regression." In Intelligent Decision Technologies, 267–78. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5925-9_23.
Full textShu, Xin, and Hongtao Lu. "Neighborhood Structure Preserving Ridge Regression for Dimensionality Reduction." In Communications in Computer and Information Science, 25–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33506-8_4.
Full textZuliana, Sri Utami, and Aris Perperoglou. "The Weight of Penalty Optimization for Ridge Regression." In Analysis of Large and Complex Data, 231–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25226-1_20.
Full textConference papers on the topic "Regresión de Ridge"
Siripurapu, Sundeep Krishna, and Anthony F. Luscher. "Modeling Shear Performance of High-Speed Ridged Nail in Aluminum Joints." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68309.
Full textBurnaev, Evgeny, and Ivan Nazarov. "Conformalized Kernel Ridge Regression." In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2016. http://dx.doi.org/10.1109/icmla.2016.0017.
Full textKakula, Siva K., Anthony J. Pinar, Timothy C. Havens, and Derek T. Anderson. "Choquet Integral Ridge Regression." In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020. http://dx.doi.org/10.1109/fuzz48607.2020.9177657.
Full textHe, Jinrong, Lixin Ding, Lei Jiang, and Ling Ma. "Kernel ridge regression classification." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889396.
Full textYang, Changmao, Jie Xu, and Sicong Gong. "Objective Ridge Regression System." In 2020 7th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2020. http://dx.doi.org/10.1109/icisce50968.2020.00192.
Full textAn, Senjian, Wanquan Liu, and Svetha Venkatesh. "Face Recognition Using Kernel Ridge Regression." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383105.
Full textGratton, Cristiano, Naveen K. D. Venkategowda, Reza Arablouei, and Stefan Werner. "Distributed Ridge Regression with Feature Partitioning." In 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2018. http://dx.doi.org/10.1109/acssc.2018.8645549.
Full textTanaka, Akira. "Mathematical Interpretations of Kernel Ridge Regression." In COMPUTING ANTICIPATORY SYSTEMS: CASYS'05 - Seventh International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2216644.
Full textDimitrov, S., S. Kovacheva, K. Prodanova, and Michail D. Todorov. "Realization of Ridge Regression in MATLAB." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: Proceedings of the 34th Conference on Applications of Mathematics in Engineering and Economics (AMEE '08). AIP, 2008. http://dx.doi.org/10.1063/1.3030819.
Full textChavez, Gustavo, Yang Liu, Pieter Ghysels, Xiaoye Sherry Li, and Elizaveta Rebrova. "Scalable and Memory-Efficient Kernel Ridge Regression." In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020. http://dx.doi.org/10.1109/ipdps47924.2020.00102.
Full text