Academic literature on the topic 'Regularity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Regularity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Regularity"
Arutyunov, Aram V., Evgeniy R. Avakov, and Alexey F. Izmailov. "Directional Regularity and Metric Regularity." SIAM Journal on Optimization 18, no. 3 (January 2007): 810–33. http://dx.doi.org/10.1137/060651616.
Full textCibulka, R., J. Preininger, and T. Roubal. "On uniform regularity and strong regularity." Optimization 68, no. 2-3 (November 19, 2018): 549–77. http://dx.doi.org/10.1080/02331934.2018.1547383.
Full textRaina, Sehar Shakeel, and A. K. Das. "Some New Variants of Relative Regularity via Regularly Closed Sets." Journal of Mathematics 2021 (May 24, 2021): 1–6. http://dx.doi.org/10.1155/2021/7726577.
Full textKim, Nam Kyun, and Yang Lee. "On Strong π-Regularity and π-Regularity." Communications in Algebra 39, no. 11 (November 2011): 4470–85. http://dx.doi.org/10.1080/00927872.2010.524184.
Full textTabuada, Gonçalo. "$E_n$-regularity implies $E_{n-1}$-regularity." Documenta Mathematica 19 (2014): 121–39. http://dx.doi.org/10.4171/dm/442.
Full textBosch, Carlos, and Jan Kučera. "On regularity of inductive limits." Czechoslovak Mathematical Journal 45, no. 1 (1995): 171–73. http://dx.doi.org/10.21136/cmj.1995.128504.
Full textŠlapal, Josef. "On strong regularity of relations." Mathematica Bohemica 119, no. 2 (1994): 151–55. http://dx.doi.org/10.21136/mb.1994.126076.
Full textJean-Christophe YOCCOZ and Pierre BERGER. "Strong regularity." Astérisque 410 (2019): 1–180. http://dx.doi.org/10.24033/ast.1076.
Full textPerlak, Danuta, Laurie Beth Feldman, and Gonia Jarema. "Defining regularity." Mental Lexicon 3, no. 2 (September 17, 2008): 239–58. http://dx.doi.org/10.1075/ml.3.2.04per.
Full textTang, Weng Hong. "REGULARITY REFORMULATED." Episteme 9, no. 4 (December 2012): 329–43. http://dx.doi.org/10.1017/epi.2012.23.
Full textDissertations / Theses on the topic "Regularity"
Imre, Voros. "Functional calculi and maximal regularity." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510255.
Full textShawe-Taylor, John Stewart. "Regularity and transitivity in graphs." Thesis, Royal Holloway, University of London, 1985. http://repository.royalholloway.ac.uk/items/52cb738e-0daa-426a-afe1-b108678cccc4/1/.
Full textFang, Yangqin. "Minimal sets, existence and regularity." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112191/document.
Full textThis thesis focuses on the existence and regularity of minimal sets. First we show, in Chapter 3, that there exists (at least) a minimizerfor Reifenberg Plateau problems. That is, Given a compact set B⊂R^n, and a subgroup L of the Čech homology group H_(d-1) (B;G) of dimension (d-1)over an abelian group G, we will show that there exists a compact set E⊃B such that L is contained in the kernel of the homomorphism H_(d-1) (B;G)→H_(d-1) (E;G) induced by the natural inclusion map B→E, and such that the Hausdorff measure H^d (E∖B) is minimal under these constraints. Next we will show, in Chapter 4, that if E is a sliding almost minimal set of dimension 2, in a smooth domain Σ that looks locally like a half space, and with sliding boundary , and if in addition E⊃∂Σ, then, near every point of the boundary ∂Σ, E is locally biHölder equivalent to a sliding minimal cone (in a half space Ω, and with sliding boundary ∂Ω). In addition the only possible sliding minimal cones in this case are ∂Ω or the union of ∂Ω with a cone of type P_+ or Y_+
Döller, Christian. "The neural bases of regularity learning /." Saarbrücken, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974108200.
Full textPons, Solé Marc. "Layout regularity for design and manufacturability." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/96983.
Full textOuhnana, Marouane. "Visual after-effect of perceived regularity." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110475.
Full textObjectif: Les motifs réguliers répétitifs sont des caractéristiques de premier plan dans la scène visuelle. Cette communication a comme objectif de découvrir si la régularité est une caractéristique adaptable du système visuel produisant un effet consécutif et si cet effet-consécutif est lié à un processus de premier- ou de second-ordre. Méthode: Les stimuli étaient constitués en un arrangement 7 par 7 éléments sur une grille. La position de chaque élément a été giguer au hasard à partir de sa position d'origine avec une valeur qui détermine son degré d'irrégularité. Les éléments qui constituent chaque grille pouvaient être des blobs de Gaussiennes (GB), des différence de Gaussiennes (DOG) ou de motif binaire aléatoire (RBP). Les participants ont été adaptés pour 60 secondes à une paire de motifs placée de part et d'autre d'un point de fixation ou chaque motif avait un degré différent de régularité. Les participants devaient ajuster le degré relatif de régularité de deux motifs présentés après. La taille de l'effet-consécutif est obtenue par la différence de régularité au point subjectif d'égalité soustrait à la régularité mesurée entre les deux motifs test ou par le logarithme du ratio de la différence de régularité entre les deux motifs test au point subjectif d'égalité. Résultats: Les point-subjectif d'égalité mesurée ont montrées que la régularité est une caractéristique adaptable qui produit un effet-consécutif unidirectionnel, plus précisément que les motifs sont perçus comme plus irréguliers après adaptation. On a observe un transfert à partir des stimuli d'élément GB a des motifs de test RBP et DOG et un transfert a partir des stimuli DOG et RBP vers des test de GB. Conclusion: La régularité est un élément du système visuel adaptable, produisant effet-consécutif unidirectionnel nouveau que appelé l'effet consécutif de la régularité. Je propose les canaux de fréquence-spatial de second-ordre comme mécanisme candidat au traitement de la régularité.
Zhao, Yufei. "Sparse regularity and relative Szemerédi theorems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99060.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 171-179).
We extend various fundamental combinatorial theorems and techniques from the dense setting to the sparse setting. First, we consider Szemerédi regularity lemma, a fundamental tool in extremal combinatorics. The regularity method, in its original form, is effective only for dense graphs. It has been a long standing problem to extend the regularity method to sparse graphs. We solve this problem by proving a so-called "counting lemma," thereby allowing us to apply the regularity method to relatively dense subgraphs of sparse pseudorandom graphs. Next, by extending these ideas to hypergraphs, we obtain a simplification and extension of the key technical ingredient in the proof of the celebrated Green-Tao theorem, which states that there are arbitrarily long arithmetic progressions in the primes. The key step, known as a relative Szemerédi theorem, says that any positive proportion subset of a pseudorandom set of integers contains long arithmetic progressions. We give a simple proof of a strengthening of the relative Szemerédi theorem, showing that a much weaker pseudorandomness condition is sufficient. Finally, we give a short simple proof of a multidimensional Szemerédi theorem in the primes, which states that any positive proportion subset of Pd (where P denotes the primes) contains constellations of any given shape. This has been conjectured by Tao and recently proved by Cook, Magyar, and Titichetrakun and independently by Tao and Ziegler.
by Yufei Zhao.
Ph. D.
Onwunta, Akwum A. "On the regularity of refinable functions." Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/2881.
Full textThis work studies the regularity (or smoothness) of continuous finitely supported refinable functions which are mainly encountered in multiresolution analysis, iterative interpolation processes, signal analysis, etc. Here, we present various kinds of sufficient conditions on a given mask to guarantee the regularity class of the corresponding refinable function. First, we introduce and analyze the cardinal B-splines Nm, m ∈ N. In particular, we show that these functions are refinable and belong to the smoothness class Cm−2(R). As a generalization of the cardinal B-splines, we proceed to discuss refinable functions with positive mask coefficients. A standard result on the existence of a refinable function in the case of positive masks is quoted. Following [13], we extend the regularity result in [25], and we provide an example which illustrates the fact that the associated symbol to a given positive mask need not be a Hurwitz polynomial for its corresponding refinable function to be in a specified smoothness class. Furthermore, we apply our regularity result to an integral equation. An important tool for our work is Fourier analysis, from which we state some standard results and give the proof of a non-standard result. Next, we study the H¨older regularity of refinable functions, whose associated mask coefficients are not necessarily positive, by estimating the rate of decay of their Fourier transforms. After showing the embedding of certain Sobolev spaces into a H¨older regularity space, we proceed to discuss sufficient conditions for a given refinable function to be in such a H¨older space. We specifically express the minimum H¨older regularity of refinable functions as a function of the spectral radius of an associated transfer operator acting on a finite dimensional space of trigonometric polynomials. We apply our Fourier-based regularity results to the Daubechies and Dubuc-Deslauriers refinable functions, as well as to a one-parameter family of refinable functions, and then compare our regularity estimates with those obtained by means of a subdivision-based result from [28]. Moreover, we provide graphical examples to illustrate the theory developed.
Barber, Ben. "Partition regularity and other combinatorial problems." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648544.
Full textAleksanyan, Gohar. "Regularity results in free boundary problems." Doctoral thesis, KTH, Matematik (Avd.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195178.
Full textQC 20161103
Books on the topic "Regularity"
Beck, Lisa. Elliptic Regularity Theory. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27485-0.
Full textDierkes, Ulrich, Stefan Hildebrandt, and Anthony J. Tromba. Regularity of Minimal Surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11700-8.
Full textTraugott, Elizabeth Closs. Regularity in semantic change. Cambridge: Cambridge University Press, 2002.
Find full textTraugott, Elizabeth Closs. Regularity in semantic change. Cambridge: Cambridge University Press, 2002.
Find full textPadula, Mariarosaria, and Luisa Zanghirati, eds. Hyperbolic Problems and Regularity Questions. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-7451-8.
Full textMingione, Giuseppe, ed. Topics in Modern Regularity Theory. Pisa: Edizioni della Normale, 2012. http://dx.doi.org/10.1007/978-88-7642-427-4.
Full textBounkhel, Messaoud. Regularity Concepts in Nonsmooth Analysis. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1019-5.
Full textMingione, Giuseppe. Topics in Modern Regularity Theory. Pisa: Edizioni della Normale, 2012.
Find full textAllen, John A. Knowledge and regularity in planning. Moffett Field, Calif: NASA, Ames Research Center, Artificial Intelligence Research Branch, 1992.
Find full textBook chapters on the topic "Regularity"
Simonnet, Michel. "Regularity." In Measures and Probabilities, 166–71. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-4012-9_8.
Full textHackbusch, Wolfgang. "Regularity." In Elliptic Differential Equations, 263–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54961-2_9.
Full textHackbusch, Wolfgang. "Regularity." In Elliptic Differential Equations, 208–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-11490-8_9.
Full textShapira, Yair. "Mesh Regularity." In Linear Algebra and Group Theory for Physicists and Engineers, 347–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17856-7_11.
Full textCegrell, Urban. "Outer Regularity." In Capacities in Complex Analysis, 11–21. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-663-14203-4_3.
Full textde Luca, Aldo, and Stefano Varricchio. "Regularity Conditions." In Finiteness and Regularity in Semigroups and Formal Languages, 179–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59849-4_5.
Full textKechris, Alexander S. "Regularity Properties." In Graduate Texts in Mathematics, 226–33. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4190-4_29.
Full textAmann, Herbert. "Maximal Regularity." In Linear and Quasilinear Parabolic Problems, 87–191. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9221-6_4.
Full textPears, David. "Linguistic Regularity." In Interactive Wittgenstein, 171–81. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-1-4020-9909-0_6.
Full textLindqvist, Peter. "Regularity Theory." In SpringerBriefs in Mathematics, 17–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14501-9_3.
Full textConference papers on the topic "Regularity"
Wang, Yingzi, Nicholas Jing Yuan, Defu Lian, Linli Xu, Xing Xie, Enhong Chen, and Yong Rui. "Regularity and Conformity." In KDD '15: The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2783258.2783350.
Full textGeiser, Eveline, and Stefanie Shattuck-Hufnagel. "Temporal regularity in speech perception - is regularity beneficial or deleterious?" In 162nd Meeting Acoustical Society of America. Acoustical Society of America, 2012. http://dx.doi.org/10.1121/1.4707937.
Full textChen, Wenjuan, Hongchuan Yu, Minyong Shi, and Qingjie Sun. "Regularity-Based Caricature Synthesis." In 2009 International Conference on Management and Service Science (MASS). IEEE, 2009. http://dx.doi.org/10.1109/icmss.2009.5305380.
Full textHietarinta, Jarmo. "Regularity of Difference Equations." In Proceedings of the 9th International Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701572_0017.
Full textVardi, Moshe Y. "A call to regularity." In the Paris C. Kanellakis memorial workshop. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/778348.778352.
Full textOLVER, PETER J., and JUHA POHJANPELTO. "REGULARITY OF PSEUDOGROUP ORBITS." In Proceedings of the International Conference on SPT 2004. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702142_0030.
Full textDamkat, Chris, and Paul M. Hofman. "Efficient local texture regularity estimation." In ACM SIGGRAPH 2008 posters. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1400885.1400956.
Full textKim, A. A., V. M. Alexeenko, S. S. Kondratiev, and V. A. Sinebrukhov. "Statistical Regularity in LTD Technology." In 2018 20th International Symposium on High-Current Electronics (ISHCE). IEEE, 2018. http://dx.doi.org/10.1109/ishce.2018.8521228.
Full textVenkataraman, Vinay, Ioannis Vlachos, and Pavan Turaga. "Dynamical Regularity for Action Analysis." In British Machine Vision Conference 2015. British Machine Vision Association, 2015. http://dx.doi.org/10.5244/c.29.67.
Full textSchweikardt, Nicole, and Luc Segoufin. "Addition-Invariant FO and Regularity." In 2010 25th Annual IEEE Symposium on Logic in Computer Science (LICS 2010). IEEE, 2010. http://dx.doi.org/10.1109/lics.2010.16.
Full textReports on the topic "Regularity"
Zarnowitz, Victor. The Regularity of Business Cycles. Cambridge, MA: National Bureau of Economic Research, September 1987. http://dx.doi.org/10.3386/w2381.
Full textBarbara Lee Keyfitz. Multidimensional Conservation Laws and Low Regularity Solutions. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/928353.
Full textGuo, Benqi, and Ivo Babuska. Regularity of the Solutions for Elliptic Problems on Nonsmooth Domains in R3. Part 2: Regularity in Neighborhoods of Edges. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada301745.
Full textGuo, B. Q., and I. Babuska. On the Regularity of Elasticity Problems with Piecewise Analytic Data. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada260346.
Full textSymes, Wiliam W. Trace Regularity for a Second Order Hyperbolic Equation With Nonsmooth Coefficients. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada452695.
Full textManzini, Gianmarco. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1046508.
Full textConstantin, Petre. Note on Loss of Regularity for Solutions of the 3-D Incompressible Euler and Related Equations. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada163632.
Full textGuo, Benqi, and I. Babuska. Regularity of the Solutions for Elliptic Problems on Nonsmooth Domains in R3. Part 1. Countably Normed Spaces on Polyhedral Domains. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada301094.
Full textDe Tolentino, Marianne, and Sara Hermann. Inside and Out: Recent Trends in the Arts of the Dominican Republic. Inter-American Development Bank, November 2008. http://dx.doi.org/10.18235/0006413.
Full textFrydman, Roman, and Halina Frydman. Why Diagnostic Expectations Cannot Replace REH. Institute for New Economic Thinking Working Paper Series, January 2022. http://dx.doi.org/10.36687/inetwp175.
Full text