Academic literature on the topic 'Regularisierung; Tichonov-Regularisierung'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regularisierung; Tichonov-Regularisierung.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Regularisierung; Tichonov-Regularisierung"

1

Bonesky, Thomas. "Regularization of inverse problems and inexact operator evaluations." Berlin Logos-Verl, 2009. http://d-nb.info/997726814/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Trede, Dennis. "Inverse problems with sparsity constraints convergence rates and exact recovery." Berlin Logos-Verl, 2010. http://d-nb.info/1002361532/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Freitag, Melina. "On the Influence of Multiplication Operators on the Ill-posedness of Inverse Problems." Master's thesis, Universitätsbibliothek Chemnitz, 2004. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401504.

Full text
Abstract:
In this thesis we deal with the degree of ill-posedness of linear operator equations in Hilbert spaces, where the operator may be decomposed into a compact linear integral operator with a well-known decay rate of singular values and a multiplication operator. This case occurs for example for nonlinear operator equations, where the local degree of ill-posedness is investigated via the Frechet derivative. If the multiplier function has got zeroes, the determination of the local degree of ill-posedness is not trivial. We are going to investigate this situation, provide analytical tools as well as
APA, Harvard, Vancouver, ISO, and other styles
4

Hofmann, Bernd, and Peter Mathé. "Parameter choice in Banach space regularization under variational inequalities." Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-86241.

Full text
Abstract:
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle.
APA, Harvard, Vancouver, ISO, and other styles
5

Flemming, Jens. "Generalized Tikhonov regularization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-78152.

Full text
Abstract:
The dissertation suggests a generalized version of Tikhonov regularization and analyzes its properties. The focus is on convergence rates theory and an extensive example for regularization with Poisson distributed data is given.
APA, Harvard, Vancouver, ISO, and other styles
6

Shao, Yuanyuan. "Beiträge zur Regularisierung inverser Probleme und zur bedingten Stabilität bei partiellen Differentialgleichungen." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-102801.

Full text
Abstract:
Wir betrachten die lineare inverse Probleme mit gestörter rechter Seite und gestörtem Operator in Hilberträumen, die inkorrekt sind. Um die Auswirkung der Inkorrektheit zu verringen, müssen spezielle Lösungsmethode angewendet werden, hier nutzen wir die sogenannte Tikhonov Regularisierungsmethode. Die Regularisierungsparameter wählen wir aus das verallgemeinerte Defektprinzip. Eine typische numerische Methode zur Lösen der nichtlinearen äquivalenten Defektgleichung ist Newtonverfahren. Wir schreiben einen Algorithmus, die global und monoton konvergent für beliebige Startwerte garantiert. Um
APA, Harvard, Vancouver, ISO, and other styles
7

Rückert, Nadja. "Studies on two specific inverse problems from imaging and finance." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587.

Full text
Abstract:
This thesis deals with regularization parameter selection methods in the context of Tikhonov-type regularization with Poisson distributed data, in particular the reconstruction of images, as well as with the identification of the volatility surface from observed option prices. In Part I we examine the choice of the regularization parameter when reconstructing an image, which is disturbed by Poisson noise, with Tikhonov-type regularization. This type of regularization is a generalization of the classical Tikhonov regularization in the Banach space setting and often called variational regulariza
APA, Harvard, Vancouver, ISO, and other styles
8

Shao, Yuanyuan. "Beiträge zur Regularisierung inverser Probleme und zur bedingten Stabilität bei partiellen Differentialgleichungen." Doctoral thesis, 2012. https://monarch.qucosa.de/id/qucosa%3A19827.

Full text
Abstract:
Wir betrachten die lineare inverse Probleme mit gestörter rechter Seite und gestörtem Operator in Hilberträumen, die inkorrekt sind. Um die Auswirkung der Inkorrektheit zu verringen, müssen spezielle Lösungsmethode angewendet werden, hier nutzen wir die sogenannte Tikhonov Regularisierungsmethode. Die Regularisierungsparameter wählen wir aus das verallgemeinerte Defektprinzip. Eine typische numerische Methode zur Lösen der nichtlinearen äquivalenten Defektgleichung ist Newtonverfahren. Wir schreiben einen Algorithmus, die global und monoton konvergent für beliebige Startwerte garantiert. Um
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!