To see the other types of publications on this topic, follow the link: Regresión de Ridge.

Journal articles on the topic 'Regresión de Ridge'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Regresión de Ridge.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pérez-Planells, Ll, J. Delegido, J. P. Rivera-Caicedo, and J. Verrelst. "Análisis de métodos de validación cruzada para la obtención robusta de parámetros biofísicos." Revista de Teledetección, no. 44 (December 22, 2015): 55. http://dx.doi.org/10.4995/raet.2015.4153.

Full text
Abstract:
<p class="Bodytext">Los métodos de regresión no paramétricos son una gran herramienta estadística para obtener parámetros biofísicos a partir de medidas realizadas mediante teledetección. Pero los resultados obtenidos se pueden ver afectados por los datos utilizados en la fase de entrenamiento del modelo. Para asegurarse de que los modelos son robustos, se hace uso de varias técnicas de validación cruzada. Estas técnicas permiten evaluar el modelo con subconjuntos de la base de datos de campo. Aquí, se evalúan dos tipos de validación cruzada en el desarrollo de modelos de regresión no paramétricos: hold-out y k-fold. Los métodos de regresión lineal seleccionados fueron: Linear Regression (LR) y Partial Least Squares Regression (PLSR). Y los métodos no lineales: Kernel Ridge Regression (KRR) y Gaussian Process Regression (GPR). Los resultados de la validación cruzada mostraron que LR ofrece los resultados más inestables, mientras KRR y GPR llevan a resultados más robustos. Este trabajo recomienda utilizar algoritmos de regresión no lineales (como KRR o GPR) combinando con la validación cruzada k-fold con un valor de k igual a 10 para hacer la estimación de una manera robusta.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

McDonald, Gary C. "Ridge regression." Wiley Interdisciplinary Reviews: Computational Statistics 1, no. 1 (July 2009): 93–100. http://dx.doi.org/10.1002/wics.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fearn, Tom. "Ridge Regression." NIR news 24, no. 3 (May 2013): 18–19. http://dx.doi.org/10.1255/nirn.1365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rashid, Khasraw A., and Hanaw A. Amin. "Ridge Estimates of Regression Coefficients for SoilMoisture Retention of IraqiSoils." Journal of Zankoy Sulaimani - Part A 18, no. 3 (February 25, 2016): 85–98. http://dx.doi.org/10.17656/jzs.10537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dorugade, A. V. "New ridge parameters for ridge regression." Journal of the Association of Arab Universities for Basic and Applied Sciences 15, no. 1 (April 2014): 94–99. http://dx.doi.org/10.1016/j.jaubas.2013.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Munroe, Jeffrey S. "Ground Penetrating Radar Investigation of Late Pleistocene Shorelines of Pluvial Lake Clover, Elko County, Nevada, USA." Quaternary 3, no. 1 (March 20, 2020): 9. http://dx.doi.org/10.3390/quat3010009.

Full text
Abstract:
Beach ridges constructed by pluvial Lake Clover in Elko County, Nevada during the Late Pleistocene were investigated with ground-penetrating radar (GPR). The primary objective was to document the internal architecture of these shorelines and to evaluate whether they were constructed during lake rise or fall. GPR data were collected with a ground-coupled 400-Mhz antenna and SIR-3000 controller. To constrain the morphology of the ridges, detailed topographic surveys were collected with a Topcon GTS-235W total station referenced to a second class 0 vertical survey point. GPR transects crossed the beach ridge built by Lake Clover at its highstand of 1725 m, along with seven other ridges down to the lowest beach at 1712 m. An average dielectric permittivity of 5.0, typical for dry sand and gravel, was calculated from GPR surveys in the vicinity of hand-excavations that encountered prominent stratigraphic discontinuities at known depths. Assuming this value, consistent radar signals were returned to a depth of ~3 m. Beach ridges are resolvable as ~90 to 150-cm thick stratified packages of gravelly sand overlying a prominent lakeward-dipping reflector, interpreted as the pre-lake land surface. Many ridges contain a package of sediment resembling a buried berm at their core, typically offset in a landward direction from the geomorphic crest of the beach ridge. Sequences of lakeward-dipping reflectors are resolvable beneath the beach face of all ridges. No evidence was observed to indicate that beach ridges were submerged by higher water levels after their formation. Instead, the GPR data are consistent with a model of sequential ridge formation during a monotonic lake regression.
APA, Harvard, Vancouver, ISO, and other styles
7

de Boer, Paul M. C., and Christian M. Hafner. "Ridge regression revisited." Statistica Neerlandica 59, no. 4 (October 13, 2005): 498–505. http://dx.doi.org/10.1111/j.1467-9574.2005.00304.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hertz, D. "Sequential ridge regression." IEEE Transactions on Aerospace and Electronic Systems 27, no. 3 (May 1991): 571–74. http://dx.doi.org/10.1109/7.81440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tutz, Gerhard, and Harald Binder. "Boosting ridge regression." Computational Statistics & Data Analysis 51, no. 12 (August 2007): 6044–59. http://dx.doi.org/10.1016/j.csda.2006.11.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sundberg, Rolf. "Continuum Regression and Ridge Regression." Journal of the Royal Statistical Society: Series B (Methodological) 55, no. 3 (July 1993): 653–59. http://dx.doi.org/10.1111/j.2517-6161.1993.tb01930.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vigneau, E., M. F. Devaux, E. M. Qannari, and P. Robert. "Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration." Journal of Chemometrics 11, no. 3 (May 1997): 239–49. http://dx.doi.org/10.1002/(sici)1099-128x(199705)11:3<239::aid-cem470>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yin, Xiao Cui. "Comparison between Several Regression Models." Applied Mechanics and Materials 530-531 (February 2014): 601–4. http://dx.doi.org/10.4028/www.scientific.net/amm.530-531.601.

Full text
Abstract:
This paper study ordinary linear regression and ridge regression, ridge regression includes ordinary ridge regression (ORR) and generalized ridge regression (GRR). Comparison between these methods are made by an example, the results show that ridge regression has smaller standard deviation and MSE than OLS, and among all the methods, GRR is better than others.
APA, Harvard, Vancouver, ISO, and other styles
13

YAVUZ, Arzu Altın. "A New Modification of Ridge Parameter for Regression Problems: A Monte Carlo Simulation Study." Turkiye Klinikleri Journal of Biostatistics 11, no. 3 (2019): 173–88. http://dx.doi.org/10.5336/biostatic.2019-66024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dube, Madhulika, and Isha Isha. "A Review on the Biasing Parameters of Ridge Regression Estimator in LRM." MATHEMATICAL JOURNAL OF INTERDISCIPLINARY SCIENCES 3, no. 1 (September 1, 2014): 73–82. http://dx.doi.org/10.15415/mjis.2014.31007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sari, Fitri Mudia, Khairil Anwar Notodiputro, and Bagus Sartono. "ANALISIS TINGKAT KEMISKINAN DI PROVINSI SUMATERA BARAT MELALUI PENDEKATAN REGRESI TERKENDALA (RIDGE REGRESSION, LASSO, DAN ELASTIC NET)." STATISTIKA Journal of Theoretical Statistics and Its Applications 21, no. 1 (June 28, 2021): 29–36. http://dx.doi.org/10.29313/jstat.v21i1.7836.

Full text
Abstract:
Pandemi Covid-19 yang mulai menyerang Indonesia semenjak Maret 2020 menyebabkan krisis ekonomi dan sosial di Indonesia, termasuk Sumatera Barat. Data BPS Sumatera Barat menyebutkan bahwa jumlah penduduk miskin bertambah sebanyak 20.056, dari 344.023 orang pada Maret 2020, menjadi 364.079 pada September 2020. Masalah kemiskinan merujuk pada konsep high dimensional data yang melibatkan banyak peubah sehingga digunakan Regresi Ridge, LASSO, dan Elastic Net yang dapat mengatasi masalah multikolinieritas. Penelitian ini bertujuan untuk melihat peubah yang memiliki pengaruh yang penting terhadap tingkat kemiskinan di Sumatera Barat menggunakan model terbaik yang terpilih dari Regresi Ridge, LASSO, dan Elastic Net. Hasil penelitian menunjukkan bahwa tingkat buta huruf merupakan peubah penting yang mempengaruhi tingkat kemiskinan di Sumatera Barat dengan model terbaik yaitu Regresi Ridge.
APA, Harvard, Vancouver, ISO, and other styles
16

Türkan, Semra, and Öniz Toktamış. "Detection of influential observations in ridge regression and modified ridge regression." Model Assisted Statistics and Applications 7, no. 2 (April 9, 2012): 91–97. http://dx.doi.org/10.3233/mas-2011-0215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Özkale, M. Revan, Stanley Lemeshow, and Rodney Sturdivant. "Logistic regression diagnostics in ridge regression." Computational Statistics 33, no. 2 (July 29, 2017): 563–93. http://dx.doi.org/10.1007/s00180-017-0755-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Draper, Norman R., and Agnes M. Herzberg. "A Ridge-Regression Sidelight." American Statistician 41, no. 4 (November 1987): 282. http://dx.doi.org/10.2307/2684750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Aldrin, Magne. "Length modified ridge regression." Computational Statistics & Data Analysis 25, no. 4 (September 1997): 377–98. http://dx.doi.org/10.1016/s0167-9473(97)00015-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Draper, Norman R., and Agnes M. Herzberg. "A Ridge-Regression Sidelight." American Statistician 41, no. 4 (November 1987): 282–83. http://dx.doi.org/10.1080/00031305.1987.10475504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cawley, Gavin C., Nicola L. C. Talbot, Robert J. Foxall, Stephen R. Dorling, and Danilo P. Mandic. "Heteroscedastic kernel ridge regression." Neurocomputing 57 (March 2004): 105–24. http://dx.doi.org/10.1016/j.neucom.2004.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

McDonald, Gary C. "Tracing ridge regression coefficients." Wiley Interdisciplinary Reviews: Computational Statistics 2, no. 6 (September 29, 2010): 695–703. http://dx.doi.org/10.1002/wics.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

HAITOVSKY, YOEL. "On multivariate ridge regression." Biometrika 74, no. 3 (1987): 563–70. http://dx.doi.org/10.1093/biomet/74.3.563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Khalaf, G., Kristofer Månsson, and Ghazi Shukur. "Modified Ridge Regression Estimators." Communications in Statistics - Theory and Methods 42, no. 8 (April 15, 2013): 1476–87. http://dx.doi.org/10.1080/03610926.2011.593285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Choi, Seung Hoe, Hye-Young Jung, and Hyoshin Kim. "Ridge Fuzzy Regression Model." International Journal of Fuzzy Systems 21, no. 7 (July 17, 2019): 2077–90. http://dx.doi.org/10.1007/s40815-019-00692-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Khurshid, Shadan H. "Prediction of Crack Porosity from Other Easily Soil Properties Using Ridge Regression Analysis." Journal of Zankoy Sulaimani - Part A 22, no. 1 (January 30, 2020): 159–68. http://dx.doi.org/10.17656/jzs.10782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Xu-Qing, and Feng Gao. "Linearized Ridge Regression Estimator in Linear Regression." Communications in Statistics - Theory and Methods 40, no. 12 (April 8, 2011): 2182–92. http://dx.doi.org/10.1080/03610921003746693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dorugade, Ashok V. "On Comparison of Some Ridge Parameters in Ridge Regression." Sri Lankan Journal of Applied Statistics 15, no. 1 (April 5, 2014): 31. http://dx.doi.org/10.4038/sljastats.v15i1.6792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Arashi, M., M. Roozbeh, N. A. Hamzah, and M. Gasparini. "Ridge regression and its applications in genetic studies." PLOS ONE 16, no. 4 (April 8, 2021): e0245376. http://dx.doi.org/10.1371/journal.pone.0245376.

Full text
Abstract:
With the advancement of technology, analysis of large-scale data of gene expression is feasible and has become very popular in the era of machine learning. This paper develops an improved ridge approach for the genome regression modeling. When multicollinearity exists in the data set with outliers, we consider a robust ridge estimator, namely the rank ridge regression estimator, for parameter estimation and prediction. On the other hand, the efficiency of the rank ridge regression estimator is highly dependent on the ridge parameter. In general, it is difficult to provide a satisfactory answer about the selection for the ridge parameter. Because of the good properties of generalized cross validation (GCV) and its simplicity, we use it to choose the optimum value of the ridge parameter. The GCV function creates a balance between the precision of the estimators and the bias caused by the ridge estimation. It behaves like an improved estimator of risk and can be used when the number of explanatory variables is larger than the sample size in high-dimensional problems. Finally, some numerical illustrations are given to support our findings.
APA, Harvard, Vancouver, ISO, and other styles
30

Xin, Seng Jia, and Kamil Khalid. "Modelling House Price Using Ridge Regression and Lasso Regression." International Journal of Engineering & Technology 7, no. 4.30 (November 30, 2018): 498. http://dx.doi.org/10.14419/ijet.v7i4.30.22378.

Full text
Abstract:
House price prediction is important for the government, finance company, real estate sector and also the house owner. The data of the house price at Ames, Iowa in United State which from the year 2006 to 2010 is used for multivariate analysis. However, multicollinearity is commonly occurred in the multivariate analysis and gives a serious effect to the model. Therefore, in this study investigates the performance of the Ridge regression model and Lasso regression model as both regressions can deal with multicollinearity. Ridge regression model and Lasso regression model are constructed and compared. The root mean square error (RMSE) and adjusted R-squared are used to evaluate the performance of the models. This comparative study found that the Lasso regression model is performing better compared to the Ridge regression model. Based on this analysis, the selected variables includes the aspect of house size, age of house, condition of house and also the location of the house.
APA, Harvard, Vancouver, ISO, and other styles
31

Грицюк, Вера Ильинична. "Improved robust ridge regression estimates." Eastern-European Journal of Enterprise Technologies 1, no. 9(73) (February 25, 2015): 53. http://dx.doi.org/10.15587/1729-4061.2015.37316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Toker, Selma, Gülesen Üstündağ Şiray, and Selahattin Kaçıranlar. "Inequality constrained ridge regression estimator." Statistics & Probability Letters 83, no. 10 (October 2013): 2391–98. http://dx.doi.org/10.1016/j.spl.2013.06.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shi, Lei, and Xueren Wang. "Local influence in ridge regression." Computational Statistics & Data Analysis 31, no. 3 (September 1999): 341–53. http://dx.doi.org/10.1016/s0167-9473(99)00019-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lee, A. H., and M. J. Silvapulle. "Ridge estimation in logistic regression." Communications in Statistics - Simulation and Computation 17, no. 4 (January 1988): 1231–57. http://dx.doi.org/10.1080/03610918808812723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jensen, D. R., and D. E. Ramirez. "Concentration reversals in ridge regression." Statistics & Probability Letters 79, no. 21 (November 2009): 2237–41. http://dx.doi.org/10.1016/j.spl.2009.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Morris, John D. "Calculating a Stepwise Ridge Regression." Educational and Psychological Measurement 46, no. 1 (March 1986): 151–55. http://dx.doi.org/10.1177/0013164486461014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Walker, Esteban, and Jeffrey B. Birch. "Influence Measures in Ridge Regression." Technometrics 30, no. 2 (May 1988): 221–27. http://dx.doi.org/10.1080/00401706.1988.10488370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hoerl, Roger W. "Ridge Regression: A Historical Context." Technometrics 62, no. 4 (October 1, 2020): 420–25. http://dx.doi.org/10.1080/00401706.2020.1742207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Khalaf, Ghadban, and Mohamed Iguernane. "Ridge Regression and Ill-Conditioning." Journal of Modern Applied Statistical Methods 13, no. 2 (November 1, 2014): 355–63. http://dx.doi.org/10.22237/jmasm/1414815420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cessie, S. Le, and J. C. Van Houwelingen. "Ridge Estimators in Logistic Regression." Applied Statistics 41, no. 1 (1992): 191. http://dx.doi.org/10.2307/2347628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Guerard, John B. "Composite forecasting using ridge regression." Communications in Statistics - Theory and Methods 16, no. 4 (January 1987): 937–52. http://dx.doi.org/10.1080/03610928708829414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jensen, Donald R., and Donald E. Ramirez. "Anomalies in Ridge Regression: Rejoinder." International Statistical Review 78, no. 2 (June 18, 2010): 215–17. http://dx.doi.org/10.1111/j.1751-5823.2010.00116.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Clark, A. E., and C. G. Troskie. "Ridge Regression – A Simulation Study." Communications in Statistics - Simulation and Computation 35, no. 3 (September 2006): 605–19. http://dx.doi.org/10.1080/03610910600716811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kizilaslan, Busenur, Erol Egrioglu, and Atif Ahmet Evren. "Intuitionistic fuzzy ridge regression functions." Communications in Statistics - Simulation and Computation 49, no. 3 (June 13, 2019): 699–708. http://dx.doi.org/10.1080/03610918.2019.1626887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zinodiny, S. "Bayes minimax ridge regression estimators." Communications in Statistics - Theory and Methods 47, no. 22 (March 7, 2018): 5519–33. http://dx.doi.org/10.1080/03610926.2017.1397167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chandrasekhar, C. K., H. Bagyalakshmi, M. R. Srinivasan, and M. Gallo. "Partial ridge regression under multicollinearity." Journal of Applied Statistics 43, no. 13 (May 8, 2016): 2462–73. http://dx.doi.org/10.1080/02664763.2016.1181726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pagel, Mark D., and Clifford E. Lunneborg. "Empirical evaluation of ridge regression." Psychological Bulletin 97, no. 2 (1985): 342–55. http://dx.doi.org/10.1037/0033-2909.97.2.342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Khalaf, G., K. Månsson, P. Sjölander, and G. Shukur. "A Tobit Ridge Regression Estimator." Communications in Statistics - Theory and Methods 43, no. 1 (November 25, 2013): 131–40. http://dx.doi.org/10.1080/03610926.2012.655881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chawla, J. S. "A note on ridge regression." Statistics & Probability Letters 9, no. 4 (April 1990): 343–45. http://dx.doi.org/10.1016/0167-7152(90)90144-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Månsson, Kristofer, and Ghazi Shukur. "A Poisson ridge regression estimator." Economic Modelling 28, no. 4 (July 2011): 1475–81. http://dx.doi.org/10.1016/j.econmod.2011.02.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography