Dissertations / Theses on the topic 'Regresión de Ridge'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Regresión de Ridge.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Williams, Ulyana P. "On Some Ridge Regression Estimators for Logistic Regression Models." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3667.
Full textMahmood, Nozad. "Sparse Ridge Fusion For Linear Regression." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5986.
Full textM.S.
Masters
Statistics
Sciences
Statistical Computing
Younker, James. "Ridge Estimation and its Modifications for Linear Regression with Deterministic or Stochastic Predictors." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22662.
Full textKuhl, Mark R. "Ridge regression signal processing applied to multisensor position fixing." Ohio : Ohio University, 1990. http://www.ohiolink.edu/etd/view.cgi?ohiou1183651058.
Full textZaldivar, Cynthia. "On the Performance of some Poisson Ridge Regression Estimators." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3669.
Full textWissel, Julia. "A new biased estimator for multivariate regression models with highly collinear variables." Doctoral thesis, kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3638/.
Full textBakshi, Girish. "Comparison of ridge regression and neural networks in modeling multicollinear data." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178815205.
Full textLi, Ying. "A Comparison Study of Principle Component Regression, Partial Least Square Regression and Ridge Regression with Application to FTIR Data." Thesis, Uppsala University, Department of Statistics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-127983.
Full textLeast squares estimator may fail when the number of explanatory vari-able is relatively large in comparison to the sample or if the variablesare almost collinear. In such a situation, principle component regres-sion, partial least squares regression and ridge regression are oftenproposed methods and widely used in many practical data analysis,especially in chemometrics. They provide biased coecient estima-tors with the relatively smaller variation than the variance of the leastsquares estimator. In this paper, a brief literature review of PCR,PLS and RR is made from a theoretical perspective. Moreover, a dataset is used, in order to examine their performance on prediction. Theconclusion is that for prediction PCR, PLS and RR provide similarresults. It requires substantial verication for any claims as to thesuperiority of any of the three biased regression methods.
Silva, Tatiane Cazarin da. "Algoritmos primais-duais de ponto fixo aplicados ao problema Ridge Regression." reponame:Repositório Institucional da UFPR, 2016. http://hdl.handle.net/1884/43736.
Full textCoorientador : Profª. Drª. Gislaine Aparecida Periçaro
Tese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 08/06/2016
Inclui referências : f. 60-64
Área de concentração : Progressão matemática
Resumo: Neste trabalho propomos algoritmos para resolver uma formulação primal-dual geral de ponto fixo aplicada ao problema de Ridge Regression. Estudamos a formulação primal para problemas de quadrados mínimos regularizado, em especial na norma L2, nomeados Ridge Regression e descrevemos a dualidade convexa para essa classe de problemas. Nossa estratégia foi considerar as formulações primal e dual conjuntamente, e minimizar o gap de dualidade entre elas. Estabelecemos o algoritmo de ponto fixo primal-dual, nomeado SRP e uma reformulação para esse método, contribuição principal da tese, a qual mostrou-se mais eficaz e robusta, designada por método acc-SRP, ou versão acelerada do método SRP. O estudo teórico dos algoritmos foi feito por meio da análise de propriedades espectrais das matrizes de iteração associadas. Provamos a convergência linear dos algoritmos e apresentamos alguns exemplos numéricos comparando duas variantes para cada algoritmo proposto. Mostramos também que o nosso melhor método, acc-SRP, possui excelente desempenho numérico na resolução de problemas muito mal-condicionados quando comparado ao Método de Gradientes Conjugados, o que o torna computacionalmente mais atraente. Palavras-chave: Métodos primais-duais, Ridge Regression, ponto fixo, dualidade, métodos acelerados
Abstract: In this work we propose algorithms for solving a fixed-point general primal-dual formulation applied to the Ridge Regression problem. We study the primal formulation for regularized least squares problems, especially L2-norm, named Ridge Regression and then describe convex duality for that class of problems. Our strategy was to consider together primal and dual formulations and minimize the duality gap between them. We established the primal-dual fixed point algorithm, named SRP and a reformulation for this method, the main contribution of the thesis, which was more efficient and robust, called acc-SRP method or accelerated version of the SRP method. The theoretical study of the algorithms was done through the analysis of the spectral properties of the associated iteration matrices. We proved the linear convergence of algorithms and some numerical examples comparing two variants for each algorithm proposed were presented. We also showed that our best method, acc-SRP, has excellent numerical performance for solving very ill-conditioned problems, when compared to the conjugate gradient method, which makes it computationally more attractive. Key-words: Primal-dual methods, ridge regression, fixed point, duality, accelerated methods.
Saha, Angshuman. "Application of ridge regression for improved estimation of parameters in compartmental models /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8945.
Full textPetersson, David, and Emil Backman. "Change Point Detection and Kernel Ridge Regression for Trend Analysis on Financial Data." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230729.
Full textAktiemarknaden kan vara en hård och oförlåtande plats att investera sina pengar i som novis. För att ha någon chans att gå med vinst krävs oräkneligt många timmars efterforskning av företag och dess möjligheter. Vidare bör man sprida sina investeringar över flertalet oberoende branscher och på så sätt minska risken för stora förluster. Med många aktörer och en stor mängd parametrar som måste falla samman kan detta verka näst intill omöjligt att klara av som privatperson. Med modern teknologi finns nu stor potential till att kunna hantera dessa analyser autonomt med maskininlärning. Om man ser på problemet från denna infallsvinkel inser man snart att analysförmågan enbart begränsas av vilken datorkraft man besitter. Denna studie utforskar möjligheterna kring maskininlärning inom teknisk analys genom att kombinera effektiva algoritmer på ett nytänkande sätt. Genom att utnyttja kraften bakom kernel-metoder kan mönster i finansiella data analyseras effektivt. En ny kombination, av ickelinjär regression och algoritmer som är kapabla till att hitta brytpunkter i mönster, föreslås. Slutprodukten från denna studie är ett analysverktyg som minimerar influensen från plötsliga händelser och istället ger större vikt till de underliggande mönstren i finansiella data. Det introduceras också ett ytterligare verktyg som kan användas för att estimera framtida prisrörelser.
CROPPER, JOHN PHILIP. "TREE-RING RESPONSE FUNCTIONS. AN EVALUATION BY MEANS OF SIMULATIONS (DENDROCHRONOLOGY RIDGE REGRESSION, MULTICOLLINEARITY)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187946.
Full textGatz, Philip L. Jr. "A comparison of three prediction based methods of choosing the ridge regression parameter k." Thesis, Virginia Tech, 1985. http://hdl.handle.net/10919/45724.
Full textMaster of Science
Björkström, Anders. "Regression methods in multidimensional prediction and estimation." Doctoral thesis, Stockholm University, Department of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7025.
Full textIn regression with near collinear explanatory variables, the least squares predictor has large variance. Ordinary least squares regression (OLSR) often leads to unrealistic regression coefficients. Several regularized regression methods have been proposed as alternatives. Well-known are principal components regression (PCR), ridge regression (RR) and continuum regression (CR). The latter two involve a continuous metaparameter, offering additional flexibility.
For a univariate response variable, CR incorporates OLSR, PLSR, and PCR as special cases, for special values of the metaparameter. CR is also closely related to RR. However, CR can in fact yield regressors that vary discontinuously with the metaparameter. Thus, the relation between CR and RR is not always one-to-one. We develop a new class of regression methods, LSRR, essentially the same as CR, but without discontinuities, and prove that any optimization principle will yield a regressor proportional to a RR, provided only that the principle implies maximizing some function of the regressor's sample correlation coefficient and its sample variance. For a multivariate response vector we demonstrate that a number of well-established regression methods are related, in that they are special cases of basically one general procedure. We try a more general method based on this procedure, with two meta-parameters. In a simulation study we compare this method to ridge regression, multivariate PLSR and repeated univariate PLSR. For most types of data studied, all methods do approximately equally well. There are cases where RR and LSRR yield larger errors than the other methods, and we conclude that one-factor methods are not adequate for situations where more than one latent variable are needed to describe the data. Among those based on latent variables, none of the methods tried is superior to the others in any obvious way.
Gripencrantz, Sarah. "Evaluating the Use of Ridge Regression and Principal Components in Propensity Score Estimators under Multicollinearity." Thesis, Uppsala universitet, Statistiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226924.
Full textHerrault, Pierre-Alexis. "Extraction de fragments forestiers et caractérisation de leurs évolutions spatio-temporelles pour évaluer l'effet de l'histoire sur la biodiversité : une approche multi-sources." Thesis, Toulouse 2, 2015. http://www.theses.fr/2015TOU20018/document.
Full textBiodiversity in landscapes depends on landscape spatial patterns but can also be influenced by landscape history. Indeed, some species are likely to respond in the longer term to habitat disturbances. Therefore, in recent years, landscape dynamics have become a possible factor to explain current biodiversity. The aim of this thesis in GIS is part of this historical ecology context. We are dealing with automatic extraction of forest patches and characterization of their spatiotemporal evolution. The objective is to evaluate forest dynamics effects on current diversity of forest hoverflies. (Diptera: Syrphidae) in the agri-forestry landscape of Coteaux de Gascogne. The proposed general approach consists of three main steps: (1) the forest spatial database production from heterogeneous sources, (2) forest patches matching and characterization of their spatiotemporal evolution, (3) species-habitat modeling while integrating history as one of the factors likely to explain hoverflies diversity. Several methodological contributions were made. We proposed a new geometric correction approach based on kernel ridge regression to make consistent past and present selected data sources. We also developed an automatic extraction approach of forest from Historical Map of France of the 19th century. Finally, spatial uncertainty effects on ecological models responses have been assessed. From an ecological viewpoint, a significant effect from historical continuity of patches on forest hoverflies diversity was revealed. The most isolated fragments presented an extinction debt or a colonization credit according to area dynamics occurred in the last time-period (1970-2010). As it turns out, 30 years was not sufficient for forest hoverflies to reach new equilibrium after isolated habitat changes
Pascual, Francisco L. "Essays on the optimal selection of series functions." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3274811.
Full textTitle from first page of PDF file (viewed October 4, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Trenkler, Dietrich. "Verallgemeinerte Ridge Regression : eine Untersuchung von theoretischen Eigenschaften und der Operationalität verzerrter Schätzer im linearen Modell /." Frankfurt a. M : Hain, 1986. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=015371082&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textSemprevivo, Riccardo. "Realization and Performance Characterization of a Myoelectric Control System for Robotic Hands Based on Kernel Ridge Regression." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textShah, Smit. "Comparison of Some Improved Estimators for Linear Regression Model under Different Conditions." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1853.
Full textZhai, Jing, Chiu-Hsieh Hsu, and Z. John Daye. "Ridle for sparse regression with mandatory covariates with application to the genetic assessment of histologic grades of breast cancer." BIOMED CENTRAL LTD, 2017. http://hdl.handle.net/10150/622811.
Full textShulga, Yelena A. "Model-based calibration of a non-invasive blood glucose monitor." Digital WPI, 2006. https://digitalcommons.wpi.edu/etd-theses/58.
Full textPelawa, Watagoda Lasanthi Chathurika Ranasinghe. "INFERENCE AFTER VARIABLE SELECTION." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1424.
Full textBinard, Carole. "Estimation de fonctions de régression : sélection d'estimateurs ridge, étude de la procédure PLS1 et applications à la modélisation de la signature génique du cancer du poumon." Thesis, Nice, 2016. http://www.theses.fr/2016NICE4015.
Full textThis thesis deals with the estimation of a regression function providing the best relationship betweenvariables for which we have some observations. In a first part, we complete a simulation study fortwo automatic selection methods of the ridge parameter. From a more theoretical point of view, wethen present and compare two selection methods of a multiparameter, that is used in an estimationprocedure of a regression function on [0,1]. In a second part, we study the quality of the PLS1estimator through its quadratic risk and, more precisely, the variance term in its bias/variancedecomposition. In a third part, a statistical study is carried out in order to explain the geneticsignature of cancer cells thanks to the genetic signatures of cellular subtypes which compose theassociated tumor stroma
Jansson, Daniel, and Nils Niklasson. "En analys av statens samhällssatsningar och dess effektivitet för att reducera brottslighet." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275665.
Full textGenom en analys av Sveriges statsbudget har modeller tagits fram för att försöka förstå de effekter olika samhällssatsningar har på brottslighet i Sverige. Detta har modellerats genom att undersöka utvalda brottskategorier med hjälp av de matematiska metoderna Ridge Regression, Lasso Regression samt Principal Component Analysis. Tillsammans med en kvalitativ undersökning av tidigare forskning gällande nationalekonomiska aspekter kring brottslighet har en analys sedan genomförts. De matematiska metoderna tyder på att det kan vara mer effektivt att satsa på brottsförebyggande åtgärder, såsom ökat socialt skydd och fokus på utsatta grupper, istället för mer direkta satsningar på brottsförhindrande åtgärder som exempelvis ökade resurser till polisväsendet. Däremot motsäger resultatet en del av de vedertagna nationalekonomiska slutsatserna om ämnet, då dessa belyser vikten av ökade antalet poliser och hårdare straff. De lyfter även fram vikten av brottsförebyggande åtgärder såsom att minska klyftorna i samhället, vilket går i linje med resultatet av detta arbete. Slutsatsen ska dock användas med försiktighet då modellerna bygger på flertalet antaganden och skulle kunna förbättras vid ytterligare analys utav dessa, tillsammans med fler datapunkter som skulle stärka validiteten.
Arale, Brännvall Marian. "Accelerating longitudinal spinfluctuation theory for iron at high temperature using a machine learning method." Thesis, Linköpings universitet, Teoretisk Fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170314.
Full textAghi, Nawar, and Ahmad Abdulal. "House Price Prediction." Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20945.
Full textCasagrande, Marcelo Henrique. "Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n)." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7954.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:58:41Z (GMT) No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:58:47Z (GMT) No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5)
Made available in DSpace on 2016-10-20T13:58:52Z (GMT). No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) Previous issue date: 2016-04-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
This paper presents a comparative study of the predictive power of four suitable regression methods for situations in which data, arranged in the planning matrix, are very poorly multicolinearity and / or high dimensionality, wherein the number of covariates is greater the number of observations. In this study, the methods discussed are: principal component regression, partial least squares regression, ridge regression and LASSO. The work includes simulations, wherein the predictive power of each of the techniques is evaluated for di erent scenarios de ned by the number of covariates, sample size and quantity and intensity ratios (e ects) signi cant, highlighting the main di erences between the methods and allowing for the creating a guide for the user to choose which method to use based on some prior knowledge that it may have. An application on real data (not simulated) is also addressed.
Este trabalho apresenta um estudo comparativo do poder de predi c~ao de quatro m etodos de regress~ao adequados para situa c~oes nas quais os dados, dispostos na matriz de planejamento, apresentam s erios problemas de multicolinearidade e/ou de alta dimensionalidade, em que o n umero de covari aveis e maior do que o n umero de observa c~oes. No presente trabalho, os m etodos abordados s~ao: regress~ao por componentes principais, regress~ao por m nimos quadrados parciais, regress~ao ridge e LASSO. O trabalho engloba simula c~oes, em que o poder preditivo de cada uma das t ecnicas e avaliado para diferentes cen arios de nidos por n umero de covari aveis, tamanho de amostra e quantidade e intensidade de coe cientes (efeitos) signi cativos, destacando as principais diferen cas entre os m etodos e possibilitando a cria c~ao de um guia para que o usu ario possa escolher qual metodologia usar com base em algum conhecimento pr evio que o mesmo possa ter. Uma aplica c~ao em dados reais (n~ao simulados) tamb em e abordada
GALLI, FABIAN. "Predicting PV self-consumption in villas with machine learning." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300433.
Full textI Sverige finns ett starkt och växande intresse för solenergi. De senaste åren har antalet solcellsanläggningar ökat dramatiskt och en stor del är distribuerade nätanslutna solcellssystem, dvs takinstallationer. För närvarande är elexportpriset betydligt lägre än importpriset, vilket har gjort mängden egenanvänd solel till en kritisk faktor vid bedömningen av systemets lönsamhet. Egenanvändning (EA) beräknas med tidssteg upp till en timmes längd och är i hög grad beroende av solstrålningsmönstret för platsen av intresse, PV-systemkonfigurationen och byggnadens energibehov. Eftersom detta varierar för alla potentiella installationer är det svårt att göra uppskattningar utan att ha historiska data om både energibehov och lokal solstrålning, vilket ofta inte är tillgängligt. En metod för att förutsäga EA med allmän tillgänglig information är därför att föredra. Det finns en brist på dokumenterad EA-data och endast ett fåtal rapporter som behandlar kartläggning och prediktion av EA. I denna uppsats undersöks möjligheten att använda maskininlärning för att skapa modeller som kan förutsäga EA. De variabler som ingår är årlig energiförbrukning, årlig solcellsproduktion, lutningsvinkel och azimutvinkel för modulerna och latitud. Med programmeringsspråket Python skapas sju modeller med hjälp av olika regressionstekniker, där energiförbruknings- och simulerad solelproduktionsdata från södra Sverige används. Modellerna utvärderas med hjälp av determinationskoefficienten (R2) och mean absolute error (MAE). Teknikerna som används är linjär regression, polynomregression, Ridge regression, Lasso regression, K-nearest neighbor regression, Random Forest regression, Multi-Layer Perceptron regression. En additionell linjär regressions-modell skapas även med samma metodik som används i en tidigare publicerad rapport. En parametrisk analys av modellerna genomförs, där en variabel exkluderas åt gången för att bedöma modellens beroende av varje enskild variabel. Resultaten är mycket lovande, där fem av de åtta undersökta modeller uppnår ett R2-värde över 0,9. Den bästa modellen, Random Forest, har ett R2 på 0,985 och ett MAE på 0,0148. Den parametriska analysen visar också att även om ingångsdata är till hjälp, är det tillräckligt att använda årlig energiförbrukning och årlig solcellsproduktion för att göra bra förutsägelser. Det måste dock påpekas att modellprestandan endast är tillförlitlig för södra Sverige, från var beräkningsdata är hämtad, och inte tillämplig för områden utanför de valda latituderna eller land.
Schwarz, Patrick. "Prediction with Penalized Logistic Regression : An Application on COVID-19 Patient Gender based on Case Series Data." Thesis, Karlstads universitet, Handelshögskolan (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85642.
Full textElghriany, Ahmed F. "Investigating Correlations of Pavement Conditions with Crash Rates on In-Service U.S. Highways." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1448454032.
Full textSalazar, Ruiz Enriqueta. "Desarrollo de modelos predictivos de contaminantes ambientales." Doctoral thesis, Universitat Politècnica de València, 2008. http://hdl.handle.net/10251/2504.
Full textSalazar Ruiz, E. (2008). Desarrollo de modelos predictivos de contaminantes ambientales [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2504
Palancia
Wei, Zhaoyi. "Real-Time Optical Flow Sensor Design and its Application on Obstacle Detection." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd2916.pdf.
Full textSawert, Marcus. "Predicting deliveries from suppliers : A comparison of predictive models." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39314.
Full textHofmarcher, Paul, Stefan Kerbl, Bettina Grün, Michael Sigmund, and Kurt Hornik. "Model Uncertainty and Aggregated Default Probabilities: New Evidence from Austria." WU Vienna University of Economics and Business, 2012. http://epub.wu.ac.at/3383/1/Report116.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Ladejobi, Olufunmilayo Olubukola. "Testing new genetic and genomic approaches for trait mapping and prediction in wheat (Triticum aestivum) and rice (Oryza spp)." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277449.
Full textLinton, Thomas. "Forecasting hourly electricity consumption for sets of households using machine learning algorithms." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186592.
Full textFör att ta itu med ineffektivitet, avfall, och de negativa konsekvenserna av elproduktion så vill företag och myndigheter se beteendeförändringar bland hushållskonsumenter. För att skapa beteendeförändringar så behöver konsumenterna bättre återkoppling när det gäller deras elförbrukning. Den nuvarande återkopplingen i en månads- eller kvartalsfaktura ger konsumenten nästan ingen användbar information om hur deras beteenden relaterar till deras konsumtion. Smarta mätare finns nu överallt i de utvecklade länderna och de kan ge en mängd information om bostäders konsumtion, men denna data används främst som underlag för fakturering och inte som ett verktyg för att hjälpa konsumenterna att minska sin konsumtion. En komponent som krävs för att leverera innovativa återkopplingsmekanismer är förmågan att förutse elförbrukningen på hushållsskala. Arbetet som presenteras i denna avhandling är en utvärdering av noggrannheten hos ett urval av kärnbaserad maskininlärningsmetoder för att förutse den sammanlagda förbrukningen för olika stora uppsättningar av hushåll. Arbetet i denna avhandling visar att "k-Nearest Neighbour Regression" och "Gaussian Process Regression" är de mest exakta metoder inom problemets begränsningar. Förutom noggrannhet, så görs en utvärdering av fördelar, nackdelar och prestanda hos varje maskininlärningsmetod.
Solomon, Mary Joanna. "Multivariate Analysis of Korean Pop Music Audio Features." Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1617105874719868.
Full textNakamura, Karina Gernhardt. "Multicolinearidade em modelos de regressão logística." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-28052013-222241/.
Full textThis work proposes the use of some biased estimators to investigate whether is possible minimize the multicollinearity effects in logistic regression models. Initially, the latter model was presented, as well as its fitting process (therefore obtaining the maximum likelihood estimator), some tests to evaluate the significance of the parameters and techniques to analyze goodness of fit were also considered. Furthermore, the effects of multicollinearity in the fitting process and in the parameters inference were discussed, as well as techniques to identify the presence of multicollinearity. In order to diminish the effect of this problem, two alternative estimators were presented: ridge estimator and principal component estimator. Therefore, these three estimators performances were compared using a simulation study and applied in a real data set. The manly conclusion was that, in the presence of multicollinearity, the alternative estimators performed better than the maximum likelihood estimator, besides reducing its effects.
Sheppard, Therese. "Extending covariance structure analysis for multivariate and functional data." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/extending-covariance-structure-analysis-for-multivariate-and-functional-data(e2ad7f12-3783-48cf-b83c-0ca26ef77633).html.
Full textBodily, John M. "An Optical Flow Implementation Comparison Study." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd2818.pdf.
Full textGama, Lorenna Eleamen da Silva. "Equações monoespecíficas de incremento em área basal de Handroanthus serratifolius (Vahl) S.O.Grose (ipê amarelo) e Handroanthus impetiginosus (Mart. ex DC.) Mattos (ipê roxo) da floresta tropical pluvial do Acre." Universidade Federal de Santa Maria, 2017. http://repositorio.ufsm.br/handle/1/13302.
Full textEm florestas naturais, raramente considera-se a estrutura da floresta e o ritmo de crescimento das espécies como critérios para o manejo. Quando considerado, é normalmente baseado em grupos de espécies com características distintas. Diante desse pressuposto, este trabalho foi desenvolvido buscando avançar no conhecimento do ritmo de crescimento das espécies madeireiras exploradas no leste do estado do Acre visando contribuir com a exploração sustentável dessas florestas. Para isso, foi modelado o crescimento de Handroanthus impetiginosus (Mart. Ex DC.) Mattos (ipê roxo) e Handroanthus serratifolius (Vahl) S.O. Grose (ipê amarelo) a partir de dados obtidos com a técnica de análise de anéis de crescimento. No modelo de regressão, foram investigadas covariáveis associadas ao tamanho e à morfometria da copa, ao status competitivo, à sanidade e à carga de lianas na copa, como descritoras da taxa de incremento em área basal. O estudo foi desenvolvido com árvores da Floresta Amazônica, mensuradas no município de Porto Acre, estado do Acre, em área particular, sob manejo florestal sustentável, aprovado pelo Instituto do Meio Ambiente do Acre – IMAC. Com o Trado de Pressler, foram coletados, à altura do dap, quatro rolos de incremento de 0,5 mm de diâmetro e de, aproximadamente, 10 cm de comprimento, obedecendo os pontos cardeais. Os rolos foram extraídos de árvores amostra de H. impetiginosus (n=30) e H. serratifolius (n=35), em uma amplitude diamétrica entre 13,5 a 88,1 cm, totalizando 260 rolos de incremento. A largura dos anéis de crescimento foi medida sobre os raios no sentido casca/medula, em cada rolo de incremento com auxílio de mesa digitalizadora, com lupa acoplada e software TSAP-WinTM Scientific. A partir da largura dos anéis de crescimento, foram reconstruídas as dimensões do dap e as taxas de incremento correspondente ao período de 2011 a 2014. O modelo de regressão foi ajustado por Mínimos Quadrados Ordinários, considerando distribuição normal hipotética, com os Mínimos Quadrados Generalizados, considerando distribuição Gama e função de ligação logarítmica. A seleção das covariáveis considerou a correlação com o crescimento periódico anual em área basal. O modelo selecionado teve como variáveis selecionadas o logaritmo do diâmetro (lnd), altura (h), relação altura/diâmetro (h/d) e índice de competição de Hegyi (IC). A presença de multicolinearidade entre as covariáveis foi corrigida pelo procedimento de Regressão de Cumeeira. Com base nos critérios estatísticos e na avaliação residual, o modelo de crescimento ajustado com a adição da constante K=0,024 aos coeficientes do modelo demonstrou ser adequado para descrever a variação de incremento periódico anual em área basal (IPAg).
Moller, Jurgen Johann. "The implementation of noise addition partial least squares." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/3362.
Full textWhen determining the chemical composition of a specimen, traditional laboratory techniques are often both expensive and time consuming. It is therefore preferable to employ more cost effective spectroscopic techniques such as near infrared (NIR). Traditionally, the calibration problem has been solved by means of multiple linear regression to specify the model between X and Y. Traditional regression techniques, however, quickly fail when using spectroscopic data, as the number of wavelengths can easily be several hundred, often exceeding the number of chemical samples. This scenario, together with the high level of collinearity between wavelengths, will necessarily lead to singularity problems when calculating the regression coefficients. Ways of dealing with the collinearity problem include principal component regression (PCR), ridge regression (RR) and PLS regression. Both PCR and RR require a significant amount of computation when the number of variables is large. PLS overcomes the collinearity problem in a similar way as PCR, by modelling both the chemical and spectral data as functions of common latent variables. The quality of the employed reference method greatly impacts the coefficients of the regression model and therefore, the quality of its predictions. With both X and Y subject to random error, the quality the predictions of Y will be reduced with an increase in the level of noise. Previously conducted research focussed mainly on the effects of noise in X. This paper focuses on a method proposed by Dardenne and Fernández Pierna, called Noise Addition Partial Least Squares (NAPLS) that attempts to deal with the problem of poor reference values. Some aspects of the theory behind PCR, PLS and model selection is discussed. This is then followed by a discussion of the NAPLS algorithm. Both PLS and NAPLS are implemented on various datasets that arise in practice, in order to determine cases where NAPLS will be beneficial over conventional PLS. For each dataset, specific attention is given to the analysis of outliers, influential values and the linearity between X and Y, using graphical techniques. Lastly, the performance of the NAPLS algorithm is evaluated for various
Brusamento, Donato. "Improving pattern recognition based myocontrol of prosthetic hands via user-in-the-loop." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textBoruvka, Audrey. "Data-driven estimation for Aalen's additive risk model." Thesis, Kingston, Ont. : [s.n.], 2007. http://hdl.handle.net/1974/489.
Full textBertoli, Claudia Damo. "Modelos e metodologias para estimação dos efeitos genéticos fixos em uma população multirracial Angus x Nelore." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/128116.
Full textThe objectives of this study were to estimate the fixed genetic effects acting on a synthetic population, as well as test different models and methodologies in this estimation process. The tested fixed genetic effects were the direct and maternal breed additive and direct and maternal heterosis, epistatic loss and complementarity non-additive effects The tested models include alternate and together all these effects. The ridge regression and least square regression methodologies were compared and were also compared two different methods for determining the ridge parameter to use in the ridge regression. A synthetic beef cattle population, involving Angus and Nellore in several breed combinations was used. 294,045 records at weaning and 148,443 records at yearling were used. The traits of weight gain from birth to weaning (WG), phenotypic scores of conformation (WC), precocity (WP) and muscling (WM) collected at weaning, weight gain from weaning to yearling (PG), phenotypic scores of conformation (PC), precocity (PP) and muscles (PM) collected at yearling and scrotal circumference (SC) were used in the analyzes. In most of analyzes, the estimated fixed genetic effects were statistically significant. The complete model, including all fixed genetic effects was the most suitable in the two tested methodologies. In the estimation by least squares regression, the most parsimonious model was the model that included only breed additive and non-additive heterosis (dominance) effects and in the estimation by ridge regression the most parsimonious model was that included, besides the breed additive and non-additive heterosis (dominance) effects, the non-additive epistatic loss effects. Comparing the two methodologies, for models that include only breed additive and non-additive heterosis effects, methodologies proved to be equivalent; with the inclusion of non-additive epistatic loss and / or complementarity effects, ridge regression was more indicated originally. After reached a certain volume and structure, with much of classes of breeds represented in the sample. Both least squares and ridge regression were equivalent. Comparing the methods for determining the ridge parameter, the best method was that which identifies the smallest possible value that produces the variance inflation factors below 10 for all estimated regressors.
Bratu, Claudia. "Machine Learning of Crystal Formation Energies with Novel Structural Descriptors." Thesis, Linköpings universitet, Teoretisk Fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143203.
Full textDumora, Christophe. "Estimation de paramètres clés liés à la gestion d'un réseau de distribution d'eau potable : Méthode d'inférence sur les noeuds d'un graphe." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0325.
Full textThe rise of data generated by sensors and operational tools around water distribution network (WDN) management make these systems more and more complex and in general the events more difficult to predict. The history of data related to the quality of distributed water crossed with the knowledge of network assets, contextual data and temporal parameters lead to study a complex system due to its volume and the existence of interactions between these various type of data which may vary in time and space. This big variety of data is grouped by the use of mathematical graph and allow to represent WDN as a whole and all the events that may arise therein or influence their proper functioning. The graph theory associated with these mathematical graphs allow a structural and spectral analysis of WDN to answer to specific needs and enhance existing process. These graphs are then used to answer the probleme of inference on the nodes of large graph from the observation of data on a small number of nodes. An approach by optminisation algorithm is used to construct a variable of flow on every nodes of a graph (therefore at any point of a physical network) using flow algorithm and data measured in real time by flowmeters. Then, a kernel prediction approach based on a Ridge estimator, which raises spectral analysis problems of a large sparse matrix, allow the inference of a signal measured on specific nodes of a graph at any point of a WDN
Lindblom, Ellen, and Isabelle Almquist. "Data-Driven Predictions of Heating Energy Savings in Residential Buildings." Thesis, Uppsala universitet, Byggteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-387395.
Full textRahman, Md Abdur. "Statistical and Machine Learning for assessment of Traumatic Brain Injury Severity and Patient Outcomes." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37710.
Full text