Academic literature on the topic 'Reinforced concrete arch bridges'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reinforced concrete arch bridges.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reinforced concrete arch bridges"
Xu, Jia Lin, and Yong Liang Zhang. "Test and Analysis of Dynamic Characteristics of Reinforced Concrete Arch Bridge." Applied Mechanics and Materials 599-601 (August 2014): 1081–84. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.1081.
Full textChen, Xu Yong, and Xiao Xie. "Research on Masonry Arch-Bridges Reinforcement and Reconstruction Methods." Applied Mechanics and Materials 501-504 (January 2014): 1152–56. http://dx.doi.org/10.4028/www.scientific.net/amm.501-504.1152.
Full textHu, Da Lin, Tian Qi Qu, Hong Bin Wang, and Long Gang Chen. "Seismic Analysis of Reinforced Concrete Rib Arch Bridge." Applied Mechanics and Materials 256-259 (December 2012): 1496–502. http://dx.doi.org/10.4028/www.scientific.net/amm.256-259.1496.
Full textVighe, Ram. "A Unique Design of R.C.C. Bridge on Godavari River at Sironcha Dist. Gadchiroli -India." IRA-International Journal of Technology & Engineering (ISSN 2455-4480) 7, no. 2 (S) (July 10, 2017): 148. http://dx.doi.org/10.21013/jte.icsesd201715.
Full textAu, F. T. K., J. J. Wang, and G. D. Liu. "Construction Control of Reinforced Concrete Arch Bridges." Journal of Bridge Engineering 8, no. 1 (January 2003): 39–45. http://dx.doi.org/10.1061/(asce)1084-0702(2003)8:1(39).
Full textWang, Zhongyu. "Analysis on Construction Technology of Reinforced Concrete Tied Arch Bridge." Journal of World Architecture 5, no. 6 (November 29, 2021): 67–71. http://dx.doi.org/10.26689/jwa.v5i6.2807.
Full textYu, Mengsheng, Nianchun Deng, Qifeng Chen, and Tianzhi Hao. "Refined Finite Element Analysis of Crack Causes in SRC Arch Rib Bridges considering Multiple Factors." Advances in Civil Engineering 2018 (November 15, 2018): 1–9. http://dx.doi.org/10.1155/2018/2690951.
Full textLi, Xiao Ke, Li Xin Liu, Shi Ming Liu, and Shun Bo Zhao. "Static Analysis of Reinforced Concrete Arch-Deck Bridge with Archaized Connective Corridors." Applied Mechanics and Materials 238 (November 2012): 738–42. http://dx.doi.org/10.4028/www.scientific.net/amm.238.738.
Full textMohseni, Iman, Hamidreza Lashkariani, Junsuk Kang, and Thomas Kang. "Dynamic Response Evaluation of Long-Span Reinforced Arch Bridges Subjected to Near- and Far-Field Ground Motions." Applied Sciences 8, no. 8 (July 27, 2018): 1243. http://dx.doi.org/10.3390/app8081243.
Full textMurdiansyah, Lukman, Robby Permata, and Donald Essen. "Modal pushover analysis on reinforced concrete arch bridge to estimate seismic responses." E3S Web of Conferences 156 (2020): 03005. http://dx.doi.org/10.1051/e3sconf/202015603005.
Full textDissertations / Theses on the topic "Reinforced concrete arch bridges"
Wang, Xin Jun. "Failure criterion for masonry arch bridges." Thesis, University of Dundee, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318150.
Full textBreña, Sergio F. "Strengthening reinforced concrete bridges using carbon fiber reinforced polymer composites /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004223.
Full textBOY, SERPIL. "RETROFIT OF EXISTING REINFORCED CONCRETE BRIDGES WITH FIBER REINFORCED POLYMER COMPOSITES." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1078508332.
Full textCoulombe, Chantal. "Seismic retrofit of a reinforced concrete bridge bent." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99754.
Full textThe retrofit was designed in accordance with the CHBDC provisions. The cap beam and the beam-column joint regions were strengthened with a reinforced concrete sleeve containing additional transverse and longitudinal bars so that plastic hinging would form in the columns. This retrofit represents minimum intervention to improve the response of the frame. The retrofit frame was then subjected to both gravity loads and reversed cyclic loading to simulate seismic loading on the structure. The predictions of the response of the retrofitted frame provided reasonable estimates of first yielding in the column and the general yielding of the frame. Although the columns would not meet the requirements for ductile columns, they had sufficient shear strength and did exhibit a displacement ductility of about 2.3.
Eriksson, Viktor. "Design of Ultra High Performance Fibre Reinforced Concrete Bridges : A Comparative Study to Conventional Concrete Bridges." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75183.
Full textAnvändningen av ultrahögpresterande fiberbetong (UHPFRC) i anläggningsindustrin började på 1990-talet och har sedan dess använts till broar i hela världen. De mekaniska egenskaperna och den täta UHPFRC matrisen resulterar i lägre materialanvändning och bättre beständighet i jämförelse med konventionell betong, men användningen av UHPFRC har inte slagit igenom i den svenska industrin. De största förklaringarna till varför UHPFRC sällan används i Sverige är för att det inte har funnits kunskap och standarder. UHPFRC har också en hög cementhalt och cementindustrin bidrar med höga koldioxid (CO2) utsläpp till de totala CO2 utsläppen i världen. Den här masteruppsatsen skrevs för att undersöka om en UHPFRC bro är ett möjligt alternativ till en konventionell betongbro ur dimensionering- och materialanvändningssynpunkt med avseende på reduktion av CO2 utsläpp. Projektets övergripande mål är att öka kunskapen om materialet, med avseende på tillverkningen, de mekaniska egenskaperna och beteendet av UHPFRC, och dimensionering, med avseende på skillnaden i dimensionering mellan UHPFRC broar och konventionella betongbroar. I materialdelen utvecklades ett UHPFRC recept med korta raka stålfibrer. Provkroppar testades för att se hur olika fiberinnehåll påverkade de mekaniska egenskaperna och vilket fiberinnehåll som var mest gynnsamt. Tre olika fiberinnehåll testades: 1.5%, 2.0% och 2.5% av total volym av blandningen. De mekaniska egenskaperna som testades och utvärderades var bearbetbarheten, böjhållfasthet, draghållfasthet, fraktur energi, tryckhållfasthet och elasticitetsmodul. Beständigheten av UHPFRC testades aldrig men i vilken omfattning fibrerna påverkar beständigheten undersöktes i den litteraturstudie som skrevs inför testerna och tillverkningen av UHPFRC. Det konstaterades att en ökning i fiberinnehåll resulterade i en ökning av de mekaniska egenskaperna, förutom för bearbetbarheten och i vissa fall när ett fiberinnehåll av 2.5% användes. Ökningen av de mekaniska egenskaperna berodde på det ökande sprickmotståndet och bindningsstyrka mellan fibrerna och matrisen. Minskningen av de mekaniska egenskaperna, till exempel den karakteristiska drag- och tryckhållfastheten, när ett fiberinnehåll på 2.5% i cylindrar användes kan bero på ojämn fiberfördelning och större mängd luft i provkropparna vilket resulterar i lägre hållfasthet. Det konstaterades att ett fiberinnehåll på 2.0% var det mest gynnsamma. Det kunde inte konstateras i vilken omfattning fibrerna påverkar beständigheten men det kunde konstateras att nedbrytningen av fibrerna tar lång tid. I dimensioneringsdelen utformades tre slakarmerade balkbroöverbyggnader, i två fall var överbyggnaden med UHPFRC (olika tjocklekar) och i ett fall var den med konventionell betong. Fram till 2017 fanns det bara tekniska riktlinjer och rekommendationer för UHPFRC men 2017 publicerades de första godkända standarderna i världen. De franska nationella standarderna täcker material (NF P18-470, 2016) och dimensionering (NF P18-710, 2016) och användes vid dimensioneringen. Materialanvändningen med avseende på mängd armerad UHPFRC/betong och slakarmering och mängd CO2 utsläpp från produktionen av cement och stål (fibrer och slakarmering) som användes till broarna i mittenspannet och vid stöden undersöktes. Även dimensioneringsprocessen utvärderades. Det konstaterades att UHPFRC bron med optimerad tjocklek var 47% lättare än betongbron men mängden CO2 utsläpp var fortfarande högre (till exempel 23% högre från stödet). Det konstaterades att om det ska vara möjligt att fastställa att en UHPFRC bro är ett möjligt alternativ till en konventionell betongbro, med avseende på reduktion av CO2 utsläpp, måste CO2 utsläppen ses från ett bredare perspektiv än från bara produktion av cement och stål, till exempel mindre transporter och längre livslängd.
Chera, Indumathi. "Crack detection technique for reinforced concrete bridge decks." Morgantown, W. Va. : [West Virginia University Libraries], 2003. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3255.
Full textTitle from document title page. Document formatted into pages; contains xii, 130 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 105-110).
Tehrani, Payam. "Seismic behaviour and analysis of continuous reinforced concrete bridges." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110577.
Full textCette étude se concentre sur l'analyse sismique et sur le comportement des ponts à 4 portées continues. Différentes méthodes d'analyse, telles que la méthode multimode linéaire, la méthode temporelle non linéaire et la méthode d'analyse dynamique incrémentale (ADI), sont utilisées pour l'évaluation sismique de ponts.Cette thèse se divise en deux parties principales. Dans la première partie, le comportement sismique des ponts composés de colonnes de différentes hauteurs (c'est-à-dire, irrégularité causée par différentes raideurs de colonne) est étudié. Les évaluations sismiques sont réalisées dans les directions transversal et longitudinal des ponts afin de considérer les aspects importants qui influencent le comportement sismique. Des études paramétriques furent réalisées pour un certain nombre de ponts (c'est-à-dire 648 ponts dans la direction transversale et plus de 2500 cas dans la direction longitudinale). Afin d'effectuer un grand nombre de dimensionnements et d'analyses, un programme informatique fut développé pour dimensionner des ponts, effectuer la modélisation et extraire et évaluer les résultats d'analyse. Les effets de différentes hauteurs de colonne, de différents diamètres de colonne, de différentes masses et raideurs de la superstructure, et de différentes conditions de butée sur la réponse sismique des ponts furent étudiés en utilisant des analyses élastiques et inélastiques. Les résultats des analyses élastiques et inélastiques furent comparés afin de démontrer les limitations des analyses linéaires pour le dimensionnement et l'évaluation sismique des ponts irréguliers. Les effets sur la réponse longitudinale des ponts de modèles de butée non linéaires considérant différentes résistances et raideurs (incluant différentes longueurs d'espace de joint et différents nombres de piles) furent également étudiés. Les demandes sismiques en ductilité et la concentration des demandes en ductilité furent évaluées et la demande maximale des ratios en capacité fut prédite pour un large éventail de ponts étudiés. L'utilisation de différents indices de régularité pour prédire la réponse sismique des ponts fut aussi examinée.Dans la seconde partie de la thèse, l'utilisation de l'ADI pour l'évaluation sismique des ponts est étudiée. L'influence de différentes méthodes de sélection d'enregistrement (incluant les méthodes basées sur l'aléa sismique, le spectre moyen conditionnel et l'epsilon) sur les prédictions obtenues avec l'ADI est examinée. De plus, l'effet de considérer différents types de tremblement de terre (incluant des tremblements de terre de surface et de subduction) sur les résultats de l'ADI est étudié. Présentement, seulement les tremblements de terre de surface sont utilisés pour l'évaluation de la performance sismique des structures. Les procédures actuelles ne sont pas nécessairement appropriées pour les régions soumises à des tremblements de terre de subduction. Trois ensembles d'enregistrement furent sélectionnés pour trois types de tremblement de terre (c'est-à-dire un total de 3 x 78 = 234 enregistrements). Un algorithme à calcul rapide fut développé pour l'ADI afin d'évaluer la capacité à l'effondrement de différentes configurations de pont soumises à différents types de tremblement de terre. Les résultats de l'ADI furent également prédits pour différents sous-ensembles d'enregistrements ayant des caractéristiques spécifiques (c'est-à-dire des valeurs d'epsilon positives, des faibles facteurs d'échelle, etc.). Les effets des spectres de réponse et des valeurs d'epsilon furent aussi considérés en utilisant les résultats de désagrégation du risque sismique.
Tantele, Elena A. "Optimisation of preventative maintenance strategies for reinforced concrete bridges." Thesis, University of Surrey, 2005. http://epubs.surrey.ac.uk/1058/.
Full textZhang, Qi. "Performance based design and evaluation of reinforced concrete bridges." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/55725.
Full textApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
Prowell, Brian D. "The evaluation of corrosion inhibitors for the repair and rehabilitation of reinforced concrete bridge components." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09292009-020105/.
Full textBooks on the topic "Reinforced concrete arch bridges"
Beal, David B. Load capacity of jack arch bridges. Albany, N.Y: New York State Dept. of Transportation, Engineering Research and Development Bureau, 1985.
Find full textPaul, Gauvreau, ed. Prestressed concrete bridges. Basel [Switzerland]: Birkhäuser Verlag, 1990.
Find full textAlves, Lesley. Monash bridges: Typology study : reinforced concrete bridges in Victoria, 1897-1917. 2nd ed. Melbourne: Monash University Faculties of Engineering and Arts, 1998.
Find full textItani, Rafik Y. Effects of retrofitting applications on reinforced concrete bridges. [Olympia, Wash.]: Washington State Dept. of Transportation, 2003.
Find full textBillington, David P. Robert Maillart and the art of reinforced concrete. New York, N.Y: Architectural History Foundation, 1990.
Find full textVirdi, K. S. Tests and analysis of variable cross section reinforced concrete colums for highway bridges. Crowthorne: Transport and Road Research Laboratory, 1986.
Find full textConcrete bridges: Design and construction. Harlow, Essex, England: Longman Scientific & Technical, 1992.
Find full textOzyildirim, H. Celik. High-performance fiber-reinforced concrete in a bridge deck. Charlottesville, Va: Virginia Transportation Research Council, 2005.
Find full textXiao, Yilin. Analyses of reinforced concrete cantilever bridge decks under the live truck loads. Halifax: Nova Scotia CAD/CAM Centre, Dalhousie University, 1997.
Find full textBook chapters on the topic "Reinforced concrete arch bridges"
Borlenghi, Paolo, Carmelo Gentile, and Giacomo Zonno. "Monitoring Reinforced Concrete Arch Bridges with Operational Modal Analysis." In Lecture Notes in Civil Engineering, 361–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91877-4_42.
Full textChesi, M., C. Acito, and C. Lazzarin & E. Richermo. "Historical reinforced concrete arch bridges: Dynamic identification and seismic vulnerability assessment." In Insights and Innovations in Structural Engineering, Mechanics and Computation, 1896–901. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-313.
Full textFernandez, Javier, Jose Vicente Rajadell, and Paula Rinaudo. "Formworks Travelers for Two Different Types of Reinforced Concrete Arch Bridges." In Structural Integrity, 762–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29227-0_83.
Full textZonno, Giacomo, and Carmelo Gentile. "Assessment of Similar Reinforced Concrete Arch Bridges by Operational Modal Analysis and Model Updating." In Lecture Notes in Civil Engineering, 853–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74258-4_54.
Full textXiang, Yiqiang, and Bishnu Gupt Gautam. "Reinforced Concrete Multi-Rib Arch Bridge Strengthened by Changing Structural System." In Advances and Challenges in Structural Engineering, 56–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01932-7_6.
Full textZanini, Mariano Angelo, Klajdi Toska, Gianantonio Feltrin, Lorenzo Hofer, and Carlo Pellegrino. "Seismic Reliability Assessment of an Open-Spandrel Reinforced Concrete Arch Bridge." In Lecture Notes in Civil Engineering, 749–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91877-4_85.
Full textHe, Zhi-Jun, Hong-Ju Han, Ji-Ping Guo, and Jian Yang. "Cantilever Casting Construction Technology of Reinforced Concrete Main Arch Ring of ShaTuo Bridge." In Structural Integrity, 732–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29227-0_80.
Full textHertz, Kristian Dahl, and Philip Halding. "Arch Bridges and Vaults." In Sustainable Light Concrete Structures, 119–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80500-5_7.
Full textCapellán, Guillermo, Emilio Merino, Miguel Sacristán, Javier Martínez, and Santiago Guerra. "Recent Developments in Concrete Arch Bridges." In High Tech Concrete: Where Technology and Engineering Meet, 2621–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_298.
Full textHaritos, Nicholas. "Experimental modal testing of reinforced concrete bridges." In European Seismic Design Practice, 93–100. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203756492-15.
Full textConference papers on the topic "Reinforced concrete arch bridges"
Lai, Lung-Yang ("Leon"). "Thermal Effects on Load Rating of Reinforced Concrete Arch Bridges." In Structures Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412848.043.
Full textGasparini, Dario A. "Development of Reinforced Concrete Arch Bridges in the U.S.: 1894–1904." In Fourth National Congress on Civil Engineering History and Heritage. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40654(2003)11.
Full textCrisci, Giovanni, Francesca Ceroni, Gian Piero Lignola, and Andrea Prota. "PERFORMANCE OF EXISTING REINFORCED CONCRETE ARCH BRIDGES UNDER CURRENT NON SEISMIC LOADS." In 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2021. http://dx.doi.org/10.7712/120121.8471.19388.
Full textHuang, Zhonglei, Jijun Su, and Yifeng Zheng. "Researchof reinforced concrete deck arch bridge detection technology." In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2012. http://dx.doi.org/10.1109/cecnet.2012.6201382.
Full text""Extending the Life of Aged, Reinforced Concrete Arch Bridges through Load Testing and Monitoring"." In SP-323: Evaluation of Concrete Bridge Behavior through Load Testing - International Perspectives. American Concrete Institute, 2018. http://dx.doi.org/10.14359/51702442.
Full textArtese, Serena, José Luis Lerma, Giuseppe Zagari, and Raffaele Zinno. "THE SURVEY, THE REPRESENTATION AND THE STRUCTURAL MODELING OF A DATED BRIDGE." In ARQUEOLÓGICA 2.0 - 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/arqueologica8.2016.3559.
Full textIvanković, Ana Mandić, Marija Kušter Marić, Dominik Skokandić, Ela Njirić, and Josipa Šiljeg. "Finding the link between visual inspection and key performance indicators for road bridges." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0737.
Full textHaijun Yin, Qingning Li, and Guangyao Yuan. "Research on the safety performance evaluation of existing reinforced concrete double-curvature arch bridge." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965501.
Full textChen, Xiao-zhen, and Xuejun Zhang. "Finite element analysis of a half-through reinforced concrete tied-arch bridge based on FEM program ANSYS." In 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5987662.
Full textPeigneux, Christophe, and Vincent Servais. "Footbridge Nelson Mandela in Béziers: a contemporary slender arch bridge in UHPFRC." In IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/ghent.2021.1189.
Full textReports on the topic "Reinforced concrete arch bridges"
Covino, Bernard S. Jr, Stephen D. Cramer, Sophie J. Bullard, Gordon R. Holcomb, James H. Russell, W. Keith Collins, Martin H. Laylor, and Curtis B. Cryer. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/804079.
Full textSeok, Seungwook, Faezeh Ravazdezh, Ghadir Haikal, and Julio A. Ramirez. Strength Assessment of Older Continuous Slab and T-Beam Reinforced Concrete Bridges. Purdue University, 2020. http://dx.doi.org/10.5703/1288284316924.
Full textHoehler, M., D. McCallen, and C. Noble. The seismic response of concrete arch bridges (with focus on the Bixby Creek bridge Carmel, California). Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/9869.
Full textRavazdezh, Faezeh, Julio A. Ramirez, and Ghadir Haikal. Improved Live Load Distribution Factors for Use in Load Rating of Older Slab and T-Beam Reinforced Concrete Bridges. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317303.
Full textPevey, Jon M., William B. Rich, Christopher S. Williams, and Robert J. Frosch. Repair and Strengthening of Bridges in Indiana Using Fiber Reinforced Polymer Systems: Volume 1–Review of Current FRP Repair Systems and Application Methodologies. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317309.
Full textRich, William B., Robert R. Jacobs, Christopher S. Williams, and Robert J. Frosch. Repair and Strengthening of Bridges in Indiana Using Fiber Reinforced Polymer Systems: Volume 2–FRP Flexural Strengthening and End Region Repair Experimental Programs. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317310.
Full textWang, Yao, Mirela D. Tumbeva, and Ashley P. Thrall. Evaluating Reserve Strength of Girder Bridges Due to Bridge Rail Load Shedding. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317308.
Full textGroeneveld, Andrew B., Stephanie G. Wood, and Edgardo Ruiz. Estimating Bridge Reliability by Using Bayesian Networks. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39601.
Full text