Academic literature on the topic 'Reinforced concrete shear wall'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reinforced concrete shear wall.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reinforced concrete shear wall"
Choi, Chang Sik, and Hye Yeon Lee. "Rehabilitation of Reinforce Concrete Frames with Reinforced Concrete Infills." Key Engineering Materials 324-325 (November 2006): 635–38. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.635.
Full textKang, Yan Bo, Shi Min Huang, and Qiu Lai Yao. "Comparative Study on Shear Wall and Brick Wall Strengthened with Reinforced Concrete Splint." Advanced Materials Research 639-640 (January 2013): 1108–13. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.1108.
Full textJiang, Huan Jun, and Lao Er Liu. "Numerical Analysis of RC Shear Walls under Cyclic Loading by PERFORM-3D." Advanced Materials Research 250-253 (May 2011): 2253–57. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.2253.
Full textKang, Su Won, and Hyun Do Yun. "Effect of Cement Matrix’s Type on the Shear Performance of Lightly Reinforced Squat Shear Walls Subjected to Cyclic Loading." Advanced Materials Research 658 (January 2013): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amr.658.42.
Full textHou, Hetao, Weiqi Fu, Canxing Qiu, Jirun Cheng, Zhe Qu, Wencan Zhu, and Tianxiang Ma. "Effect of axial compression ratio on concrete-filled steel tube composite shear wall." Advances in Structural Engineering 22, no. 3 (August 28, 2018): 656–69. http://dx.doi.org/10.1177/1369433218796407.
Full textKelly, Trevor. "Nonlinear analysis of reinforced concrete shear wall structures." Bulletin of the New Zealand Society for Earthquake Engineering 37, no. 4 (December 31, 2004): 156–80. http://dx.doi.org/10.5459/bnzsee.37.4.156-180.
Full textNannan, Zhao, Wang Yaohong, Han qing, and Su Hao. "Bearing capacity of composite shear wall incorporating a concrete-filled steel tube boundary and column-type reinforced wall." Advances in Structural Engineering 23, no. 10 (March 4, 2020): 2188–203. http://dx.doi.org/10.1177/1369433220911156.
Full textSONG, Xing-yu, Qin HOU, and Lei CHEN. "Experimental study on seismic behavior of shear wall with fiber reinforced polymer concrete." MATEC Web of Conferences 275 (2019): 02010. http://dx.doi.org/10.1051/matecconf/201927502010.
Full textZhu, Junfeng, Donghui Zheng, and Yifan Li. "Failure Dependence Analysis of Shear Walls with Different Openings under Fortification Earthquakes." Mechanical Engineering Research 3, no. 1 (May 22, 2013): 185. http://dx.doi.org/10.5539/mer.v3n1p185.
Full textSu, Yi Sheng, Er Cong Meng, Zu Lin Xiao, Yun Dong Pi, and Yi Bin Yang. "Study on Seismic Behavior of the L-Shape Steel Reinforced Concrete Short-Pier Shear Wall with Different Concrete Strength." Applied Mechanics and Materials 353-356 (August 2013): 1990–99. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.1990.
Full textDissertations / Theses on the topic "Reinforced concrete shear wall"
Soydas, Ozan. "Evaluation Of Shear Wall Indexes For Reinforced Concrete Buildings." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610380/index.pdf.
Full textGilles, Damien Claude. "In situ dynamic characteristics of reinforced concrete shear wall buildings." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103463.
Full textPour prédire le comportement d'un bâtiment sous l'effet de différents types de charges dynamiques, telles que les charges de vent et les secousses sismiques, les ingénieurs doivent d'abord estimer les propriétés dynamiques de celui-ci, notamment les périodes naturelles, les déformées modales et l'amortissement. Cependant, ces propriétés peuvent être considérablement différentes de celles du bâtiment réel, une fois construit, dû aux différences entre le modèle idéalisé du bâtiment et les conditions in situ. L'objectif de cette étude est donc d'évaluer les modèles communément utilisés pour estimer les propriétés dynamiques des bâtiments. Plus précisément, le but est de comparer les propriétés estimées à l'aide de ces modèles avec celles mesurées dans des bâtiments existants et de développer de meilleurs modèles, si possible. À cet effet, des mesures de vibrations ambiantes furent effectuées dans 39 bâtiments sur l'île de Montréal et, pour chacun d'entre eux, les propriétés dynamiques de six modes de vibration furent identifiées à l'aide de la méthode de décomposition dans le domaine des fréquences (FDD). Bien que le but initial fût d'obtenir un échantillon de différents types de bâtiments, 27 des 39 édifices ont une ossature en béton armé et se servent principalement de murs de refend pour résister aux charges latérales. Cette étude se penche donc uniquement sur ce type de bâtiment. Les propriétés dynamiques de ces 27 bâtiments furent utilisées pour évaluer différents modèles proposés dans le Code National du Bâtiment du Canada 2005 (CNB 2005) et dans la littérature scientifique pour estimer les propriétés dynamiques de ce type de bâtiment. En se basant sur des analyses de régression, cette étude démontre que l'équation proposée dans le CNB 2005 pour estimer la période fondamentale de ce type de bâtiment n'est pas très précise. D'autres équations, qui font usage des dimensions des murs de refend, n'offrent pas des estimations plus précises, malgré leur complexité. Une équation simple et plus précise est suggérée pour prédire la période fondamentale. De plus, des équations correspondant à la moyenne moins un écart-type et la moyenne plus un écart-type sont également fournies afin de quantifier l'incertitude associée à l'estimation de la période fondamentale. Les taux d'amortissement mesurés dans les différents modes de vibration des différents bâtiments furent très variables, avec la plupart des valeurs concentrées entre un et quatre pourcent de l'amortissement critique. Cette variabilité n'est pas réduite si l'on considère d'autres modèles proposés dans la litérature scientifique. En fonction de ces observations, et dû au fait que l'amortissement augmente généralement lors de vibrations de grande amplitude, des valeurs d'amortissement de deux pourcent sont suggérées pour calculer les effets du vent sur les bâtiments avec murs de refend; tandis que et des valeurs de trois pourcent semblent appropriées pour les charges sismiques.Enfin, des modèles simples, qui concordent très bien avec les modèles suggérés dans la litérature, sont proposés pour estimer les périodes naturelles des modes de torsion et du deuxième mode de translation. De nouveau, des équations correspondant à la moyenne moins un écart-type et la moyenne plus un écart-type sont développées.Cette étude devrait aider les ingénieurs à sélectionner des valeurs réalistes des propriétés dynamiques pour l'analyse et la conception des bâtiments en béton armé avec murs de refend. En fin de compte, ceci devrait leur permettre de mieux prédire le comportement dynamique de ce type de bâtiment. De plus, les modèles développés dans cette thèse pourraient également mener à des améliorations aux recommendations du Code national du bâtiment du Canada.
Hagen, Garrett Richard. "Performance-Based Analysis of a Reinforced Concrete Shear Wall Building." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/803.
Full textRafie, Nazari Yasamin. "Seismic Fragility Analysis of Reinforced Concrete Shear Wall Buildings in Canada." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36090.
Full textWong, Sze-man. "Seismic performance of reinforced concrete wall structures under high axial load with particular application to low-to moderate seismic regions." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B34739531.
Full textBazargani, Poureya. "Seismic demands on gravity-load columns of reinforced concrete shear wall buildings." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46651.
Full textPaterson, James 1974. "Seismic retrofit of reinforced concrete shear walls." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33986.
Full textThe four shear wall specimens were tested under reversed cyclic loading. Two of these walls had a lap splice in the longitudinal steel at the base of the wall and the other two had a lap splice 600 mm from the base of the wall. One of each of these specimens was tested in the 'as-built' condition and the other two were retrofit prior to testing. The test results show that the retrofit strategies were successful in improving the ductility and energy dissipation of the shear walls.
Jabbour, Samer. "Comparative design of reinforced concrete shear walls." Thesis, University of Ottawa (Canada), 2000. http://hdl.handle.net/10393/10755.
Full textBin, Mohamed Zainai. "Shear strength of reinforced concrete wall-beam structures : upper-bound analysis and experiments." Thesis, University of Cambridge, 1987. https://www.repository.cam.ac.uk/handle/1810/244866.
Full textKhan, Mohammad Jalil. "Nonlinear response of reinforced concrete coupling members in earthquake-resisting shear wall structures." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27232.
Full textIn the first specimen a central reinforcement cage was provided in the slab between the shear walls. In the second and third models this central cage was replaced by a longitudinal beam. In addition, transverse concealed beams were provided at critical wall-toe regions. The flexural capacities of the concealed transverse beams were different in the second and third specimen. All these specimens were tested under progressively increasingly relative displacements being imposed between the walls. The force-displacement characteristics, reinforcement strains and the wall deflection profiles are presented.
The results of the tests were found to be in a good agreement with those of the previous studies by Taylor (8) and by Malyszko (15). The horizontal legs of the stirrups in the central cage were found to be effective in confining the excessively cracked concrete at higher displacement ductilities. The longitudinal beam along with transverse concealed beams effectively controlled the punching shear failure at the critical wall-toe regions. The transverse concealed beams were also helpful in distributing the concentrated deformations across the width of the slab.
Books on the topic "Reinforced concrete shear wall"
Farrar, C. R. Damping in low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textFarrar, C. R. Stiffness of low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textFarrar, C. R. Damping in low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textFarrar, C. R. Stiffness of low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textFarrar, C. R. Damping in low-aspect-ratio, reinforced concrete shear walls. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textFarrar, C. R. Experimental assessment of damping in low aspect ratio, reinforced concrete shear wall structure. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1988.
Find full textEmara, Mohamed Basil. Shear deformations in reinforced concrete frames. Ottawa: National Library of Canada, 1990.
Find full textBhide, Shrinivas Balkrishna. Reinforced concrete elements in shear and tension. Toronto, Ont: University of Toronto, Dept. of Civil Engineering, 1987.
Find full textLai, Derek. Crack shear-slip in reinforced concrete elements. Ottawa: National Library of Canada, 2001.
Find full textYoichi, Yoshida. Shear reinforcement for large lightly reinforced concrete members. Ottawa: National Library of Canada, 2000.
Find full textBook chapters on the topic "Reinforced concrete shear wall"
Sabapathy, Y. K., V. Nithish, S. Vishnu Varadan, and K. Udhaya Prabhu. "Shear Behaviour of Concrete Wall Panels Reinforced with FRP Bars." In Lecture Notes in Civil Engineering, 257–73. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5101-7_26.
Full textShil, Pijush, Shubham Singhal, Ajay Chourasia, and Ravindranatha. "Seismic Performance Assessment of Reinforced Concrete Building with Precast Shear Wall." In Lecture Notes in Civil Engineering, 95–107. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9976-7_10.
Full textHsu, Thomas T. C. "Shear Ductility and Energy Dissipation of Reinforced Concrete Walls." In Infrastructure Systems for Nuclear Energy, 185–202. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536254.ch12.
Full textKothari, Paresh, Y. M. Parulekar, G. V. Ramarao, and G. V. Shenai. "Floor Response Spectra Generation Considering Nonlinearity of Reinforced Concrete Shear Walls." In Lecture Notes in Civil Engineering, 381–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8138-0_30.
Full textLe Nguyen, Khuong, Ba Tam Truong, and Minh Quyen Cao. "Simulation of Reinforced Concrete Short Shear Walls Subjected to Seismic Loading." In Lecture Notes in Civil Engineering, 254–62. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6713-6_24.
Full textDragan, Dan, Andre Plumier, and Hervé Degée. "Experimental Study Regarding Shear Behavior of Concrete Walls Reinforced by Multiple Steel Profiles." In High Tech Concrete: Where Technology and Engineering Meet, 1077–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_125.
Full textDumaru, Rakesh, Hugo Rodrigues, and Humberto Varum. "Seismic Performance Assessment, Retrofitting and Loss Estimation of an Existing Non-Engineered Building in Nepal." In Case Studies on Conservation and Seismic Strengthening/Retrofitting of Existing Structures, 43–70. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2020. http://dx.doi.org/10.2749/cs002.043.
Full textPanagouli, O., E. Mistakidis, and K. Iordanidou. "Numerical Determination of the Seismic Strength of Reinforced Concrete Shear Walls with Fractal Cracks." In Computational Methods in Applied Sciences, 129–48. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6573-3_7.
Full textRajbanshi, Soumi, Abhishek Kumar, and Kaustubh Dasgupta. "A Comparative Study of Axial Force—Bending Moment Interaction Curve for Reinforced Concrete Slender Shear Wall With Enlarged Boundary Element." In Lecture Notes in Civil Engineering, 497–503. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26365-2_46.
Full textSun, Baoyin, Quan Gu, Peizhou Zhang, and Jinping Ou. "A Practical Multi-cross-line Model for Simulating Nonlinear Cyclic Behavior of Reinforced Concrete Shear Wall in Super High-Rise Buildings." In Lecture Notes in Civil Engineering, 364–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67443-8_31.
Full textConference papers on the topic "Reinforced concrete shear wall"
FAN, CHANG LIN, and SHAN YUAN ZHANG. "RIGID-PLASTIC SEISMIC DESIGN OF REINFORCED CONCRETE SHEAR WALL." In Proceedings of the 9th AEPA2008. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814261579_0059.
Full textLi, Zheng, Heng Zhou, and Li Qin. "Research on Seismic Performance of Reinforced Concrete Shear Wall Structure." In 2015 6th International Conference on Manufacturing Science and Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmse-15.2015.10.
Full textMorales, Alejandro, Paola Ceresa, and Matías Hube. "SEISMIC SHEAR AND MOMENT DEMANDS IN REINFORCED CONCRETE WALL BUILDINGS." In 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2019. http://dx.doi.org/10.7712/120119.7211.20160.
Full textGilles, D., and G. McClure. "In Situ Dynamic Characteristics of Reinforced Concrete Shear Wall Buildings." In Structures Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412367.196.
Full textZhou, Junming, Y. L. Mo, Xianghong Sun, and Jie Li. "Seismic Performance of Composite Steel Plate Reinforced Concrete Shear Wall." In 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41096(366)285.
Full textZhao Jun, Wang Jian-qiang, and Zhang Hua-song. "Reinforcement method of reinforced concrete shear wall after normal section failure." In 2010 International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2010. http://dx.doi.org/10.1109/mace.2010.5535994.
Full textWang, Ming L. "Inelastic Analysis of Reinforced Concrete Shear Wall Structures Under Seismic Excitation." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0271.
Full textSi, Lin Jun, Guo Qiang Li, and Fei Fei Sun. "Ductility Calculation of Reinforced Concrete Shear Walls." In 7th International Conference on Tall Buildings. Singapore: Research Publishing Services, 2009. http://dx.doi.org/10.3850/9789628014194_0015.
Full textSivaguru, V. "Behaviour of reinforced concrete squat shear walls with utility openings." In 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.235488.
Full textDENG, MINGKE, XINGWEN LIANG, and QINGSHAN LIU. "RESEARCH ON CALCULATING METHODS OF STOREY DRIFT FOR REINFORCED CONCRETE SHEAR WALL STRUCTURES." In Tall Buildings from Engineering to Sustainability - Sixth International Conference on Tall Buildings, Mini Symposium on Sustainable Cities, Mini Symposium on Planning, Design and Socio-Economic Aspects of Tall Residential Living Environment. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701480_0121.
Full textReports on the topic "Reinforced concrete shear wall"
McKinley, Leo D. Reinforced Concrete Wall Form Design Program. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada258504.
Full textBrady, Pamalee A., and Orange S. Marshall. Shear Strengthening of Reinforced Concrete Beams Using Fiber-Reinforced Polymer Wraps. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada359462.
Full textGrimes, Hartley Ray. The Longitudinal Shear Behavior of Carbon Fiber Grid Reinforced Concrete Toppings. Precast/Prestressed Concrete Institute, 2009. http://dx.doi.org/10.15554/pci.rr.comp-010.
Full textHiggins, Christopher. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface Bonded Carbon Fiber-Reinforced Polymer. Portland State University Library, May 2009. http://dx.doi.org/10.15760/trec.21.
Full textHariri-Ardebili, Mohammad, Victor Saouma, and Yann Le Pape. Effect of Alkali-Silica Reaction on Shear Strength of Reinforced Concrete Structural Members. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1393807.
Full textHiggins, Christopher. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer: Final Report. Portland State University Library, May 2009. http://dx.doi.org/10.15760/trec.86.
Full textGirrens, S. P., and C. R. Farrar. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5528280.
Full textEbeling, Robert, and Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/39881.
Full textPost-Tensioned Concrete Shear Wall. Purdue University, 2015. http://dx.doi.org/10.5703/1288284315718.
Full textSTRESS RESPONSE AND INITIAL STIFFNESS OF SIDE PLATE CONNECTIONS TO WCFT COLUMNS. The Hong Kong Institute of Steel Construction, September 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.9.
Full text