To see the other types of publications on this topic, follow the link: Regressione lineare.

Dissertations / Theses on the topic 'Regressione lineare'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Regressione lineare.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Cannizzaro, Sofia. "Regressione lineare e analisi delle componenti principali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18791/.

Full text
Abstract:
Lo scopo dell’elaborato è di studiare la composizione di due metodi nel campo della statistica multivariata: l'analisi delle componenti principali e la regressione lineare multivariata. Nel Capitolo 1 viene presentata l’analisi delle componenti principali (PCA), metodo che analizza e semplifica i dati e attraverso il quale si vuole spiegare la struttura di varianza-covarianza di un insieme di variabili, date poche combinazioni lineari di esse. Lo scopo è duplice: ridurre il numero di variabili necessarie a spiegare un fenomeno e renderlo di più̀ facile interpretazione. In seguito è stata discussa la regressione lineare multivariata, presentandone il modello e l'utilizzo del metodo dei minimi quadrati. In particolare si è rilevata l'importanza di scegliere il numero minore di variabili, che, tuttavia, mantenga la possibilità di un risultato attendibile; per questo sono state presentate alcune strategie per la selezione di variabili (come la regressione stepwise). Infine si è presentato il problema della riduzione del numero di variabili predittive mediante l'uso dell'analisi delle componenti principali. L’utilizzo della PCA permette di ridurre la dimensione del problema e, in particolare, di poterlo interpretare meglio e, quindi, determinare da quali variabili, anche non esplicitamente osservabili, dipende effettivamente la risposta. Tramite un esempio è evidenziata l'importanza della scelta del numero di componenti principali nell'ambito della regressione.
APA, Harvard, Vancouver, ISO, and other styles
2

Caserio, Silvia. "Problema ai minimi quadrati applicato alla regressione lineare: studio di casi applicativi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12436/.

Full text
Abstract:
La regressione lineare è un metodo statistico utilizzato per predire i valori di una o più variabili dipendenti, dette 'risposte', da una collezione di valori di variabili indipendenti, dette 'predittori'. Trova applicazione in svariati ambiti, quali, ad esempio, l'ingegneria, la biologia, l'economia, ed è così largamente diffuso in quanto si traduce in un normale problema ai minimi quadrati. In questa tesi viene presentato il modello di regressione lineare multivariata e vengono esposti i suoi aspetti teorici, evidenziandone le proprietà qualitative e la sua riconducibilità ad un problema di minimi quadrati. Vengono presentati il problema ai minimi quadrati ed alcuni suoi risultati generali, seguiti dalla descrizione dei metodi numerici utilizzati per la sua risoluzione. Infine, vengono analizzati sperimentalmente due set di dati noti in letteratura, ricorrendo ai metodi numerici adatti a risolvere un problema di minimi quadrati e sottolineando quale sia quello più efficiente.
APA, Harvard, Vancouver, ISO, and other styles
3

Sitta, Alessia. "Modelli regressivi e metodi di classificazione." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18233/.

Full text
Abstract:
In questo elaborato vengono studiati i modelli regressivi al fine di applicare la teoria della regressione al problema della classificazione. Per quanto riguarda la regressione lineare, in particolare si trovano formule che permettano di calcolare i coefficienti dei modelli a partire dai dati sperimentali. Particolare attenzione viene posta sull'Analisi delle Componenti Principali, metodo tra i più usati per la riduzione dei modelli regressivi. Infine, viene studiato come la regressione logistica riesce a risolvere in maniera efficiente il problema della classificazione.
APA, Harvard, Vancouver, ISO, and other styles
4

Mancini, Martina. "Teorema di Cochran e applicazioni." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9145/.

Full text
Abstract:
La statistica è un ramo della matematica che studia i metodi per raccogliere, organizzare e analizzare un insieme di dati numerici, la cui variazione è influenzata da cause diverse, con lo scopo sia di descrivere le caratteristiche del fenomeno a cui i dati si riferiscono, sia di dedurre, ove possibile, le leggi generali che lo regolano. La statistica si suddivide in statistica descrittiva o deduttiva e in statistica induttiva o inferenza statistica. Noi ci occuperemo di approfondire la seconda, nella quale si studiano le condizioni per cui le conclusioni dedotte dall'analisi statistica di un campione sono valide in casi più generali. In particolare l'inferenza statistica si pone l'obiettivo di indurre o inferire le proprietà di una popolazione (parametri) sulla base dei dati conosciuti relativi ad un campione. Lo scopo principale di questa tesi è analizzare il Teorema di Cochran e illustrarne le possibili applicazioni nei problemi di stima in un campione Gaussiano. In particolare il Teorema di Cochran riguarda un'importante proprietà delle distribuzioni normali multivariate, che risulta fondamentale nella determinazione di intervalli di fiducia per i parametri incogniti.
APA, Harvard, Vancouver, ISO, and other styles
5

Mainetti, Filippo. "Sviluppo e validazione sperimentale di un modello polinomiale per la compensazione dell'errore termico di macchine utensili CNC." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
In questo elaborato di tesi è stato sviluppato un modello polinomiale per la compensazione dell’errore termico su una macchina utensile CNC. Lo studio è frutto di una collaborazione con la ditta Giuliani, division del gruppo Bucci Automations S.p.a. che si occupa di macchine utensili CNC transfer di alta precisione. L’errore termico è causato dalla movimentazione lungo gli assi e comporta un riscaldamento del motore, della vite a ricircolo e dei diversi organi di collegamento compreso il telaio. Tale riscaldamento, provoca quindi una dilatazione termica dell’intera catena cinematica con conseguente errore di posizionamento dell’utensile e quindi della lavorazione. Il modello è stato creato dopo aver analizzato una serie di risultati sperimentali. Sono stati presi in considerazione diversi modelli matematici come: la regressione lineare monodimensionale, polinomiale e la rete neurale. I parametri dei modelli matematici sono stati ottenuti per via sperimentale tramite “training” con diversi cicli di riscaldamento, condotti a differenti condizioni di carico ed ampiezza. Successivamente sono state eseguite prove di validazione su un ciclo di lavorazione reale. Tramite tale processo è stato possibile valutare quale fosse il modello migliore per la compensazione dell’errore termico. La metodologia per la compensazione dell’errore termico così sviluppata può essere facilmente implementata, con un costo irrisorio, all'interno di qualsiasi macchina utensile CNC.
APA, Harvard, Vancouver, ISO, and other styles
6

Chini, Giacomo. "Implementazione di una architettura di bilanciamento del carico per microservizi tramite tecniche di Machine Learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022.

Find full text
Abstract:
Viene presentata un'architettura a microservizi che permette di parametrizzare la logica di bilanciamento, che, in questo caso utilizza con successo tecnologie di Machine Learning per minimizzare la latenza. Dopo aver approfondito gli argomenti principali da tenere in considerazione per implementare scenari di bilanciamento del carico e le peculiarità dei microservizi, ne viene mostrata la sua implementazione. L'architettura proposta utilizza tecnologie il più semplici possibili per poter concentrare l'attenzione del lettore sulle tecniche ed i procedimenti per realizzare il progetto. Inizialmente viene utilizzato l'algoritmo di "regressione lineare" per individuare la funzione di previsione del tempo di risposta in relazione al "task" e al numero di richieste in fase di processamento sui nodi del sistema. In base alla funzione ottenuta, viene modificato il dataset e viene utilizzato "decision tree" per ottenere l'insieme delle scelte per indirizzare le richieste. In conclusione, viene utilizzata l'architettura implementata in precedenza per valutare l'algoritmo ottenuto. Viene presentato quindi un paragone, a parità di test, tra la nostra funzione di bilanciamento creata ed un algoritmo statico come Round Robin.
APA, Harvard, Vancouver, ISO, and other styles
7

Nieri, Miriam. "Un'esposizione ipertestuale di alcuni elementi di statistica descrittiva." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/4915/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pansica, Flavia. "Misura dell'attrattività di una stazione ferroviaria: sviluppo, validazione e applicazione di un modello previsionale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
L’obiettivo del presente lavoro di tesi è analizzare l’attrattività di alcune stazioni ferroviarie della regione Emilia-Romagna, attraverso l’individuazione e la quantificazione di parametri e caratteristiche del servizio e l’individuazione della loro importanza nella scelta da parte dell’utente. Il risultato sarà un modello matematico in grado di simulare la situazione attuale che sia in grado di offrire replicabilità al di fuori del contesto in cui è stato sviluppato – mantenendo costanti le variabili fondamentali che lo compongono. Il modello potrà essere utilizzato anche per prevedere le variazioni della domanda a seguito di interventi sui fattori individuati come basilari per l’accessibilità delle stazioni. Nel dettaglio, il presente elaborato è strutturato in 4 capitoli: nel primo si fornisce una breve panoramica storica della nascita delle ferrovie in Italia, della competitività e delle innovazioni tecnologiche che contribuiscono ad aumentare la qualità e l'efficienza dei servizi del trasporto ferroviario, inoltre si esaminerà l'impatto del trasporto ferroviario nell'Unione Europea sulla base dei tre pilastri tradizionali della letteratura (economico, sociale ed occupazionale, ambientale); nel secondo capitolo si descrivono i fattori che ostacolano l’utilizzo del treno; il terzo capitolo fornisce i principali concetti teorici alla base dello studio; l’ultimo capitolo illustra l’analisi sperimentale condotta, in collaborazione con la Regione Emilia – Romagna, i risultati ottenuti e l’applicabilità del modello alla valutazione sull’opportunità di aprire nuove stazioni ferroviarie. L’analisi è stata condotta anche mediante un approccio che mira ad ottenere un semplice algoritmo in grado di riprodurre fedelmente la domanda attuale. Infine si discutono i risultati ottenuti e la loro possibile utilità per la committenza e i decisori nel supporto alle decisioni di pianificazione del servizio.
APA, Harvard, Vancouver, ISO, and other styles
9

Colarusso, Odillia. "Valutazione del potenziale effetto di attrattività demografica di dighe localizzate negli Stati Uniti d'America." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
Le dighe sono una potente icona del progresso. Da sempre, sono elemento di studio che ne evidenzia i vantaggi e gli aspetti più problematici; tra quest’ultimi la delocalizzazione di milioni di persone. L’obiettivo di questo studio è dimostrarne l’eventuale potenziale di attrazione demografica. A tal fine, si è effettuata un’analisi sull’evoluzione spazio-temporale della densità di popolazione nelle zone prossime alle dighe. L’area d’interesse è quella relativa agli Stati Uniti d’America, nazione caratterizzata da un elevata densità d’invasi e da una notevole disponibilità di dati demografici. L’analisi prevede una suddivisione dell’area prossima alla diga in corone circolari concentriche per valutare l’andamento temporale della densità di popolazione in corrispondenza di distanze progressivamente crescenti dalla diga. È stato inoltre stimato l’andamento temporale a livello dei singoli Stati afferenti alle dighe. Tale stima è ricavata mediante l’applicazione di un modello di regressione lineare, attraverso il valore della pendenza. I risultati ottenuti sono stati poi analizzati in funzione di categorie definite sulla base della capacità e della tipologia di utilizzo degli invasi e dello stato di appartenenza. Le categorie di dighe che possono essere considerate potenziali attrattori di popolazione registrano un maggiore incremento dei valori di densità di popolazione rispetto alla situazione a livello di Stato. L’analisi ha mostrato che gli invasi destinati a fini acquedottistici risultano essere dei forti attrattori di popolazione, con un incremento della densità di popolazione complessivamente maggiore rispetto a quello a livello di Stato.
APA, Harvard, Vancouver, ISO, and other styles
10

Mingolini, Riccardo. "Investimenti in lobby: Un modello per stimare il loro impatto sull'azienda." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13291/.

Full text
Abstract:
In questo elaborato di tesi verrà analizzata l’attitudine di una azienda ad investire in lobbying, misurato attraverso varie variabili importanti per la stessa quali ad esempio il capitale, il reddito netto dell’impresa, il numero degli impiegati (et simila) e il loro impatto scoraggiante o incentivante rispetto alla nostra variabile dipendente. Cercheremo infine di trovare un modello che approssima in modo sostanziale suddette dipendenze e variabili, in modo da tracciare un filo logico e matematico fra la nostra variabile dipendente Y ( investimento in lobbying) e le nostre variabili indipendenti X cioè gli indici e le variabili in valore monetario importanti per definire una azienda e il suo settore di appartenenza (SIC CODE).
APA, Harvard, Vancouver, ISO, and other styles
11

Vandi, Daniele. "Studio del comportamento a fatica di provini in Maraging steel realizzati tramite Additive Manufacturing." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
Nel presente lavoro di tesi verrà studiato ed analizzato, tramite prove effettuate in laboratorio, il comportamento a fatica di 3 set di provini metallici in Maraging steel, realizzati mediante le più moderne tecnologie di Additive Manufacturing. Tale recente tecnologia, pioniera nell'ambito della produzione manifatturiera di prototipi e pezzi, ha iniziato sin dagli inizi del suo sviluppo a mostrare le sue numerose potenzialità, e solo negli ultimi anni ha dimostrato di poter essere applicata con successo anche a componenti meccanici e parti funzionali. Ciononostante, data la modernità della tecnologia, sono richieste ulteriori ricerche ed analisi per determinare il comportamento meccanico di pezzi prodotti con tali tecnologie, in quanto la loro resistenza, statica e soprattutto a fatica, è influenzata dalla peculiarità del processo tecnologico stesso, che tende a generare forte anisotropia nelle leghe metalliche prodotte. Nella prima parte verranno discussi i fondamenti generali della meccanica per i materiali metallici, in particolare il comportamento dei materiali sottoposti a storie di carico variabile; nella seconda parte verrà presentato uno stato dell'arte dei vari processi di Additive Manufacturing; nella terza parte, verrà studiato il comportamento a fatica, ad alto numero di cicli, dei suddetti provini sottoposti da un macchinario a flessione rotante a vari livelli di carico; nella quarta parte, tramite uso di tecniche statistiche, verrà presentata un'elaborazione dei risultati ottenuti in laboratorio, in particolare per ricavare la curva S-N e il limite di fatica del materiale; infine verrà presentata l'osservazione al microscopio delle superfici di frattura dei provini, per indagare la propagazione della rottura e così risalire alle possibili cause iniziatrici della rottura stessa.
APA, Harvard, Vancouver, ISO, and other styles
12

SPINELLI, LUCA. "La selezione degli investimenti immobiliari nel settore alberghiero." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1289.

Full text
Abstract:
Il settore alberghiero ha conosciuto negli ultimi anni uno sviluppo significativo soprattutto in alcune economie, come l’Italia, in cui il movimento ha dimostrato quasi sempre una crescente capacità di produrre risultati positivi (Jones Lang Lasalle Hotels, 2009). In letteratura un criterio unico per definire le modalità con cui migliorare un portafoglio in base alla segmentazione settoriale (vedi Hartzell, 1986) e/o geografica (vedi ad esempio Mueller e Ziering, 1992) non è ancora disponibile. La presente tesi cerca attraverso due metodologie diverse (da una parte attraverso la diversificazione di portafoglio – Markovitz – e dall’altra attraverso una regressione lineare) di colmare questa lacuna e cercare di capire se questa diversificazione geo-settoriale possa portare benefici in questo specifico settore. Prendendo dunque spunto da alcuni lavori che hanno applicato l’approccio proposto da Markowitz agli investimenti immobiliari al fine di identificare la composizione ottimale di un portafoglio (tra gli altri Friedman, 1971), il contributo analizza i vantaggi e i limiti derivanti dalla diversificazione del rischio per gli investimenti nel settore alberghiero considerando le potenzialità della frontiera efficiente per la misurazione dell’impatto della diversificazione su un portafoglio di immobili destinati unicamente ad uso alberghiero. Lo studio dei benefici/costi della diversificazione completa, quindi, l’analisi delle performance degli investimenti realizzati da investitori istituzionali nel settore alberghiero fornendo indicazioni utili per la definizione dei criteri di costruzione un portafoglio di alberghi che massimizzi il risultato derivante dall’investimento e/o minimizzi la loro esposizione al rischio. Dall’altro lato usando un modello proposto da Heaston e Rouwenhorst (1994) la tesi analizza il ruolo dei fattori geo-settoriali nell’industria alberghiera italiana (uno dei mercati turistici più importanti al mondo). I risultati ottenuti dalla verifica empirica su uno dei mercati più importanti a livello mondiale (Italia)[1] dimostrano come la composizione di un portafoglio ottimale di investimenti alberghieri differisca significativamente in funzione della presenza o meno di vincoli di diversificazione. Il sacrificio collegato alla riduzione del rendimento per unità di rischio assunto può essere ritenuto accettabile anche in funzione della maggiore persistenza dei risultati che caratterizza i portafogli costruiti utilizzando vincoli di diversificazione visto che la distanza media dei portafogli identificati in passato rispetto alla frontiera efficiente corrente risulta più ridotta. Inoltre l’applicazione della regressione lineare dimostra come siano le caratteristiche geografiche più significative di altre variabili, sempre in relazione alla performance della struttura.
Hotel sectors represent an atypical real estate industry in which daily inflows and outflows are affected by some specific external factors that impact deeply on the demand and supply of the service. Literature considers these unpredictable dynamics related to some geographical and sectoral characteristics but an empirical study of the relative importance of these two factors is still not available. Following approaches proposed for stock market dynamics and applied also to the overall real estate industry, the paper study the relative importance of sector and geographical feature in explaining the hotel performance. In order to test this hypothesis the paper considers the Italian hotel industry, one of the most important world market for tourism and leisure, that is never analysed using these approaches. The paper proposed tries to evaluate the benefits related to a Markowitz’s diversification approach for the construction of a real estate portfolio specialized in the hotel real estate market. The thesis considers a database collected by AICA, Italian Association Hotel Companies, in order to evaluate revenue dynamics in the hotel real estate market. On the basis of Markowitz’s theory, the analysis proposed tries to define the best diversification strategy for the portfolio’s construction in the hotel real estate market. Results achieved demonstrate that the standard geo-sectorial diversification allows to achieve good results only if some concentration constraints are established because there are some cities and/or hotel categories that are outperforming for all the time period analysed. Using GOPPAR as a performance measure, the empirical analysis with the linear regression demonstrate that an overall national trend explains more than 50% of monthly performance of all Italian hotels and the regional features allow to explain better the misalignment respect to the national trend.
APA, Harvard, Vancouver, ISO, and other styles
13

Alt, Raimund. "Multiple hypotheses testing in the linear regression model with applications to economics and finance /." Göttingen : Cuvillier, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=013081924&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lüblinghoff, Julia Cordula. "Klinische Charakterisierung von TSH-Rezeptormutationen." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-96931.

Full text
Abstract:
Diese Dissertation untersucht einen möglichen Zusammenhang zwischen dem beschriebenen klinischen Verlauf bei Patienten mit konstitutiv aktivierenden TSH-Rezeptormutationen und der gemessenen in vitro Aktivität. Konstitutiv aktivierende Mutationen finden sich als somatische Mutationen in autonomen Adenomen und als Keimbahnmutationen bei Patienten mit sporadischer bzw. familiärer nicht-autoimmuner Hyperthyreose. Die in vitro Aktivität der zu Grunde liegenden TSH-Rezeptormutationen wird mit Hilfe der Linearen Regressions-Analyse bestimmt. Dies ist ein Verfahren, welches die basale Produktion des second messenger cAMP (Cyclo-Adenosinmonophosphat) misst, unter Berücksichtigung der Expression des TSH-Rezeptors. Die Analyse der Krankheitsverläufe der sporadischen nicht-autoimmunen Hyperthyreose zeigt keinen eindeutigen Bezug zur gemessenen in vitro Aktivität. Es besteht jedoch eine höhere in vitro Aktivität bei Mutationen, die sowohl bei der nicht-autoimmunen sporadischen Hyperthyreose und in autonomen Adenomen zu finden sind, im Vergleich zu ausschließlich familiären Mutationen. Dies entspricht auch dem klinischen Eindruck. Für die wenigen bekannten Fälle der sporadischen nicht-autoimmunen Hyperthyreose wurden dramatische Verläufe mit häufigen Rückfällen unter medikamentöser Therapie und zahlreichen Komplikationen (z.B. mentale Retardierung, Kraniosynostose, zerebrale Ventrikulomegalie, beschleunigte Knochenreifung) beschrieben.
APA, Harvard, Vancouver, ISO, and other styles
15

Bai, Xue. "Robust linear regression." Kansas State University, 2012. http://hdl.handle.net/2097/14977.

Full text
Abstract:
Master of Science
Department of Statistics
Weixin Yao
In practice, when applying a statistical method it often occurs that some observations deviate from the usual model assumptions. Least-squares (LS) estimators are very sensitive to outliers. Even one single atypical value may have a large effect on the regression parameter estimates. The goal of robust regression is to develop methods that are resistant to the possibility that one or several unknown outliers may occur anywhere in the data. In this paper, we review various robust regression methods including: M-estimate, LMS estimate, LTS estimate, S-estimate, [tau]-estimate, MM-estimate, GM-estimate, and REWLS estimate. Finally, we compare these robust estimates based on their robustness and efficiency through a simulation study. A real data set application is also provided to compare the robust estimates with traditional least squares estimator.
APA, Harvard, Vancouver, ISO, and other styles
16

Hernandez, Erika Lyn. "Parameter Estimation in Linear-Linear Segmented Regression." Diss., CLICK HERE for online access, 2010. http://contentdm.lib.byu.edu/ETD/image/etd3551.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ollikainen, Kati. "PARAMETER ESTIMATION IN LINEAR REGRESSION." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4138.

Full text
Abstract:
Today increasing amounts of data are available for analysis purposes and often times for resource allocation. One method for analysis is linear regression which utilizes the least squares estimation technique to estimate a model's parameters. This research investigated, from a user's perspective, the ability of linear regression to estimate the parameters' confidence intervals at the usual 95% level for medium sized data sets. A controlled environment using simulation with known data characteristics (clean data, bias and or multicollinearity present) was used to show underlying problems exist with confidence intervals not including the true parameter (even though the variable was selected). The Elder/Pregibon rule was used for variable selection. A comparison of the bootstrap Percentile and BCa confidence interval was made as well as an investigation of adjustments to the usual 95% confidence intervals based on the Bonferroni and Scheffe multiple comparison principles. The results show that linear regression has problems in capturing the true parameters in the confidence intervals for the sample sizes considered, the bootstrap intervals perform no better than linear regression, and the Scheffe method is too wide for any application considered. The Bonferroni adjustment is recommended for larger sample sizes and when the t-value for a selected variable is about 3.35 or higher. For smaller sample sizes all methods show problems with type II errors resulting from confidence intervals being too wide.
Ph.D.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering and Management Systems
APA, Harvard, Vancouver, ISO, and other styles
18

Chen, Xinyu. "Inference in Constrained Linear Regression." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/405.

Full text
Abstract:
Regression analyses constitutes an important part of the statistical inference and has great applications in many areas. In some applications, we strongly believe that the regression function changes monotonically with some or all of the predictor variables in a region of interest. Deriving analyses under such constraints will be an enormous task. In this work, the restricted prediction interval for the mean of the regression function is constructed when two predictors are present. I use a modified likelihood ratio test (LRT) to construct prediction intervals.
APA, Harvard, Vancouver, ISO, and other styles
19

Waterman, Megan Janet Tuttle. "Linear Mixed Model Robust Regression." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27708.

Full text
Abstract:
Mixed models are powerful tools for the analysis of clustered data and many extensions of the classical linear mixed model with normally distributed response have been established. As with all parametric models, correctness of the assumed model is critical for the validity of the ensuing inference. Model robust regression techniques predict mean response as a convex combination of a parametric and a nonparametric model fit to the data. It is a semiparametric method by which incompletely or incorrectly specified parametric models can be improved through adding an appropriate amount of a nonparametric fit. We apply this idea of model robustness in the framework of the linear mixed model. The mixed model robust regression (MMRR) predictions we propose are convex combinations of predictions obtained from a standard normal-theory linear mixed model, which serves as the parametric model component, and a locally weighted maximum likelihood fit which serves as the nonparametric component. An application of this technique with real data is provided.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
20

Ratnasingam, Suthakaran. "Sequential Change-point Detection in Linear Regression and Linear Quantile Regression Models Under High Dimensionality." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu159050606401363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kürsteiner, Christian. "Subsampling Methods for Predictability Regressions." St. Gallen, 2007. http://www.biblio.unisg.ch/org/biblio/edoc.nsf/wwwDisplayIdentifier/02600609002/$FILE/02600609002.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

SAMPAIO, ANTONIO JOSE CORREIA. "FUZZY LINEAR REGRESSIVE MODELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7440@1.

Full text
Abstract:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Este trabalho apresenta um modelo de Regressão Linear Nebulosa por Partes(RLNP). Trata-se de uma estrutura que envolve modelos de regressão linear por partes ponderadas por pertinências advindas da lógica nebulosa. Este modelo é comparado com o modelo de regressão linear. Os resultados mostram que o RLNP consegue identificar a estrutura não-linear dos dados simulados e que na maioria dos casos ele possui bom poder de ajuste.
In this dissertation a Fuzzy Piece-Wise Linear Regressive model FPLieR is developed. The model´s structure combines linear regressive models with fuzzy logic´s grade of membership in a piece-wise fashion. A comparision is made between this model and the linear regression one. The results show that FPLieR is able to find the linear substructure of simulated data and that in most cases it presents a good fit.
APA, Harvard, Vancouver, ISO, and other styles
23

Rettes, Julio Alberto Sibaja. "Robust algorithms for linear regression and locally linear embedding." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/22445.

Full text
Abstract:
RETTES, Julio Alberto Sibaja. Robust algorithms for linear regression and locally linear embedding. 2017. 105 f. Dissertação (Mestrado em Ciência da Computação)- Universidade Federal do Ceará, Fortaleza, 2017.
Submitted by Weslayne Nunes de Sales (weslaynesales@ufc.br) on 2017-03-30T13:15:27Z No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-04-04T11:10:44Z (GMT) No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5)
Made available in DSpace on 2017-04-04T11:10:44Z (GMT). No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5) Previous issue date: 2017
Nowadays a very large quantity of data is flowing around our digital society. There is a growing interest in converting this large amount of data into valuable and useful information. Machine learning plays an essential role in the transformation of data into knowledge. However, the probability of outliers inside the data is too high to marginalize the importance of robust algorithms. To understand that, various models of outliers are studied. In this work, several robust estimators within the generalized linear model for regression framework are discussed and analyzed: namely, the M-Estimator, the S-Estimator, the MM-Estimator, the RANSAC and the Theil-Sen estimator. This choice is motivated by the necessity of examining algorithms with different working principles. In particular, the M-, S-, MM-Estimator are based on a modification of the least squares criterion, whereas the RANSAC is based on finding the smallest subset of points that guarantees a predefined model accuracy. The Theil Sen, on the other hand, uses the median of least square models to estimate. The performance of the estimators under a wide range of experimental conditions is compared and analyzed. In addition to the linear regression problem, the dimensionality reduction problem is considered. More specifically, the locally linear embedding, the principal component analysis and some robust approaches of them are treated. Motivated by giving some robustness to the LLE algorithm, the RALLE algorithm is proposed. Its main idea is to use different sizes of neighborhoods to construct the weights of the points; to achieve this, the RAPCA is executed in each set of neighbors and the risky points are discarded from the corresponding neighborhood. The performance of the LLE, the RLLE and the RALLE over some datasets is evaluated.
Na atualidade um grande volume de dados é produzido na nossa sociedade digital. Existe um crescente interesse em converter esses dados em informação útil e o aprendizado de máquinas tem um papel central nessa transformação de dados em conhecimento. Por outro lado, a probabilidade dos dados conterem outliers é muito alta para ignorar a importância dos algoritmos robustos. Para se familiarizar com isso, são estudados vários modelos de outliers. Neste trabalho, discutimos e analisamos vários estimadores robustos dentro do contexto dos modelos de regressão linear generalizados: são eles o M-Estimator, o S-Estimator, o MM-Estimator, o RANSAC e o Theil-Senestimator. A escolha dos estimadores é motivada pelo principio de explorar algoritmos com distintos conceitos de funcionamento. Em particular os estimadores M, S e MM são baseados na modificação do critério de minimização dos mínimos quadrados, enquanto que o RANSAC se fundamenta em achar o menor subconjunto que permita garantir uma acurácia predefinida ao modelo. Por outro lado o Theil-Sen usa a mediana de modelos obtidos usando mínimos quadradosno processo de estimação. O desempenho dos estimadores em uma ampla gama de condições experimentais é comparado e analisado. Além do problema de regressão linear, considera-se o problema de redução da dimensionalidade. Especificamente, são tratados o Locally Linear Embedding, o Principal ComponentAnalysis e outras abordagens robustas destes. É proposto um método denominado RALLE com a motivação de prover de robustez ao algoritmo de LLE. A ideia principal é usar vizinhanças de tamanhos variáveis para construir os pesos dos pontos; para fazer isto possível, o RAPCA é executado em cada grupo de vizinhos e os pontos sob risco são descartados da vizinhança correspondente. É feita uma avaliação do desempenho do LLE, do RLLE e do RALLE sobre algumas bases de dados.
APA, Harvard, Vancouver, ISO, and other styles
24

Bondavalli, Barbara. "Analisi delle associazioni tra prestazioni cognitive ed indici avanzati di neuroimaging in pazienti con declino cognitivo lieve di origine vascolare." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
L'obiettivo del presente elaborato di tesi è lo studio dell'associazione tra variabili di neuroimaging e variabili neuropsicologiche, tramite analisi statistiche, con particolare attenzione agli indici strutturali in grado di interpretare i punteggi di test neuropsicologici ottenuti da pazienti affetti da deterioramento cognitivo lieve di origine vascolare e patologia dei piccoli vasi cerebrali. I metodi statistici impiegati consistono in analisi di regressione lineare multipla, sviluppati ed automatizzati nel pacchetto SPSS (Statistical Package for Social Science) e classificazione grazie ad algoritmi di machine learning, implementati in ambiente R. Le analisi sono state applicate ad un dataset costituito da 64 pazienti inclusi nel progetto VMCI-Tuscany. Le analisi di regressione e classificazione sono state applicate a tre modelli diversi, in funzione delle variabili esplicative considerate: il primo modello è costituito da variabili volumetriche, mentre gli altri due modelli includono anche indici di diffusione cerebrale, quali Mean Diffusivity (MD) e Fractional Anisotropy (FA). I risultati evidenziano l'importanza dell'indice di diffusione MD della sostanza bianca come predittore significativo del deterioramento cognitivo: in particolar modo la sostanza bianca apparentemente normale e la sostanza bianca totale presentano MD simili, mostrando, come, in questa coorte di pazienti, la segmentazione semi-automatica delle lesioni non sia necessaria. L'applicazione di tecniche di machine learning al test MoCA permette di ottenere un coefficiente di correlazione di Pearson tra i punteggi osservati e quelli stimati dall'algoritmo di Support Vector Machine pari a 0.62. I risultati migliori delle analisi di classificazione, invece, corrispondono a valori di sensibilità e di specificità pari al 71.44% e al 80.56% per il test MoCA e valori di sensibilità e di specificità pari al 71.79% e al 72% per il test TMT-A.
APA, Harvard, Vancouver, ISO, and other styles
25

Bocci, Cynthia Jacqueline. "Linear regression with spatially correlated data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0012/NQ52271.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mahmood, Nozad. "Sparse Ridge Fusion For Linear Regression." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5986.

Full text
Abstract:
For a linear regression, the traditional technique deals with a case where the number of observations n more than the number of predictor variables p (n>p). In the case nM.S.
Masters
Statistics
Sciences
Statistical Computing
APA, Harvard, Vancouver, ISO, and other styles
27

Cao, Chendi. "Linear regression with Laplace measurement error." Kansas State University, 2016. http://hdl.handle.net/2097/32719.

Full text
Abstract:
Master of Science
Statistics
Weixing Song
In this report, an improved estimation procedure for the regression parameter in simple linear regression models with the Laplace measurement error is proposed. The estimation procedure is made feasible by a Tweedie type equality established for E(X|Z), where Z = X + U, X and U are independent, and U follows a Laplace distribution. When the density function of X is unknown, a kernel estimator for E(X|Z) is constructed in the estimation procedure. A leave-one-out cross validation bandwidth selection method is designed. The finite sample performance of the proposed estimation procedure is evaluated by simulation studies. Comparison study is also conducted to show the superiority of the proposed estimation procedure over some existing estimation methods.
APA, Harvard, Vancouver, ISO, and other styles
28

Gündüz, Necla. "D-optimal designs for weighted linear regression and binary regression models." Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Maier, Marco J. "DirichletReg: Dirichlet Regression for Compositional Data in R." WU Vienna University of Economics and Business, 2014. http://epub.wu.ac.at/4077/1/Report125.pdf.

Full text
Abstract:
Dirichlet regression models can be used to analyze a set of variables lying in a bounded interval that sum up to a constant (e.g., proportions, rates, compositions, etc.) exhibiting skewness and heteroscedasticity, without having to transform the data. There are two parametrization for the presented model, one using the common Dirichlet distribution's alpha parameters, and a reparametrization of the alpha's to set up a mean-and-dispersion-like model. By applying appropriate link-functions, a GLM-like framework is set up that allows for the analysis of such data in a straightforward and familiar way, because interpretation is similar to multinomial logistic regression. This paper gives a brief theoretical foundation and describes the implementation as well as application (including worked examples) of Dirichlet regression methods implemented in the package DirichletReg (Maier, 2013) in the R language (R Core Team, 2013). (author's abstract)
Series: Research Report Series / Department of Statistics and Mathematics
APA, Harvard, Vancouver, ISO, and other styles
30

Forster, Jürgen. "Some results concerning arrangements of half spaces and relative loss bounds." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964520389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bullas, J. M. David. "K-nearest neighbours with weighted linear regression." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ34340.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hamzah, Nor Aishah. "Robust regression estimation in generalized linear models." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ah-Kine, Pascal Soon Shien. "Simultaneous confidence bands in linear regression analysis." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/167557/.

Full text
Abstract:
A simultaneous confidence band provides useful information on the plausible range of an unknown regression model. For a simple linear regression model, the most frequently quoted bands in the statistical literature include the two-segment band, the three-segment band and the hyperbolic band, and for a multiple linear regression model, the most com- mon bands in the statistical literature include the hyperbolic band and the constant width band. The optimality criteria for confidence bands include the Average Width criterion considered by Gafarian (1964) and Naiman (1984) among others, and the Minimum Area Confidence Set (MACS) criterion of Liu and Hayter (2007). A concise review of the construction of two-sided simultaneous confidence bands in simple and multiple linear re- gressions and their comparison under the two mentioned optimality criteria is provided in the thesis. Two families of confidence bands, the inner-hyperbolic bands and the outerhyperbolic bands, which include the hyperbolic and three-segment bands as special cases, are introduced for a simple linear regression. Under the MACS criterion, the best con- fidence band within each family is found by numerical search and compared with the hyperbolic band, the best three-segment band and with each other. The inner-hyperbolic family of confidence bands, which include the hyperbolic and constant-width bands as special cases, is also constructed for a multiple linear regression model over an ellipsoidal covariate region and the best band within the family is found by numerical search. For a multiple linear regression model over a rectangular covariate region (i.e. the predictor variables are constrained in intervals), no method of constructing exact simultaneous con- fidence bands has been published so far. A method to construct exact two-sided hyperbolic and constant width bands over a rectangular covariate region and compare between them is provided in this thesis when there are up to three predictor variables. A simulation method similar to the ones used by Liu et al. (2005a) and Liu et al. (2005b) is also provided for the calculation of the average width and the minimum volume of confidence set when there are more than three predictor variables. The methods used in this thesis are illustrated with numerical examples and the Matlab programs used are available upon request.
APA, Harvard, Vancouver, ISO, and other styles
34

Essomba, Rene Franck. "An investigation into Functional Linear Regression Modeling." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/15591.

Full text
Abstract:
Functional data analysis, commonly known as FDA", refers to the analysis of information on curves of functions. Key aspects of FDA include the choice of smoothing techniques, data reduction, model evaluation, functional linear modeling and forecasting methods. FDA is applicable in numerous applications such as Bioscience, Geology, Psychology, Sports Science, Econometrics, Meteorology, etc. This dissertation main objective is to focus more specifically on Functional Linear Regression Modelling (FLRM), which is an extension of Multivariate Linear Regression Modeling. The problem of constructing a Functional Linear Regression modelling with functional predictors and functional response variable is considered in great details. Discretely observed data for each variable involved in the modelling are expressed as smooth functions using: Fourier Basis, B-Splines Basis and Gaussian Basis. The Functional Linear Regression Model is estimated by the Least Square method, Maximum Likelihood method and more thoroughly by Penalized Maximum Likelihood method. A central issue when modelling Functional Regression models is the choice of a suitable model criterion as well as the number of basis functions and an appropriate smoothing parameter. Four different types of model criteria are reviewed: the Generalized Cross-Validation, the Generalized Information Criterion, the modified Akaike Information Criterion and Generalized Bayesian Information Criterion. Each of these aforementioned methods are applied to a dataset and contrasted based on their respective results.
APA, Harvard, Vancouver, ISO, and other styles
35

Gormley, Nolan D. "Knotilus: A Differentiable Piecewise Linear Regression Framework." Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1617222994436272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Khogasteh, Sam, and Edvin Wiorek. "Predicting Influencer Actual Reach Using Linear Regression." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299339.

Full text
Abstract:
The influencer marketing industry has seen a tremendous growth in recent years, yet the effectiveness of this marketing form is still largely unexplored. This report aims to explore how various performance measures are linked to the reach of social media pages, utilizing the linear regression model. Three different data sets were collected manually, or using web scraping. By splitting these data sets to training- and test data we examined the degree to which the linear regression model can predict the actual reach, the page views and the weekly growth of an influencer. We concluded that there is a statistically significant correlation between multiple performance metrics of a social media page and the actual reach or the page views of that account. This study is however limited by its narrow data set and time frame, warranting future research in order to further establish the degree of this correlation. The results of this study can benefit companies in their process of selecting influencers to collaborate with, as well as determining the expected return on investment for that particular collaboration. This can in turn lead to a more efficient, authentic and transparent marketplace, and to consumers being less exposed to advertisement from misleading and malicious influencers.
Under de senaste åren har marknadsföringsindustrin med influencers växt drastiskt, ändå är effektiviteten hos denna marknadsföringsform relativt outforskad. Denna rapport avser använda linjär regression för att utforska hur olika prestationsmått är kopplade till räckvidden hos profiler på sociala medier. De olika datamängderna samlades manuellt, eller med hjälp av web scraping. Genom att dela upp datamängderna i träningsdata och testdata undersökte vi i hur hög grad den linjära regressionsmodellen kan förutsäga faktisk räckvidd, sidvisningar och profilens tillväxt under en vecka.  Vi drog slutsatsen att det finns en statistisk signifikant korrelation mellan flera prestationsmått för en profilsida, och antalet sidvisningar for det kontot. Studien är emellertid begränsad av sin datamängd och tidsspann, något som motiverar framtida studier for att ytterligare etablera korrelationsgraden.  Studiens resultat kan gynna företag i deras process att välja vilka influencers de vill samarbeta med, såväl som i deras process att bestämma den förväntade avkastningen för ett specifikt samarbete. Detta kan i sin tur bidra till en mer effektiv, autentisk och transparent marknad, något som också gör att konsumenten ¨ blir mindre exponerad for marknadsföring från vilseledande och illvilliga influencers.
APA, Harvard, Vancouver, ISO, and other styles
37

Mirzayeva, Hijran. "Nonsmooth optimization algorithms for clusterwise linear regression." Thesis, University of Ballarat, 2013. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/41975.

Full text
Abstract:
Data mining is about solving problems by analyzing data that present in databases. Supervised and unsupervised data classification (clustering) are among the most important techniques in data mining. Regression analysis is the process of fitting a function (often linear) to the data to discover how one or more variables vary as a function of another. The aim of clusterwise regression is to combine both of these techniques, to discover trends within data, when more than one trend is likely to exist. Clusterwise regression has applications for instance in market segmentation, where it allows one to gather information on customer behaviors for several unknown groups of customers. There exist different methods for solving clusterwise linear regression problems. In spite of that, the development of efficient algorithms for solving clusterwise linear regression problems is still an important research topic. In this thesis our aim is to develop new algorithms for solving clusterwise linear regression problems in large data sets based on incremental and nonsmooth optimization approaches. Three new methods for solving clusterwise linear regression problems are developed and numerically tested on publicly available data sets for regression analysis. The first method is a new algorithm for solving the clusterwise linear regression problems based on their nonsmooth nonconvex formulation. This is an incremental algorithm. The second method is a nonsmooth optimization algorithm for solving clusterwise linear regression problems. Nonsmooth optimization techniques are proposed to use instead of the Sp¨ath algorithm to solve optimization problems at each iteration of the incremental algorithm. The discrete gradient method is used to solve nonsmooth optimization problems at each iteration of the incremental algorithm. This approach allows one to reduce the CPU time and the number of regression problems solved in comparison with the first incremental algorithm. The third algorithm is an algorithm based on an incremental approach and on the smoothing techniques for solving clusterwise linear regression problems. The use of smoothing techniques allows one to apply powerful methods of smooth nonlinear programming to solve clusterwise linear regression problems. Numerical results are presented for all three algorithms using small to large data sets. The new algorithms are also compared with multi-start Sp¨ath algorithm for clusterwise linear regression.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
38

Smith, David McCulloch. "Regression using QR decomposition methods." Thesis, University of Kent, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Montaletti, Luca. "Spectral index of radio halos and X-ray temperatures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17926/.

Full text
Abstract:
Osservazioni X e Radio di ammassi di galassie dimostrano che nel mezzo intracluster coesistono componenti termiche e non termiche. Mentre le osservazioni X rivelano l'emissione termica da gas caldo diffuso, le osservazioni radio di un numero crescente di galaxy cluster massivi, hanno svelato la presenza di particelle ultrarelativistiche e campi magnetici, attraverso il rilevamento di emissione radio diffusa di sincrotrone: radio halos (RHs) e relitti. I RHs sono sorgenti radio giganti (~1Mpc) localizzate nelle regioni centrali dell’ammasso, con estensione spaziale simile a quella dell’hot ICM. In letteratura ci sono evidenze collettive che i RHs si trovano in ammassi sottoposti a fenomeni di Merger, questa connessione suggerisce che i processi gravitazionali di formazione degli ammassi potrebbero fornire l’energia per generare le componenti non termiche nei cluster. In questa tesi, per testare quantitativamente la connessione RH-merger, sono state svolte analisi statistiche basate su osservazioni radio e X, in particolare è stata indagata una correlazione, proposta nel 1999 da Colafrancesco, fra la temperatura kTX e P1.4GHz, ma non è stata trovata nessuna correlazione significativa kTX-P1.4GHz in un campione di 60 ammassi. Ulteriori indagini sono quindi state svolte sugli indici spettrali α dei RHs, che meglio di P1.4GHz sono evidenza di accelerazione elettronica (e/o compressione di campo magnetico): le analisi sono state condotte su 54 valori di α. Oltre alle analisi statistiche è stato svolto un approfondimento sul calcolo dell’indice spettrale di A1914, per quale è stato osservato uno steepening dello spettro a 98 MHz: α(<98MHz)=1.41 e α(>98MHz)=2.09. Riportiamo inoltre uno studio osservativo a 1.5GHz (dati JVLA) per gli ammassi MACS J0417, con RH noto in letteratura per il quale è stato calcolato un valore di indice spettrale α=0.98, e MACS J0647, che presenta 2 sorgenti radio con proprietà morfologiche tali da essere candidate come alone e relitto.
APA, Harvard, Vancouver, ISO, and other styles
40

Edlund, Ove. "Solution of linear programming and non-linear regression problems using linear M-estimation methods /." Luleå, 1999. http://epubl.luth.se/1402-1544/1999/17/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zuber, Verena. "A Multivariate Framework for Variable Selection and Identification of Biomarkers in High-Dimensional Omics Data." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-101223.

Full text
Abstract:
In this thesis, we address the identification of biomarkers in high-dimensional omics data. The identification of valid biomarkers is especially relevant for personalized medicine that depends on accurate prediction rules. Moreover, biomarkers elucidate the provenance of disease, or molecular changes related to disease. From a statistical point of view the identification of biomarkers is best cast as variable selection. In particular, we refer to variables as the molecular attributes under investigation, e.g. genes, genetic variation, or metabolites; and we refer to observations as the specific samples whose attributes we investigate, e.g. patients and controls. Variable selection in high-dimensional omics data is a complicated challenge due to the characteristic structure of omics data. For one, omics data is high-dimensional, comprising cellular information in unprecedented details. Moreover, there is an intricate correlation structure among the variables due to e.g internal cellular regulation, or external, latent factors. Variable selection for uncorrelated data is well established. In contrast, there is no consensus on how to approach variable selection under correlation. Here, we introduce a multivariate framework for variable selection that explicitly accounts for the correlation among markers. In particular, we present two novel quantities for variable importance: the correlation-adjusted t (CAT) score for classification, and the correlation-adjusted (marginal) correlation (CAR) score for regression. The CAT score is defined as the Mahalanobis-decorrelated t-score vector, and the CAR score as the Mahalanobis-decorrelated correlation between the predictor variables and the outcome. We derive the CAT and CAR score from a predictive point of view in linear discriminant analysis and regression; both quantities assess the weight of a decorrelated and standardized variable on the prediction rule. Furthermore, we discuss properties of both scores and relations to established quantities. Above all, the CAT score decomposes Hotelling’s T 2 and the CAR score the proportion of variance explained. Notably, the decomposition of total variance into explained and unexplained variance in the linear model can be rewritten in terms of CAR scores. To render our approach applicable on high-dimensional omics data we devise an efficient algorithm for shrinkage estimates of the CAT and CAR score. Subsequently, we conduct extensive simulation studies to investigate the performance of our novel approaches in ranking and prediction under correlation. Here, CAT and CAR scores consistently improve over marginal approaches in terms of more true positives selected and a lower model error. Finally, we illustrate the application of CAT and CAR score on real omics data. In particular, we analyze genomics, transcriptomics, and metabolomics data. We ascertain that CAT and CAR score are competitive or outperform state of the art techniques in terms of true positives detected and prediction error.
APA, Harvard, Vancouver, ISO, and other styles
42

Lawrence, David E. "Cluster-Based Bounded Influence Regression." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/28455.

Full text
Abstract:
In the field of linear regression analysis, a single outlier can dramatically influence ordinary least squares estimation while low-breakdown procedures such as M regression and bounded influence regression may be unable to combat a small percentage of outliers. A high-breakdown procedure such as least trimmed squares (LTS) regression can accommodate up to 50% of the data (in the limit) being outlying with respect to the general trend. Two available one-step improvement procedures based on LTS are Mallows 1-step (M1S) regression and Schweppe 1-step (S1S) regression (the current state-of-the-art method). Issues with these methods include (1) computational approximations and sub-sampling variability, (2) dramatic coefficient sensitivity with respect to very slight differences in initial values, (3) internal instability when determining the general trend and (4) performance in low-breakdown scenarios. A new high-breakdown regression procedure is introduced that addresses these issues, plus offers an insightful summary regarding the presence and structure of multivariate outliers. This proposed method blends a cluster analysis phase with a controlled bounded influence regression phase, thereby referred to as cluster-based bounded influence regression, or CBI. Representing the data space via a special set of anchor points, a collection of point-addition OLS regression estimators forms the basis of a metric used in defining the similarity between any two observations. Cluster analysis then yields a main cluster "halfset" of observations, with the remaining observations becoming one or more minor clusters. An initial regression estimator arises from the main cluster, with a multiple point addition DFFITS argument used to carefully activate the minor clusters through a bounded influence regression framework. CBI achieves a 50% breakdown point, is regression equivariant, scale equivariant and affine equivariant and distributionally is asymptotically normal. Case studies and Monte Carlo studies demonstrate the performance advantage of CBI over S1S and the other high breakdown methods regarding coefficient stability, scale estimation and standard errors. A dendrogram of the clustering process is one graphical display available for multivariate outlier detection. Overall, the proposed methodology represents advancement in the field of robust regression, offering a distinct philosophical viewpoint towards data analysis and the marriage of estimation with diagnostic summary.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
43

Forslund, Gustaf, and David Åkesson. "Predicting share price by using Multiple Linear Regression." Thesis, KTH, Farkost och flyg, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-140645.

Full text
Abstract:
The aim of the project was to design a multiple linear regression model and use it to predict the share’s closing price for 44 companies listed on the OMX Stockholm stock exchange’s Large Cap list. The model is intended to be used as a day trading guideline i.e. today’s information is used to predict tomorrow’s closing price. The regression was done in Microsoft Excel 2010[18] by using its built-in function LINEST. The LINEST-function uses the dependent variable y and all the covariates x to calculate the β-value belonging to each covariate. Several multiple linear regression models were created and their functionality was tested, but only seven models were better than chance i.e. more than 50 % in the right direction. To determine the most suitable model out of the remaining seven, Akaike’s Information Criterion (AIC), was applied. The covariates used in the final model were; Dow Jones closing price, Shanghai opening price, conjuncture, oil price, share’s opening price, share’s highest price, share’s lowest price, lending rate, reports, positive/negative insider trading, payday, positive/negative price target, number of completed transactions during one day, OMX Stockholm closing price, TCW index, increasing closing price three days in a row and decreasing closing price three days in a row. The maximum average deviation between the predicted closing price and the real closing price of all the 44 shares predicted were 6,60 %. In predicting the correct direction (increase or decrease) of the 44 shares an average of 61,72 % were achieved during the time period 2012-02-22 to 2013-02-20. If investing 50.000 SEK in each company i.e. a total investment of 2.2 million SEK, the total yield when using the regression model during the year 2012-02-22 to 2013-02-20 would have been 259.639 SEK (11,80 %) compared to 184.171 SEK (8,37 %) if the shares were never to be traded with during the same period of time. Of the 44 companies analysed, 31 (70,45 %) of them were profitable when using the regression model during the year compared to 30 (68,18 %) if the shares were never to be sold during the same period of time. The difference in yield in percentage between the model and keeping the shares for the year was 40,98 %.
APA, Harvard, Vancouver, ISO, and other styles
44

Aldahmani, Saeed. "High-dimensional linear regression problems via graphical models." Thesis, University of Essex, 2017. http://repository.essex.ac.uk/19207/.

Full text
Abstract:
This thesis introduces a new method for solving the linear regression problem where the number of observations n is smaller than the number of variables (predictors) v. In contrast to existing methods such as ridge regression, Lasso and Lars, the proposed method uses the idea of graphical models and provides unbiased parameter estimates under certain conditions. In addition, the new method provides a detailed graphical conditional correlation structure for the predictors, whereby the real causal relationship between predictors can be identified. Furthermore, the proposed method is extended to form a hybridisation with the idea of ridge regression to improve efficiency in terms of computation and model selection. In the extended method, less important variables are regularised by a ridge type penalty, and a search for models in the space is made for important covariates. This significantly reduces computational cost while giving unbiased estimates for the important variables as well as increasing the efficiency of model selection. Moreover, the extended method is used in dealing with the issue of portfolio selection within the Markowitz mean-variance framework, with n < v. Various simulations and real data analyses were conducted for comparison between the two novel methods and the aforementioned existing methods. Our experiments indicate that the new methods outperform all the other methods when n
APA, Harvard, Vancouver, ISO, and other styles
45

Saleem, Aban, and Jacob Blomgren. "Modelling Pupils’ Grades with Multiple Linear Regression Model." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275672.

Full text
Abstract:
This thesis was based on the subjects of mathematical statistics and industrial economics and management in order to analyze the grades of pupils in the final year of elementary school. The purpose was to find out what variables had a statistically significant impact on pupils’ final grades so that municipalities and schools could better understand what variables are important when trying to improve the average school results. A multiple regression model was used on data, obtained from the database of Skolverket, in order to examine what variables were statistically important. The final regression model acquired through a model reduction procedure showed that mostly structural covariates such as the academic background of pupils, percentage of female pupils and the percentage with Swedish background had a statistically significant impact on the academic performances of the students. R2 adjusted of the final model was 0.5289. The multiple regression model was discussed by referencing to previous research. In addition, the strategic management performance framework known as Balanced Scorecard which was introduced by Robert S. Kaplan and David P. Norton was used to discuss relevant key performance indicators to achieve the strategic objectives of schools.
Detta examensarbete, inom ämnet för matematisk statistik och industriell ekonomi, genomfördes med syftet att analysera avgångsbetygen för år 9 i den svenska skolan. Syftet var att förstå vilka variabler som hade en statistisk signifikant påverkan på elevers avgångsbetyg, så kommuner kan förstå vilka variabler som är viktiga för att förbättra de genomsnittliga skolresultaten. En regressionsanalys utfördes, på data från Skolverket, för att se vilka variabler som var statistiskt signifikanta. Den slutgiltiga regressionsmodellen, erhållen genom iterativ reducering av variabler, visade att främst strukturella kovariat, som akademisk bakgrund hos elever, andel kvinnliga studenter och andel studenter med svensk bakgrund hade en signifikant betydelse på studenters akademiska resultat. Justerad R2 var 0.5289 för den slutgiltiga modellen. I diskussionen utvärderades modellen utifrån tidigare forskning. Vidare användes teorin om balanserat styrkort, utvecklat av Robert S. Kaplan och David P. Norton, för att diskutera relevanta nyckeltal för att uppnå strategiska mål för skolan.
APA, Harvard, Vancouver, ISO, and other styles
46

Brodbeck, William Joseph. "The Effect of Readability on Simple Linear Regression." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1591867761661656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bunea, Florentina. "A model selection approach to partially linear regression /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/8971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mahmood, Arshad. "Rainfall prediction in Australia : Clusterwise linear regression approach." Thesis, Federation University Australia, 2017. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/159251.

Full text
Abstract:
Accurate rainfall prediction is a challenging task because of the complex physical processes involved. This complexity is compounded in Australia as the climate can be highly variable. Accurate rainfall prediction is immensely benecial for making informed policy, planning and management decisions, and can assist with the most sustainable operation of water resource systems. Short-term prediction of rainfall is provided by meteorological services; however, the intermediate to long-term prediction of rainfall remains challenging and contains much uncertainty. Many prediction approaches have been proposed in the literature, including statistical and computational intelligence approaches. However, finding a method to model the complex physical process of rainfall, especially in Australia where the climate is highly variable, is still a major challenge. The aims of this study are to: (a) develop an optimization based clusterwise linear regression method, (b) develop new prediction methods based on clusterwise linear regression, (c) assess the influence of geographic regions on the performance of prediction models in predicting monthly and weekly rainfall in Australia, (d) determine the combined influence of meteorological variables on rainfall prediction in Australia, and (e) carry out a comparative analysis of new and existing prediction techniques using Australian rainfall data. In this study, rainfall data with five input meteorological variables from 24 geographically diverse weather stations in Australia, over the period January 1970 to December 2014, have been taken from the Scientific Information for Land Owners (SILO). We also consider the climate zones when selecting weather stations, because Australia experiences a variety of climates due to its size. The data was divided into training and testing periods for evaluation purposes. In this study, optimization based clusterwise linear regression is modified and new prediction methods are developed for rainfall prediction. The proposed method is applied to predict monthly and weekly rainfall. The prediction performance of the clusterwise linear regression method was evaluated by comparing observed and predicted rainfall values using the performance measures: root mean squared error, the mean absolute error, the mean absolute scaled error and the Nash-Sutclie coefficient of efficiency. The proposed method is also compared with the clusterwise linear regression based on the maximum likelihood estimation, linear support vector machines for regression, support vector machines for regression with radial basis kernel function, multiple linear regression, artificial neural networks with and without hidden layer and k-nearest neighbours methods using computational results. Initially, to determine the appropriate input variables to be used in the investigation, we assessed all combinations of meteorological variables. The results confirm that single meteorological variables alone are unable to predict rainfall accurately. The prediction performance of all selected models was improved by adding the input variables in most locations. To assess the influence of geographic regions on the performance of prediction models and to compare the prediction performance of models, we trained models with the best combination of input variables and predicted monthly and weekly rainfall over the test periods. The results of this analysis confirm that the prediction performance of all selected models varied considerably with geographic regions for both weekly and monthly rainfall predictions. It is found that models have the lowest prediction error in the desert climate zone and highest in subtropical and tropical zones. The results also demonstrate that the proposed algorithm is capable of finding the patterns and trends of the observations for monthly and weekly rainfall predictions in all geographic regions. In desert, tropical and subtropical climate zones, the proposed method outperform other methods in most locations for both monthly and weekly rainfall predictions. In temperate and grassland zones the prediction performance of the proposed model is better in some locations while in the remaining locations it is slightly lower than the other models.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
49

Sardy, Sylvain. "A Comparison of Two Linear Nonparametric Regression Techniques." DigitalCommons@USU, 1992. https://digitalcommons.usu.edu/etd/7123.

Full text
Abstract:
This thesis presented a useful tool in regression. Nonparametric linear regression techniques were described in the general context of regression. A comparison of two of these techniques, kernel regression and iterative regression, showed various aspects of nonparametric linear regressors.
APA, Harvard, Vancouver, ISO, and other styles
50

Möls, Märt. "Linear mixed models with equivalent predictors /." Online version, 2004. http://dspace.utlib.ee/dspace/bitstream/10062/1339/5/Mols.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!