Academic literature on the topic 'Reinforced concrete Ductility'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reinforced concrete Ductility.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reinforced concrete Ductility"

1

Galishnikova, Vera V., Paschal Chimeremeze Chiadighikaobi, and Dafe Aniekan Emiri. "Comprehensive view on the ductility of basalt fiber reinforced concrete focus on lightweight expanded clay." Structural Mechanics of Engineering Constructions and Buildings 15, no. 5 (December 15, 2019): 360–66. http://dx.doi.org/10.22363/1815-5235-2019-15-5-360-366.

Full text
Abstract:
Relevance. Ductility of basalt fiber reinforced concrete is an interesting property of basalt fiber reinforced concrete. However, very few experiments on this property is documented. The aim of the work. This paper provides a summarized analysis and review of existing publications on the ductility of lightweight basalt fiber reinforced concrete. Methods. This paper provides a comprehensive study on ductility of basalt reinforced concrete and lays the framework for proper laboratory experiment on the ductility of basalt fiber reinforced concrete. Results. From the findings of this review paper,
APA, Harvard, Vancouver, ISO, and other styles
2

Muralidhara Rao, Dr T., N. Srikar, G. Sukesh Reddy, and B. Praveen. "Ductility of Reinforced Concrete Beams." CVR Journal of Science & Technology 9, no. 1 (December 1, 2015): 7–12. http://dx.doi.org/10.32377/cvrjst0902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yun, Ying Wei, Qin Luo, Il Young Jang, Shan Shan Sun, and Jia Wei Zhang. "Experimental Research on the Ductility of High Performance Concrete Beams." Applied Mechanics and Materials 166-169 (May 2012): 1316–20. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.1316.

Full text
Abstract:
Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. This paper aims to present the basic data for the ductility evaluation of reinforced HPC (high performance concrete) beams. Accordingly, 10 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive s
APA, Harvard, Vancouver, ISO, and other styles
4

Hosen, Md Akter, Mahaad Issa Shammas, Sukanta Kumer Shill, Safat Al-Deen, Mohd Zamin Jumaat, and Huzaifa Hashim. "Ductility Enhancement of Sustainable Fibrous-Reinforced High-Strength Lightweight Concrete." Polymers 14, no. 4 (February 14, 2022): 727. http://dx.doi.org/10.3390/polym14040727.

Full text
Abstract:
To limit the cross-sectional size of concrete structures, high-strength, lightweight concrete is preferred for the design and construction of structural elements. However, the main drawback of high-strength, lightweight concrete is its brittleness over normal-weight concrete. The ductility of concrete is a crucial factor, which plays an important role when the concrete structures are subjected to extreme situations, such as earthquakes and wind. This study aims to improve the ductility of high-strength, lightweight concrete by incorporating steel fibers. The palm oil clinker (POC)-based, high-
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Boxue, Shiping Yin, and Ming Liu. "Investigation on the Displacement Ductility Coefficient of Reinforced Concrete Columns Strengthened with Textile-Reinforced Concrete." Advances in Civil Engineering 2021 (December 7, 2021): 1–12. http://dx.doi.org/10.1155/2021/3152619.

Full text
Abstract:
To evaluate the seismic performance of reinforced concrete (RC) columns strengthened with textile-reinforced concrete (TRC), based on the ABAQUS numerical analysis results of 15 TRC-strengthened RC columns, the grey correlation theory was used to determine the input variables of the model, and the accuracy of the numerical simulation results is verified by some experiments. Then, according to FEM data, a neural network prediction model was established for the displacement ductility coefficients of TRC-strengthened columns, and a formula was proposed for calculating the displacement ductility c
APA, Harvard, Vancouver, ISO, and other styles
6

Vandewalle, Lucie. "Ductility of hybrid fiber reinforced concrete." IABSE Symposium Report 92, no. 4 (January 1, 2006): 10–16. http://dx.doi.org/10.2749/222137806796185535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bai, Z. Z., and F. T. K. Au. "Ductility of symmetrically reinforced concrete columns." Magazine of Concrete Research 61, no. 5 (June 2009): 345–57. http://dx.doi.org/10.1680/macr.2008.00149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Annamaneni, Krishna Kiran, Bhumika Vallabhbhai Dobariya, and Krasnikovs Andrejs. "CONCRETE, REINFORCED BY CARBON FIBRE COMPOSITE STRUCTURE, LOAD BEARING CAPACITY DURING CRACKING." ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 2 (June 17, 2021): 232–37. http://dx.doi.org/10.17770/etr2021vol2.6655.

Full text
Abstract:
Different authors conducted studies on fiber reinforced concretes (FRC) with carbon fibres of different lengths and some results showed that concrete mix with homogeneously distributed short fibres in their volume have good strength and ultra-strain compared to normal plain concrete mix. However, this study is focused more on 3-dimensional (3D) carbon fibre reinforced plastic (epoxy) CFRP composite thin rods frame used as a reinforcement in concrete which shows good increase in loadbearing and ductility. Were investigated concrete mixes with superplasticizer, nano-silica, quartz sand, fine nat
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Xin Le, Hai Cao, and Xiao Hui Guo. "Study on Compressive Stress-Strain Relationship of Polymer-Modified Concrete." Advanced Materials Research 779-780 (September 2013): 122–25. http://dx.doi.org/10.4028/www.scientific.net/amr.779-780.122.

Full text
Abstract:
The axial compressive stress-strain relationship of concrete reflects its basic mechanical performance, which is important in analyzing the performance of materials, especially in the analyzing of the elastic modulus, ductility and carrying capacity. In order to study the mechanical properties of polymer-modified concrete and steel fiber reinforced polymer concrete, a comparative study of the compressive stress-strain relationship of polymer-modified concrete and steel fiber reinforced polymer concrete was carried out, the complete compressive stress-strain curves were obtained, and the influe
APA, Harvard, Vancouver, ISO, and other styles
10

Siregar, Atur P. N. "Experimental investigation of the flexural ductility of singly reinforced concrete beam using normal and high strength concrete." Journal of Sustainable Engineering: Proceedings Series 1, no. 2 (September 30, 2019): 218–24. http://dx.doi.org/10.35793/joseps.v1i2.30.

Full text
Abstract:
This paper discusses and reports based on the experimental investigation of the flexural ductility of singly reinforced normal strength and high strength concrete beams. Compressive concrete strength of 40 and 95 MPa were employed to create singly reinforced normal strength and high strength concrete beams, respectively. Fourteen samples made of normal and high strength concrete were engaged to observe the flexural ductility behaviour of beams on the basis of four point bend testing. Analysis on the basis of the flexural cracking, ultimate failure and curvature ductility were carried out to de
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Reinforced concrete Ductility"

1

Soesianawati, M. T. "Limited ductility design of reinforced concrete columns." Thesis, University of Canterbury. Department of Civil Engineering, 1986. http://hdl.handle.net/10092/3643.

Full text
Abstract:
This report describes an experimental and analytical investigation of the strength and ductility of reinforced concrete columns. Four columns of square cross-section were tested under axial compression loading and cyclic lateral loading applied at mid-height which simulated seismic loading. The main variable investigated was the quantity of transverse confining steel used, which ranged between 17 to 46 percent of the NZS 3101:1982 recommended quantity for ductile detailing. The experimental results are reported in the form of lateral loaddisplacement and lateral load-curvatures hysteresis loop
APA, Harvard, Vancouver, ISO, and other styles
2

Lau, Tak-bun Denvid. "Flexural ductility improvement of FRP-reinforced concrete members." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38907756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, SangHun Aboutaha Riyad S. "Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete." Related Electronic Resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2003. http://wwwlib.umi.com/cr/syr/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lau, Tak-bun Denvid, and 劉特斌. "Flexural ductility improvement of FRP-reinforced concrete members." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B38907756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Watson, Soesianawati. "Design of reinforced concrete frames of limited ductility." Thesis, University of Canterbury. Department of Civil Engineering, 1989. http://hdl.handle.net/10092/3745.

Full text
Abstract:
An experimental programme was carried out to investigate the flexural strength and ductility. of reinforced concrete columns under simulated earthquake loading. The main variable examined was the quantity of transverse reinforcement for concrete confinement. The experimental results were described and compared with theoretical studies. It was found that to achieve adequate ductility in columns, the current New Zealand concrete design code NZS3101:1982 equations for concrete confinement need to be refined. Using design charts for ductility, which were previously derived from a theory for cyclic
APA, Harvard, Vancouver, ISO, and other styles
6

Azizi, Abdul R. "Modelling moment redistribution in continuous reinforced concrete beams." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/1578/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zaina, Mazen Said Civil &amp Environmental Engineering Faculty of Engineering UNSW. "Strength and ductility of fibre reinforced high strength concrete columns." Awarded by:University of New South Wales. School of Civil and Environmental Engineering, 2005. http://handle.unsw.edu.au/1959.4/22054.

Full text
Abstract:
The main structural objectives in column design are strength and ductility. For higher strength concretes these design objectives are offset by generally poor concrete ductility and early spalling of the concrete cover. When fibres are added to the concrete the post peak characteristics are enhanced, both in tension and in compression. Most of the available experimental data, on fibre reinforced concrete and fibre reinforced high strength concrete columns, suggest that an improvement in both ductility and load carrying capacity due to the inclusion of the fibres. In this thesis the ductility
APA, Harvard, Vancouver, ISO, and other styles
8

Davies, Paul. "Ductility and Deformability of FRP Strengthened Reinforced Concrete Structures." Thesis, University of South Wales, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wassouf, Mohamad. "Bond and ductility of concrete reinforced with various steel bars surface and ductility conditions." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6272/.

Full text
Abstract:
Reinforced concrete is a wide field for researches and studies in civil engineering subject. It is due to the fact that reinforced concrete is the most widely used material for the infrastructure in the world. Reinforced concrete consists of two main materials: reinforcing steel and concrete, each of those two materials has its own effect on the performance of the structure. In this thesis, the change in RC performance due to different steel properties and specifications will be investigated. The study focuses on the bond interaction between steel and concrete and the flexural behaviour of RC
APA, Harvard, Vancouver, ISO, and other styles
10

Ho, Yin Bon. "Enhancing the ductility of non-seismically designed reinforced concrete shear walls /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202006%20HO.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Reinforced concrete Ductility"

1

Dhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fuentès, Albert. Reinforced concrete after cracking: State of service ultimate limit state, ductility failure mechanism of hyperstatic structures. 2nd ed. Rotterdam: A.A. Balkema, 1995., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ozyildirim, H. Celik. Exploratory investigation of high-performance fiber-reinforced cementitious composites for crack control. Charlottesville, Va: Virginia Transportation Research Council, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ductility of reinforced concrete structures. Lausanne: Comité Euro-International du Béton, CEB, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Monica, Starnes, and National Institute of Standards and Technology (U.S.), eds. Strength and ductility of concrete beams reinforced with carbon FRP and steel. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuchma, Daniel A. The influence of T-headed bars on the strength and ductility or reinforced concrete wall elements. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oehlers, Deric, and Rudolph Seracino. Design of FRP and Steel Plated RC Structures: Retrofitting Beams and Slabs for Strength, Stiffness and Ductility. Elsevier Science, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Design of FRP and Steel Plated RC Structures: Retrofitting Beams and Slabs for Strength, Stiffness and Ductility. Elsevier Science, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Reinforced concrete Ductility"

1

Van Gysel, Ann, Tom Molkens, and Inge Deygers. "Ductility of Heavily Reinforced Concrete Beams." In High Tech Concrete: Where Technology and Engineering Meet, 553–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kollerathu, Jacob Alex. "Curvature Ductility of Reinforced Masonry Walls and Reinforced Concrete Walls." In Lecture Notes in Civil Engineering, 9–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2826-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hsu, Thomas T. C. "Shear Ductility and Energy Dissipation of Reinforced Concrete Walls." In Infrastructure Systems for Nuclear Energy, 185–202. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536254.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frangou, Michael, and Kypros Pilakoutas. "Effect of spalling on reinforced concrete strength and ductility." In European Seismic Design Practice, 435–41. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203756492-65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Šušteršič, Jakob, Rok Ercegovič, David Polanec, and Andrej Zajc. "Ductility of the Four-Year-Old Steel Fibre Reinforced Concrete." In RILEM Bookseries, 290–300. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58482-5_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scott, R. H., and P. A. T. Gill. "A Preliminary Investigation of Reinforcement Ductility in Reinforced Concrete Slabs." In Applied Stress Analysis, 506–15. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0779-9_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akbar, Sohaib, F. Michael Bartlett, and A. Maged Youssef. "Flexural Ductility of Concrete Beams Reinforced with High Strength Steel." In Lecture Notes in Civil Engineering, 613–26. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1004-3_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wenk, Thomas, and Hugo Bachmann. "Ductility demand of 3-D reinforced concrete frames under seismic excitation." In Structural Dynamics, 537–41. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dancygier, Avraham N., and Erez Berkover. "Effect of Steel Fibers on the Flexural Ductility of Lightly Reinforced Concrete Beams." In Innovative Materials and Techniques in Concrete Construction, 197–207. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1997-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suthar, Jahanvi M., Antariksh Mohaniya, and Sharadkumar P. Purohit. "Effect of Ductility on Performance of Reinforced Concrete Portal Frame Loaded with Lateral Load." In Lecture Notes in Civil Engineering, 3–11. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64594-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reinforced concrete Ductility"

1

Si, Lin Jun, Guo Qiang Li, and Fei Fei Sun. "Ductility Calculation of Reinforced Concrete Shear Walls." In 7th International Conference on Tall Buildings. Singapore: Research Publishing Services, 2009. http://dx.doi.org/10.3850/9789628014194_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Compressive Strength and Ductility of Steel Fiber Reinforced Concrete." In SP-182: Structural Applications of Fiber Reinforced Concrete. American Concrete Institute, 1999. http://dx.doi.org/10.14359/5527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Al-Naimi, Hasanain, and Ali Abbas. "DUCTILITY OF STEEL-FIBRE-REINFORCED RECYCLED LIGHTWEIGHT CONCRETE." In 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2019. http://dx.doi.org/10.7712/120119.7203.19035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Ductility Index and Durability in Fiber-Reinforced Concrete." In SP-326: Durability and Sustainability of Concrete Structures (DSCS-2018). American Concrete Institute, 2018. http://dx.doi.org/10.14359/51711042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"On the Post-Peak Ductility of Shear-Critical Beams." In SP-237: Finite Element Analysis of Reinforced Concrete Structures. American Concrete Institute, 2006. http://dx.doi.org/10.14359/18249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Glass Fiber Reinforced Concrete With Improved Ductility and Long Term Properties." In SP-146: Thin Reinforced Concrete Products and Systems. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sheikh, Shamim Ahmed, and Zahra Kharal. "Corrosion-resistant Reinforced Concrete Columns." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0946.

Full text
Abstract:
<p>To address this issue of corrosion of steel in reinforced concrete, large scale columns reinforced with glass fibre reinforced polymer (GFRP) bars were tested under simulated earthquake loads. In addition to the moment - curvature and shear - deflection responses, ductility factors, and work and energy dissipation parameters were used to evaluate column performance. Twenty-five columns with circular and square sections can be compared to investigate variables such as axial load level, amount and type of reinforcement, i.e. GFRP vs steel. GFRP-reinforced columns were found to behave wi
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Mi, and Yongcun Jiang. "Analysis of Factors Affecting Ductility of Reinforced Concrete Column." In 2018 3rd International Conference on Smart City and Systems Engineering (ICSCSE). IEEE, 2018. http://dx.doi.org/10.1109/icscse.2018.00065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Performance Evaluation of Fiber Reinforced Polymer Reinforcing Bar Featuring Ductility and Health Monitoring Capability." In SP-188: 4th Intl Symposium - Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures. American Concrete Institute, 1999. http://dx.doi.org/10.14359/5608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ali, Ziadoon M., Akram S. Mahmoud, and Mustafa M. Al-Ani. "Ductility, stiffness and toughness of modified spliced steel reinforced concrete." In 3RD INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0067147.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Reinforced concrete Ductility"

1

Duthinh, Dat, and Monica Starnes. Strength and ductility of concrete beams reinforced with carbon FRP and steel. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ragalwar, Ketan, William Heard, Brett Williams, Dhanendra Kumar, and Ravi Ranade. On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41940.

Full text
Abstract:
Steel fibers are typically used in ultra-high performance concretes (UHPC) to impart flexural ductility and increase fracture toughness. However, the mechanical properties of the steel fibers are underutilized in UHPC, as evidenced by the fact that most of the steel fibers pull out of a UHPC matrix largely undamaged during tensile or flexural tests. This research aims to improve the bond between steel fibers and a UHPC matrix by using steel wool. The underlying mechanism for fiber-matrix bond improvement is the reinforcement of the matrix tunnel, surrounding the steel fibers, by steel wool. Si
APA, Harvard, Vancouver, ISO, and other styles
3

EXPERIMENTAL AND NUMERICAL INVESTIGATION ON SEISMIC PERFORMANCE OF RING-BEAM CONNECTION TO GANGUE CONCRETE FILLED STEEL TUBULAR COLUMNS. The Hong Kong Institute of Steel Construction, March 2022. http://dx.doi.org/10.18057/ijasc.2022.18.1.9.

Full text
Abstract:
This paper presents an investigation on seismic performance of a ring-beam connection that is used to connect reinforced gangue concrete (RGC) beam to coal-gangue concrete-filled steel tubular (GCFST) column. Two specimens, including an interior connection with two beams and an exterior connection with one beam, were designed and fabricated for experimental tests under full-reversing cyclic loads at beam ends. In addition, finite element models which corresponded to tested specimens were developed using ABAQUS to conduct numerical simulations of the composite connection subjected to the combin
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!