Dissertations / Theses on the topic 'Reinforced concrete frame structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Reinforced concrete frame structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Harry, Ofonime Akpan. "Behaviour of reinforced concrete frame structure against progressive collapse." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29623.
Full textCiftci, Guclu Koray. "Nonlinear Analysis Of Reinforced Concrete Frame Structures." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615549/index.pdf.
Full textAl, Mamun Abdullah. "Seismic Damage Assessment of Reinforced Concrete Frame Buildings in Canada." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36188.
Full textBiddah, Ashraf Mahmoud Samy. "Seismic behaviour of existing and rehabilitated reinforced concrete frame connections." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ30074.pdf.
Full textManatakos, Kyriakos 1960. "Behaviour and design of reinforced concrete core-slab-frame structures." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42088.
Full textStage 1 concentrates on the elastic response and Stage 3 examines the nonlinear response of the core-slab-frame structure considering the effects of cracking and crushing of concrete, strain-hardening of the reinforcement, and tension-stiffening. Analyses involve three-dimensional elastic and nonlinear finite element modeling techniques of the structure to investigate the contribution and influence of the various structural components. The structural response is examined for the deformations, the concentrated reinforcement strains and concrete stresses in the cores, the force and stress distributions in the structural members, and the failure mode.
Stage 2 focuses on the design and detailing of the core-slab-frame structure following seismic provisions of building code requirements for reinforced concrete structures where applicable as given in the CSA Standard CAN3-A23.3-MS4 (1984), the ACI Standard ACI 318M-83 (1983) and the New Zealand Standard NZS3101 (1982). Assumptions made in the conventional design procedures and any shortcomings encountered are examined. Suitable design procedures and reinforcement details are suggested where no provisions exist in the codes.
Findings demonstrate complex three-dimensional interaction among the cores, beams, slabs and frames in resisting the lateral and gravity loads, and show considerable strength, ductility and energy absorption capability of the structure. Critical areas for design include the joints and junctions near the vicinity of core wall-slab-beams ends and corners. Plastic hinging extends over the lower 2.5% to 33% height of the structure with the majority of inelastic action and damage concentrated in the bottom 10% to 15% height, predicting an ultimate load of 3.4 to 5.9 times the design earthquake load with top drifts of the structure between 750 mm to 1375 mm.
Manatakos, Kyriakos. "Behaviour and design of reinforced concrete core-slab-frame structures." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ30330.pdf.
Full textBaran, Mehmet. "Precast Concrete Panel Reinforced Infill Walls For Seismic Strengthening Of Reinforced Concrete Framed Structures." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606137/index.pdf.
Full textHaselton, Curt B. Deierlein Gregory G. "Assessing seismic collapse safety of modern reinforced concrete moment-frame buildings." Berkeley, Calif. : Pacific Earthquake Engineering Research Center, 2008. http://nisee.berkeley.edu/elibrary/Text/200803261.
Full textHan, Mengyu. "Application of Base Isolation Systems to Reinforced Concrete Frame Buildings." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35722.
Full textBeason, Lauren Rae. "Seismic vulnerability of older reinforced concrete frame structures in Mid-America." Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/370.
Full textLiu, Aizhen. "Seismic assessment and retrofit of pre-1970s reinforced concrete frame structures." Thesis, University of Canterbury. Civil Engineering, 2001. http://hdl.handle.net/10092/7569.
Full textHertanto, Eric. "Seismic Assessment of Pre-1970s Reinforced Concrete Structure." Thesis, University of Canterbury. Civil Engineering, 2005. http://hdl.handle.net/10092/1120.
Full textParsa, Amanullah. "EFFECT OF BUILDING ORIENTATION ON STRUCTURAL RESPONSE OF REINFORCED CONCRETE MOMENT RESISTING FRAME STRUCTURES." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2698.
Full textMagnanini, Nicola. "Seismic retrofit of a reinforced concrete building placed in L'Aquila." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4778/.
Full textMercer, Colin Douglas. "An analytical model for the seismic analysis of reinforced concrete frame structures." Doctoral thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/8308.
Full textThe thesis is concerned with developing an analytical model to describe the cyclic behaviour of reinforced concrete members. The mechanisms which are important in the behaviour of members dominated by flexural deformations are identified. They include bar-slippage due to deterioration of the bond between the steel and concrete, the crack opening and closing criterion, and the cyclic response of steel and concrete. All these mechanisms are incorporated in an analytical model based on a layered beam approach. The model is developed for a member in double curvature bending and consists of two inelastic zones on either side of a central elastic zone. The bar-slippage which occurs in the beam-column joint is included at the ends of the beam model. A linear bending moment distribution is assumed along the beam. The moment-curvature relationship is calculated in the inelastic zones; the curvature is then integrated along the inelastic zone to determine the displacements. Damage measures with an objective of predicting the onset of failure are also proposed. The implementation of the model into a frame analysis computer program is discussed. Special attention is devoted to the solution strategies and numerical algorithms employed in the computer program. The model is shown to perform satisfactorily when compared to experimental results. A simplified analytical model which approximates the concrete with only two layers is also presented. The simplified model is shown to predict the response as competently as a model with far more concrete layers; however, the computational time for the simplified model is significantly less.
El-Amoury, Tarek Abbas Ghobarah Ahmed. "Seismic rehabilitation of concrete frame beam-column joints /." *McMaster only, 2004.
Find full textOzcelik, Ramazan. "Seismic Upgrading Of Reinforced Concrete Frames With Structural Steel Elements." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613450/index.pdf.
Full textscaled three bay-two story frame specimens strengthened with chevron brace and ISF were tested by employing continuous pseudo dynamic testing methods. The test results indicated that the cyclic performance of the Xbrace and column with shear plate assemblage technique were unsatisfactory. On the other hand, both chevron brace and ISF had acceptable cyclic performance and these two techniques were found to be candidate solutions for seismic retrofitting of deficient RC structures. The numerical simulations by conducting nonlinear static and dynamic analysis were used to estimate performance limits of the RC frame and steel members. Suggested strengthening approaches, chevron brace and ISF, were also employed to an existing five story case study RC building to demonstrate the performance efficiency. Finally, design approaches by using existing strengthening guidelines in Turkish Earthquake Code and ASCE/SEI 41 (2007) documents were suggested.
Lin, Wesley Wei-chih. "Modelling Effects Of Insufficient Lap Splices On A Deficient Reinforced Concrete Frame." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615584/index.pdf.
Full texts Structural and Earthquake Laboratory and tested via pseudo-dynamic tests were made. These frames were modelled on the OpenSees platform by following methods of analyses outlined in the Turkish Earthquake Code of 2007 (TEC 2007) and ASCE/SEI-41-06. Both deficient frames were essentially the same, with the only difference being the presence of insufficient lap splices, which was the focus of the study. Time history performance assessments were conducted in accordance to TEC 2007&rsquo
s damage state limits and ASCE/SEI 41-06&rsquo
s performance limits. The damages observed matched the performance levels estimated through the procedure outlined in TEC 2007 rather well. Specific to the specimen with lap splice deficiencies, ASCE/SEI 41-06 was overly conservative in its assessments. TEC 2007&rsquo
s requirements for lap splice lengths were found to be conservative in the laboratory and are able to tolerate deficiencies up to 25% of the required length. With respect to mathematical models, accounting for materials in deficient systems by using nominal but reduced strength properties is not very efficient and unless joint deformations are explicitly accounted for, local deformations cannot be captured.
AlHafian, Samah. "Seismic progressive collapse of reinforced concrete frame structures using the applied element method." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2740.
Full textCarriere, Jean-Michel. "Seismic retrofit of existing reinforced concrete moment resisting frame structures using diagonal prestressing." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27449.
Full textAgar, Mehmet. "Strengthening Of Reinforced Concrete Frames By Using Steel Bracings." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609664/index.pdf.
Full textArslan, Guray. "Strengthening Of Reinforced Concrete Frames By Custom Shaped High Strength Concrete Masonry Blocks." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610335/index.pdf.
Full textJarvis, Wesley James. "The effect of seismic activity on reinforced concrete frame structures with infill masonry panels." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86554.
Full textENGLISH ABSTRACT: Certain regions within the Western Cape Province are at risk of a moderate intensity earthquake. It is therefore crucial that infrastructure in these areas be designed to resist its devastating effect. Numerous types of structural buildings exist in these seismic prone areas. The most common types are either reinforced concrete framed buildings with masonry infill or unreinforced masonry buildings. Many of these buildings predate the existence of the first loading code of 1989 which provided regulations for seismic design. The previous code was superseded in 2010 with a code dedicated to providing guidelines for seismic design of infrastructure. A concern was raised whether these buildings meet the requirements of the new code. A numerical investigation was performed on a representative reinforced concrete framed building with masonry infill to determine whether the building meets the new code’s requirements. The results from the investigation show that the stresses at critical points in the columns exceed the codified requirements, thus leading to local failure. After careful review it was discovered that these local failures in the columns will most likely lead to global failure of the building.
AFRIKAANSE OPSOMMING: In sekere streke in die Wes-Kaap bestaan daar risiko van matige intensiteit aardbewings. Dit is dus noodsaaklik dat die infrastruktuur in hierdie gebiede ontwerp word om die vernietigende uitwerking te weerstaan. Gebous met verskillende tipes strukturele uitlegte kom in hierdie gebied voor. Die mees algemene struktuur tipe is gewapende beton-raam geboue met baksteen invol panele sowel as ongewapende baksteen geboue. Baie van hierdie geboue is gebou voor die eerste las-kode van 1989 wat regulasies vir seismiese ontwerp voorsien in gebruik geneem is. Die vorige kode is vervang in 2010 met ’n kode toegewy tot die verskaffing van riglyne vir seismiese ontwerp van infrastruktuur. Kommer het ontstaan of hierdie geboue voldoen aan die vereistes van die nuwe kode. ’n Numeriese ondersoek is uitgevoer op ’n verteenwoordigende gewapende beton geraamde gebou met baksteen panele om te bepaal of die gebou voldoen aan die nuwe kode vereistes rakende sismiese ontwerp. Die resultate van die ondersoek toon dat die spanning op kritieke punte in die kolomme die gekodifiseerde vereistes oorskry, wat tot plaaslike faling lei. Na verdere onderssoek is dit bepaal dat die plaaslike faling in die kolomme waarskynlik tot globale faling van die gebou sal lei.
Soares, Rodrigo de Carvalho. "Otimização de seções transversais de concreto armado sujeitas à flexão: aplicação a pavimentos." Universidade de São Paulo, 1997. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-29052018-103206/.
Full textNowadays, there is a continuous development in structural computational analysis for known geometrical, loading and boundary conditions. Much effort has been made on the pre and pos-processors, which is the main part of the time spent in designing. The automatic definition of the geometrical characteristics for the structural elements, however is poor yet. Today, this phase is still carried out by the engineer, only with an indirect machine help. This work presents an optimal method to automate the first draft design of the beams reinforced concrete floor. A formulation to achieve the cross-section minimum cost function is proposed and then extended to the whole floor by combined approximation methods. In order to obtain the cost function the following values have been considered: the beam depth and the steel area. As problem constraints, the steel geometric rate, the steel compression with the steel tension rate and the limit displacement have to be prescribed by the user.
Zimos, D. K. "Modelling the post-peak response of existing reinforced concrete frame structures subjected to seismic loading." Thesis, City, University of London, 2017. http://openaccess.city.ac.uk/18531/.
Full textBai, Jong-Wha. "Seismic fragility and retrofitting for a reinforced concrete flat-slab structure." Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/521.
Full textLiel, Abbie B. "Assessing the collapse risk of California's existing reinforced concrete frame structures : metrics for seismic safety decisions /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textPatel, Jayendra R. "Post processor for design of reinforced concrete space frames using object oriented programming." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-07292009-090457/.
Full textRajman, Martin. "Železobetonová skeletová konstrukce nákupního centra." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225356.
Full textKazaz, Ilker. "Dynamic Characteristics And Performance Assessment Of Reinforced Concrete Structural Walls." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611712/index.pdf.
Full textTan, Mustafa Tumer. "Seismic Strengthening Of A Mid-rise Reinforced Concrete Frame Using Cfrps: An Application From Real Life." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610562/index.pdf.
Full textmer M.S., Department Of Civil Engineering Supervisor: Prof. Dr. Gü
ney Ö
zcebe Co-Supervisor: Assoc. Prof. Dr. BariS Binici May 2009, 162 pages FRP retrofitting allows the utilization of brick infill walls as lateral load resisting elements. This practical retrofit scheme is a strong alternative to strengthen low to mid-rise deficient reinforced concrete (RC) structures in Turkey. The advantages of the FRP applications, to name a few, are the speed of construction and elimination of the need for building evacuation during construction. In this retrofit scheme, infill walls are adopted to the existing frame system by using FRP tension ties anchored the boundary frame using FRP dowels. Results of experiments have previously shown that FRP strengthened infill walls can enhance lateral load carrying capacity and reduce damage by limiting interstory drift deformations. In previous, analytical studies, a detailed mathematical model and a simplified version of the model for compression struts and tension ties was proposed and verified by comparing model estimations with test results. In this study, an existing 9-storey deficient RC building located in Antakya was chosen to design and apply a hybrid strengthening scheme with FRPs and reduced number of shear walls. Linear elastic analysis procedure was utilized (force based assessment technique) along with the rules of Mode Superposition Method for the reftrofit design. FRP retrofit scheme was employed using the simplified model and design was conducted such that life safety performance criterion is satisfied employing elastic spectrum with 10% probability of exceedance in 50 years according to the Turkish Earthquake Code 2007. Further analytical studies are performed by using Modal Pushover and Nonlinear Time-History Analyses. At the end of these nonlinear analyses, performance check is performed according to Turkish Earthquake Code 2007, using the strains resulting from the sum of yield and plastic rotations at demand in the critical sections. CFRP retrofitting works started at October 2008 and finished at December 2008 for the building mentioned in this study. Eccentric reinforced concrete shearwall installation is still being undertaken. All construction business is carried out without evacuation of the building occupants. This project is one of the first examples of its kind in Turkey. Keywords: CFRP, Carbon Fiber Reinforced Polymers, Masonry Infill Walls, Reinforced Concrete Infill Walls, Mid-Rise Deficient Structures, Turkish Earthquake Code 2007, Modal Pushover Analysis, Nonlinear Time History Analysis, Linear Elastic Building Assessment
Iotti, Fabio. "Non dissipative seismic retroffitting of a frame structure using shear walls." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15031/.
Full textSeckiner, Soner. "Parametric Analysis Of Inelastic Interaction In Frame-wall Structural Systems." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613654/index.pdf.
Full textGuney, Murat Efe. "A Numerical Procedure For The Nonlinear Analysis Of Reinforced Concrete Frames With Infill Walls." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606318/index.pdf.
Full textDurucan, Cengizhan. "Seismic Retrofitting Of Reinforced Concrete Buildings Using Steel Braces With Shear Link." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610956/index.pdf.
Full textNavarro, D., R. Valero, and J. Orihuela. "Evaluation of the Influence of Different Grades of Reinforcing Steel on the Seismic Performance of Concrete reinforced Frame Structures with Nonlinear Static Analysis." IOP Publishing Ltd, 2021. http://hdl.handle.net/10757/655954.
Full textBolander, Julie Christine. "Investigation of Torsional Effects on Thirteen-Story Reinforced Concrete Frame-Wall Structure Modeled in ETABS and SAP2000 Using Linear and Nonlinear Static and Dynamic Analyses." Thesis, University of California, San Diego, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1557303.
Full textThe primary objective of this thesis is to evaluate the effects of torsion on the nonlinear seismic response of a thirteen-story reinforced concrete frame-wall structure with an asymmetric stiffness in plan. The NEHRP building structure, located in Berkeley, CA and previously designed by André Barbosa, was modeled in ETABS and SAP2000 to perform several analyses. The models accounted for realistic cracked concrete section stiffnesses, expected material properties, and nonlinear plastic hinges. Due to limitations of ETABS in performing nonlinear dynamic time history analysis, the model was exported to SAP2000. An asymmetric lateral stiffness model was created by moving one of the shear walls from the center of the building toward the outside of the building. OpenSees was used to find the nonlinear hinge moment-rotation relationships.
Using a suite of seven ground motion record pairs, an essentially linear dynamic time history analysis was performed on the symmetric and asymmetric ETABS models. The SAP2000 models were used to perform a series of nonlinear static (pushover) analyses. Fully nonlinear, including material and geometric nonlinearity, time history analyses were performed on the SAP2000 models using the seven ground motion pairs, appropriately cut to shorter lengths to reduce the analysis run-time. In each analysis case, the results of the symmetric and asymmetric models were compared. Overall, the asymmetric model typically experienced torsional effects and larger displacement responses than the symmetric model. The more nonlinear the structure behaved, the more influence torsion had on the response of the model with asymmetrically-placed shear walls.
Luliak, Ondřej. "Statická analýza konstrukce pro zpracování odpadu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227574.
Full textAkin, Emre. "Strengthening Of Brick Infilled Rc Frames With Cfrp Reinforcement-general Principles." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613172/index.pdf.
Full textNaji, Jamal Hadi. "Non-linear finite element analysis of reinforced concrete panels and infilled frames under monotonic and cyclic loading : structures under plane stress loading are analysed up to and beyond the peak load : non-linear material properties including cracking, crushing and the non-linear behaviour at the interface of members are considered." Thesis, University of Bradford, 1989. http://hdl.handle.net/10454/3573.
Full textAy, Bekir Ozer. "Fragility Based Assessment Of Low." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607629/index.pdf.
Full textspecific characteristics is investigated to manage the earthquake risk and to develop strategies for disaster mitigation. Low&ndash
rise and mid&ndash
rise reinforced concrete structures, which constitute approximately 75% of the total building stock in Turkey, are focused in this fragility&ndash
based assessment. The seismic design of 3, 5, 7 and 9&ndash
story reinforced concrete frame structures are carried out according to the current earthquake codes and two dimensional analytical models are formed accordingly. The uncertainty in material variability is taken into account in the formation of structural simulations. Frame structures are categorized as poor, typical or superior according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Turkey. The demand statistics in terms of maximum interstory drift ratio are obtained for different sets of ground motion records. The capacity is determined in terms of limit states and the corresponding fragility curves are obtained from the probability of exceeding each limit state for different levels of ground shaking. The results are promising in the sense that the inherent structural deficiencies are reflected in the final fragility functions. Consequently, this study provides a reliable fragility&ndash
based database for earthquake damage and loss estimation of reinforced concrete building stock in urban areas of Turkey.
Tošenovjan, Marek. "Statické řešení monolitické železobetonové konstrukce." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265481.
Full textDEL, TORO RIVERA RAUL. "Comportement des noeuds d'ossature en beton arme sous sollicitations alternees." Marne-la-vallée, ENPC, 1988. http://www.theses.fr/1988ENPCA004.
Full textMašek, Petr. "Statické řešení železobetonové konstrukce." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371947.
Full textKasan, Marek. "Sport centrum." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-410022.
Full textSlanina, Bohumil. "Rámová konstrukce atypického půdorysu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240204.
Full textWong, Koon-Wan. "Non-linear behaviour of reinforced concrete frames /." Title page, contents and abstract only, 1989. http://web4.library.adelaide.edu.au/theses/09PH/09phw872.pdf.
Full textVacenovská, Veronika. "Centrum pro sport a volný čas Brno." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-355034.
Full textChan, Yui Bun. "Investigation of cracked reinforced concrete framed structures repaired with CFRP /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202002%20CHAN.
Full textIncludes bibliographical references (leaves 209-210). Also available in electronic version. Access restricted to campus users.
Čihák, Tomáš. "Tělocvična - prefabrikovaný skelet." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227738.
Full text