Academic literature on the topic 'Reinforced concrete slab'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reinforced concrete slab.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reinforced concrete slab"

1

Wang, Xiao Wei, Wen Ling Tian, Zhi Yuan Huang, Ming Jie Zhou, and Xiao Yan Zhao. "Analysis on Punching Shear Behavior of the Raft Slab Reinforced with Steel Fibers." Key Engineering Materials 400-402 (October 2008): 335–40. http://dx.doi.org/10.4028/www.scientific.net/kem.400-402.335.

Full text
Abstract:
The thickness of the raft slab is determined by punching shear. The raft slab is commonly thick, which causes concrete volume is large. Mass concrete can bring disadvantage to the foundation. In order to increase the bearing capacity and reduce the thickness, it is suggested that the raft slab to be reinforced by steel fibers. There are five groups of specimens in this paper. S1 is the common reinforced concrete slab. S2 and S3 are concrete slabs reinforced by steel fibers broadcasted layer by layer when casting specimen. S4 and S5 are concrete slabs reinforced by steel fibers mixed homogeneously when making concrete. The punching shear tests of these slabs were done. The test results indicate that the punching shear capacity of the slab reinforced with steel fibers is higher than that of concrete slab, the stiffness and crack resistance of the steel fibers reinforced concrete slab are better than those of the common concrete slab and the punching shear of the slabs with different construction methods of steel fibers is similar. It analyses the punching shear behavior of the slab reinforced with steel fibers and suggests the ultimate bearing formula. The calculative values are coincided with the measured values well.
APA, Harvard, Vancouver, ISO, and other styles
2

Galishnikova, Vera V., Alireza Heidari, Paschal C. Chiadighikaobi, Adegoke Adedapo Muritala, and Dafe Aniekan Emiri. "Ductility and flexure of lightweight expanded clay basalt fiber reinforced concrete slab." Structural Mechanics of Engineering Constructions and Buildings 17, no. 1 (December 15, 2021): 74–81. http://dx.doi.org/10.22363/1815-5235-2021-17-1-74-81.

Full text
Abstract:
Relevance. The load on a reinforced concrete slab with high strength lightweight aggregate concrete leads to increased brittleness and contributes to large deflection or flexure of slabs. The addition of fibers to the concrete mix can improve its mechanical properties including flexure, deformation, toughness, ductility, and cracks. The aims of this work are to investigate the flexure and ductility of lightweight expanded clay concrete slabs reinforced with basalt fiber polymers, and to check the effects of basalt fiber mesh on the ductility and flexure. Methods. The ductility and flexural/deflection tests were done on nine engineered cementitious composite (expanded clay concrete) slabs with dimensions length 1500 mm, width 500 mm, thickness 65 mm. These nine slabs are divided in three reinforcement methods types: three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm (first slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed chopped basalt fiber plus basalt fiber polymer (mesh) of cells 2525 mm (second slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed basalt fiber of length 20 mm, diameter 15 m (third slab type). The results obtained showed physical deflection of the three types of slab with cracks. The maximum flexural load for first slab type is 16.2 KN with 8,075 mm deflection, second slab type is 24.7 KN with 17,26 mm deflection and third slab type 3 is 32 KN with 15,29 mm deflection. The ductility of the concrete slab improved with the addition of dispersed chopped basalt fiber and basalt mesh.
APA, Harvard, Vancouver, ISO, and other styles
3

Surianinov, Mykola, Stepan Neutov, Iryna Korneieva, and Maryna Sydorchuk. "Study and Comparison of Characteristics of Models of Hollow-Core Slabs, Reinforced Concrete and Steel-Fiber Concrete." Key Engineering Materials 864 (September 2020): 9–18. http://dx.doi.org/10.4028/www.scientific.net/kem.864.9.

Full text
Abstract:
Two models of hollow core slabs were tested: reinforced concrete and steel fiber concrete. When designing slab models, the proportions of full-sized structures were preserved for the further possibility of correct data comparison. As a result of testing models of hollow core slabs, it was found that the bearing capacity of a slab with combined reinforcement is 24% higher than that of reinforced concrete, the deflection is 36% less, and the crack resistance is 18% higher. The use of steel fiber made it possible to avoid the brittle fracture of a steel fiber reinforced concrete slab, which was observed in the model of a conventional reinforced concrete slab.
APA, Harvard, Vancouver, ISO, and other styles
4

CAMPOS, C. O., L. M. TRAUTWEIN, R. B. GOMES, and G. MELO. "Experimental study of solid RC slabs strengthened on the upper surface." Revista IBRACON de Estruturas e Materiais 11, no. 2 (April 2018): 255–78. http://dx.doi.org/10.1590/s1983-41952018000200003.

Full text
Abstract:
Abstract The current study presents the results of tests conducted in 5 reinforced concrete slabs (415 cm x 415 cm x 7 cm) in order to experimentally check the possibility of reinforcing their upper surface, as well as to assess the adhesion between the old and the reinforcing concrete layers in the slab. The main variables were the concrete and reinforcement strength deficiencies. Reference slab “L1” was tested until reaching the failure load, whereas the others were tested until reaching certain load limit, reinforced and retested until reaching the failure load. All slabs failed under bending. The strengthening increased the failure load by 30% in slabs reinforced at minimum reinforcement rate when they were compared to similar non-reinforced slabs, regardless of the original concrete strength. None of the tests conducted in the reinforced slabs showed detachments or evidence of adhesion loss between the old and reinforcing concretes.
APA, Harvard, Vancouver, ISO, and other styles
5

Pang, Rui, Yibo Zhang, Longji Dang, Lanbo Zhang, and Shuting Liang. "Experimental and numerical investigation on the vertical bearing behavior of discrete connected new-type precast reinforced concrete floor system." Advances in Structural Engineering 23, no. 11 (March 13, 2020): 2276–91. http://dx.doi.org/10.1177/1369433220911141.

Full text
Abstract:
This article proposes a new type of discrete connected precast reinforced concrete diaphragm floor system that consists of precast flat slabs and slab joint connectors. An experimental investigation of discrete connected new-type precast reinforced concrete diaphragm under a vertical distributed static load was conducted, and the effect of slab joint connectors on the load-bearing capacity was evaluated. Then, a finite element analysis of discrete connected new-type precast reinforced concrete diaphragm, precast reinforced concrete floors without slab connectors, and cast-in-situ reinforced concrete floor were performed to understand their working mechanism and determine the differences in load-bearing behavior. The results indicate that the load-bearing capacity and stiffness of discrete connected new-type precast reinforced concrete diaphragm increase considerably as the hairpin and cover plate hybrid slab joint connectors can efficiently connect adjacent precast slabs and enable them to work together under a vertical load by transmitting the shear and moment forces in the orthogonal slab laying direction. The deflection of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction is mainly caused by the opening deformation of the slab joint and the rotational deformation of the precast slabs. This flexural deformation feature can provide reference for establishing the bending stiffness analytical model of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction, which is vitally important for foundation of the vertical bearing capacity and deformation calculation method. The deflection and crack distribution patterns infer that the discrete connected new-type precast reinforced concrete diaphragm processes the deformation characteristic of two-way slab floor, which can provide a basis for the theoretical analysis of discrete connected new-type precast reinforced concrete diaphragm.
APA, Harvard, Vancouver, ISO, and other styles
6

Khairussaleh, Nor Ashikin Muhammad, Ng Kah Hoe, and Gerald A. R. Parke. "Effect of Area Loading on Flexural Performance of Bubble Deck Slab." Key Engineering Materials 912 (March 4, 2022): 41–54. http://dx.doi.org/10.4028/p-51xde0.

Full text
Abstract:
Reinforced bubble deck slab is a structural slab that contains high-density polyethene (HDPE) hollow spherical plastic bubble balls forming a slab with less concrete volume compared to the normal reinforced concrete slab. Reducing certain volumes of concrete from 30 to 50% will affect the performance of the slab structure in particular the flexural and shear capacity. Thus, in this research the effect of area loading on the flexural performance of bubble deck slabs is investigated by considering the slabs to be one-way supported slabs. The square deck slabs used were 1200mm by 1200mm for the width and length with a thickness of 230mm. A total of 36 HDPE hollow spherical plastic bubble balls with a 180mm diameter were placed in the bubble deck slab specimens which reduce significantly the structural self-weight. In this paper, the experimental results of the flexural performance of the reinforced bubble deck slab, (BD slab) compared with a conventional reinforced concrete slab, simply supported, subjected to static area loadings, are presented. The effect of the load applied in the experiments on the flexural strength, bending stiffness and load-deflection behaviour of both types of slabs have been discussed including the crack propagation and crack pattern. In general, the conventionally reinforced solid slab, simply supported (SS) has a 60.6% higher resistance against bending deformation than the reinforced bubble deck slab.
APA, Harvard, Vancouver, ISO, and other styles
7

Kataoka, Shinnosuke, Masuhiro Beppu, Hiroyoshi Ichino, Tatsuya Mase, Tatsuya Nakada, and Ryo Matsuzawa. "Failure behavior of reinforced concrete slabs subjected to moderate-velocity impact by a steel projectile." International Journal of Protective Structures 8, no. 3 (September 2017): 384–406. http://dx.doi.org/10.1177/2041419617721550.

Full text
Abstract:
This study investigates the failure characteristics of reinforced concrete slabs subjected to moderate-velocity impacts by conducting impact tests and numerical simulations. In a series of tests, a spherical steel projectile with a mass of 8.3 kg and a diameter of 80 mm is collided with an reinforced concrete slab at an impact velocity of 65–90 m/s. To investigate the failure characteristics of the reinforced concrete slab, impact motion of the projectile, reaction force, and strain–time history on the back surface and reinforcing bars of the reinforced concrete slab were measured. Failure modes obtained experimentally were compared with the Central Research Institute of Electric Power Industry formula proposed for the local damage of reinforced concrete slabs. Test results revealed that a circular scabbing crack on the back surface of the reinforced concrete slab was completed while there is a sharp increase in the reaction force. Numerical simulations using a high-fidelity concrete model reasonably reproduced the failure characteristics of an reinforced concrete slab. Numerical results demonstrated that the scabbing failure of an reinforced concrete slab subjected to a moderate-velocity impact was initiated by the penetration of the projectile and was completed during the reaction force response.
APA, Harvard, Vancouver, ISO, and other styles
8

Abdullah, Mazen D., Mustafa Sheriff, and Aqeel Hateem. "Flexural Strength of Reinforced Concrete Two way Slabs Strengthened and Repaired by High Strength Ferrocement at Tension Zone." Wasit Journal of Engineering Sciences 5, no. 1 (April 12, 2017): 104–19. http://dx.doi.org/10.31185/ejuow.vol5.iss1.68.

Full text
Abstract:
This paper presents a study of the flexural behavior of strengthened and repaired reinforced concrete two slabs by ferrocement layers. This study included testing 11 simply supported two way slabs, which include 1 control slabs, 8 strengthened slabs and 2 repaired slabs. In the strengthened slabs the effect of the thickness of ferrocement layers, the compressive strength for mortar and number of wire mesh layers of ferrocement on the ultimate load, mid span deflection at ultimate load and intensity of cracks was investigate. In the repaired part the slabs were loaded to (74 %) of measured ultimate load of control slab. The effect of connection method between repaired slabs and ferrocement jacket on the ultimate load, mid span deflection at ultimate load and intensity of cracks was examined. All reinforced concrete slab specimens were designed of the same dimensions and reinforce identically to fail in flexure. All slabs have been tested in simply supported conditions subjected to central concentrated load. The experimental results show that the ultimate loads are increased by about (4.6-19.2%) for the slabs strengthened with ferrocement with respect to the unstrengthened reinforced concrete slab (control slab).
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Yung Tsang. "An Experimental Study on the use of Fiber-Reinforced Concrete in Bridge Approach Slabs." Applied Mechanics and Materials 361-363 (August 2013): 1217–22. http://dx.doi.org/10.4028/www.scientific.net/amm.361-363.1217.

Full text
Abstract:
Fiber-reinforced concrete is well known for crack control by bridging cracks in the concrete. Short, discontinuous fibers are added into plain concrete to provide post-cracking ductility to the fiber-reinforced concrete. Although fiber-reinforced concrete has been used in various civil engineering applications, the practical application of fiber-reinforced concrete in bridge approach slabs is rarely found. In this paper, steel fibers, serving as macro-fibers, and polyvinyl alcohol fibers, serving as micro-fibers, were added to the approach slab concrete for crack control purpose. This paper describes flexural tests of four fiber-reinforced concrete beams and loading test of a full scale fiber-reinforced concrete approach slab. Results from the flexural beam test show that the addition of fibers greatly improves the fracture toughness of the concrete. Results from the loading test show that the overall performance of the slab is comparable to conventional reinforced concrete approach slabs, and the surface cracks on the slab due to negative moment can be adequately controlled by the addition of steel and polyvinyl alcohol fibers into concrete, even without top reinforcement mat.
APA, Harvard, Vancouver, ISO, and other styles
10

Muhammad Khairussaleh, Nor Ashikin, Ng Kah Hoe, Roslina Omar, and Gerald A. R. Parke. "The Effect of Area Loading and Punching Shear on the Reinforced Concrete Slab Containing Spherical Plastic Bubble Balls." Key Engineering Materials 912 (March 4, 2022): 211–23. http://dx.doi.org/10.4028/p-m89355.

Full text
Abstract:
The reinforced bubble deck slab or BubbleDeck is a unique system that improves the building design and performance of structures. This slab structure is a reinforced concrete structure that contains high-density polyethene (HDPE) hollow spherical plastic bubble balls with less concrete volume compared to a normal reinforced concrete slab. The system can facilitate up to a 50% longer span compared to a conventional reinforced concrete solid slab. But, eliminating the deadweight concrete may affect the actual performance of the slab structure such as its flexural and shear capacity. Thus, this paper investigates the effect of area loading and punching shear loading on the reinforced bubble deck slab in terms of flexural performance. The square slabs with 1200mm by 1200mm for width and length with a thickness of 230mm were designed as a one-way supported slab. A total of 36 HDPE hollow spherical plastic bubble balls with a 180mm diameter were placed in each bubble deck slab specimen. The high yield steel DA6 BRC reinforcement steel bar meshes and Grade-30 concrete were used for the slabs. The experimental results of the flexural performance of the reinforced bubble deck slab that were subjected to the static area and punching shear loadings are presented. The effect of the load applied in the experiments on the slabs such as flexural strength, bending stiffness and load-deflection behaviour were discussed including the crack propagation and crack pattern.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Reinforced concrete slab"

1

Shao, Xiao-yun. "Punching shear strength of reinforced concrete slab." Thesis, University of Ottawa (Canada), 1993. http://hdl.handle.net/10393/10727.

Full text
Abstract:
This thesis presents the results of punching shear tests performed on a 2 x 2 bay continuous slab with/and without supplementary supports. On the basis of these tests, the code method of calculating the ultimate strength of interior, edge and corner column connections of flat slab were investigated. The thickness of the specimen was 140 mm and the spans length were 2743 mm. The ACI 318-89, BS 8110-85 and CEB-FIP 90 Codes were critically reviewed by comparing with the experiment results and results from the literature. It was found that in general the Code predictions are reasonable but for corner column connections the ACI Code over-estimates the ultimate shear capacity of the slab and BS 8110-85 requirements for edge and corner column connections are simplistic. The experimental results show that the supplementary supports can increase the ultimate punching shear capacity when the supports are properly located.
APA, Harvard, Vancouver, ISO, and other styles
2

Russell, Justin. "Progressive collapse of reinforced concrete flat slab structures." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/28991/.

Full text
Abstract:
In 1968 a relatively small gas exposition on the 18th floor of the Ronan Point tower building resulted in the partial collapse of the structure. This event highlighted that progress collapse may occur to structures under an accidental loading event. Other events, including the bombing of the Murrah federal building in 1993 in Oklahoma, have resulted in the common design requirement that a structure be capable of surviving the removal of a load bearing element. This approach, often referred to as the sudden column loss scenario, effectively ignores the cause of the damage and focuses on the structure’s response afterwards. The refinement of the analysis varies, with options to include the nonlinear and dynamic behaviours associated with extreme events, or to use simplified linear and static models with factors included to account for the full behaviour. Previous research into progressive collapse has highlighted that providing ductility in the connections, and avoiding brittle failures, is important in ensuring the structure maintains integrity after a column loss event. However, the majority of this work has been focused on the behaviour of steel and Reinforced Concrete (RC) frame structures. As flat slab construction is a popular method for many structures, due to the flexibility it offers for layouts and its low storey heights, it is an important to consider flat slab behaviour in more detail. Furthermore, slab elements behave differently to frame structures due to the Alternative Load Paths (ALPs) that can develop after a column loss via two-dimensional bending mechanisms. Additionally, punching shear failure is a known issue due to the thin section depths. This work addresses the issue of the response of RC flat slab structures after a sudden column loss. As previous case studies have demonstrated that brittle failures may lead to progressive collapse of such structures, a complete understanding of the response is required. The nonlinear behaviour of a slab structure, due to both material and geometric factors, is investigated to determine the additional capacity available beyond the usual design limits. Additionally, the dynamic factors involved, primarily due to inertial effects, are also considered. To achieve this, experimental and numerical studies were conducted. A series of 1/3 scale models of slab substructures were constructed to replicate column loss events. Two types of tests were conducted, a static push down test with a support removed and a sudden dynamic column removal case. Displacements, strains and support reactions were recorded throughout, along with cracking patterns. For the dynamic tests a high speed camera was used to obtain the deflection response in the short time period after removal and to observe the formation of cracks. Comparisons between the two cases allowed determination of the dynamic effects on the response of the system. The experimental programme was then replicated using a Finite Element (FE) model. The results taken from the experimental case were used to validate the material and modelling assumptions made during the numerical simulations. This validated model was finally used to investigate a wider range of variables and assess the response of typical structural arrangements, with particular focus on the nonlinear and dynamic factors involved after a sudden column loss. The experimental and numeral investigations demonstrated that after the loss of a column, flat slab structures can maintain integrity due to a change in the load paths away from the removal location. Although in some cases a large amount of flexural damage to the concrete and reinforcement occurred, such effects did not lead to complete failure. However, during the experimental programme some punching shear failures occurred, usually at the corner column locations. From the numerical analysis, shear forces of over twice the fully supported condition occurred as a result of removing a column, which may exceed the designed capacity. Comparisons between a static and dynamic analysis provides information into a suitable Dynamic Amplification Factor (DAF) for use with simplified modelling approaches. Based on the range of structures considered, the maximum increase in deflections as a result of a sudden removal was 1.62 times the static case, this is less than the commonly used factor of 2.0. Additionally, this factor reduces as the nonlinearity increases due to further damage, with a smallest DAF calculated at 1.39. This factor can be reduced further if the column is not removed instantaneously. Finally, the material strengthening effect, due to high strain rates, was considered with the conclusion that as such effects only make a limited increase in the capacity of the slab and may be conservatively ignored. In conclusion, RC flat slab structures are capable of resisting progressive collapse after the loss of a column. This is primarily due to their ability to develop ALPs. However, while flexural damage is usually fairly minimal, progressive punching shear failure is a critical design condition as it may result in a complete collapse. Furthermore, the inertial effects involved after a sudden removal can increase the damage sustained, although current design methods may be over conservative.
APA, Harvard, Vancouver, ISO, and other styles
3

Kabir, Ahsanul. "Nonlinear analysis of reinforced concrete structural slabs." Thesis, University of Strathclyde, 1986. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21467.

Full text
Abstract:
Nonlinear response of a structure to progressive loading may originate from two different sources viz, geometric nonlinearity and material nonlinear behaviour. For a rationally proportioned concrete structure, the material nonlinear responses are believed to contribute the major part of its total nonlinear behaviour. Geometric nonlinearities, become significant only when the structure is relatively slender. It is the material nonlinearities of reinforced concrete structures that are of interest in this investigation. Two plate bending finite elements have been generalised to include coupling of inplane actions with the bending effects. This was achieved through layering concept. One of these elements had been employed by some previous researchers. But the present formulation is different from theirs in that a numerical integration scheme is introduced to evaluate the stiffnesses and internal equivalent forces. A number of schemes for solving the nonlinear equations have been included in the present formulation. Suitability and effectiveness of these schemes in tracing the material nonlinear responses of concrete slabs have been examined. The numerical material model behaviour is based on the experimental observation reported by various authors. Readily available material characteristic properties are used in the description of the model. The overall response of reinforced concrete slabs is found to be significantly influenced by the cracking and post cracking treatment of concrete. Some form of tension stiffening scheme seems necessary to represent the structural response realistically. A number of conventional tension stiffening schemes have been incorporated, including a simple alternative formulation. The effect of different tension stiffening schemes and some other numerical parameters on the numerical solution of concrete structures have been investigated. Laboratory tests were carried out on a number of square and rectangular model slabs. The supporting arrangement and the applied loading systems were the main variables. These experimental records were later compared with the numerical predictions. Some other test results from literature have been included also.
APA, Harvard, Vancouver, ISO, and other styles
4

Deaton, James B. "A Finite Element Approach to Reinforced Concrete Slab Design." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7188.

Full text
Abstract:
The objective of this study was the development of a procedure in GT STRUDL to design reinforced concrete flat plate systems based on the results of finite element analysis. The current state-of-practice of reinforced concrete flat plate design was reviewed, including the ACI direct design and equivalent frame techniques, the yield line method, and the strip design method. The principles of these methods along with a critical evaluation of their applicability and limitations were presented as motivation for a finite element based design procedure. Additionally, the current state-of-the-art of flat plate design based on finite element results was presented, along with various flat plate modeling techniques. Design methodologies studied included the Wood and Armer approach, based on element stress resultants, and the resultant force approach, based on element forces. A flat plate design procedure based on the element force approach was embodied in the DESIGN SLAB command, which was implemented in GT STRUDL. The DESIGN SLAB command provides the user the ability to design a slab section by specifying a cut definition and several optional design parameters. The procedure determines all nodes and elements along the cut, computes the resultant moment design envelope acting on the cross-section, and designs the slab for flexure in accordance with provisions of ACI 318-02. Design examples presented include single-panel flat plate systems with various support conditions as well as multi-panel systems with regular and irregular column spacing. These examples allowed for critical comparison with results from experimental studies and currently applied design methods in order to determine the applicability of the implemented procedure. The DESIGN SLAB command was shown to produce design moments in agreement with experimental data as well as conventional design techniques for regular configurations. The examples additionally showed that when cuts were not oriented orthogonally to the directions of principle bending, resulting designs based on element forces could significantly under-reinforce the cross-section due to significant torsional effects.
APA, Harvard, Vancouver, ISO, and other styles
5

Lodi, Sarosh Hashmat. "Reinforced concrete slab elements under bending and twisting moments." Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/1192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Zhicheng. "Corrosion Damage of Reinforcement Embedded in Reinforced Concrete Slab." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1478174479305336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boting, Antony John. "Modelling of reinforced concrete slab deflections at service loading." Master's thesis, University of Cape Town, 1994. http://hdl.handle.net/11427/8458.

Full text
Abstract:
Includes bibliographical references.
Deflection under service loading is an important aspect of reinforced concrete slab design. Under-design can cause large deflections which can be expensive to repair, if at all possible. Over-design can lead to material wastage and unnecessary dead load. Deflection is inversely proportional to the effective moment of inertia of the section under consideration. Cracks, which may or may not be present at the serviceability limit state, have a profound effect on the moment of inertia. Many Codes of practice approach the calculation of deflection in a conservative manner by using the cracked moment of inertia in deflection calculations and ignoring the effect of the concrete in tension. Two of the Codes reviewed make an attempt at including the stiffening effect of the concrete in tension. The theory in the CEB/FIP Model Code is used as a basis for the method that is developed to predict maximum deflections. This method proposes that the total maximum deflection is composed of two components: an elastic deflection and a deflection due to cracking. The elastic deflection for a beam is determined from elastic formulae that are developed from first principles for standard beam cases. The deflection due to cracking involves the cracking moment capacity of the beam, what portion of the beam is cracked, the formation of a hinge and the rotation of this hinge. One-way spanning slabs can be treated as broad, shallow-beams. Two-way spanning slabs are more complicated and to determine the load dispersion of a uniformly distributed load on such a slab, it is divided into five sets of orthogonal strips. The two outer strips do not carry any load. The three inner strips intersect at nine points or nodes. The deflection of each pair of orthogonal strips at each of the nine nodes must be equal. Deflection equations are set up in terms of an unknown portion of the load at each node. Since the full load at each node is known, the sum of the loads in the orthogonal directions must be equal to this full load. A matrix is set up and solved and the load dispersion at each node is determined. The equivalent load on a strip spanning through the region of maximum deflection is thus found. For the two orthogonal strips spanning through the region of maximum deflection, the average deflection is then taken. A computer program is written which incorporates the above approach. The program is then run for slab configurations that were tested in the laboratory and the results are compared. The results show that the proposed computational models over-predict slab deflections. As soon as the slab is clamped on more than one edge or if the aspect ratio increases above 1 then the results in the orthogonal directions differ by a large amount. The recommended improvements to these computational models are: - Increase the number of orthogonal strips and introduce torsion. This will also improve the continuity between strips spanning in the same direction. The tension stiffening factor has to be redefined. This will reduce the contribution of deflection due to cracking.
APA, Harvard, Vancouver, ISO, and other styles
8

El-Hafez, L. M. A. "Direct design of reinforced concrete skew slabs." Thesis, University of Glasgow, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Manatakos, Kyriakos. "Behaviour and design of reinforced concrete core-slab-frame structures." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ30330.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manatakos, Kyriakos 1960. "Behaviour and design of reinforced concrete core-slab-frame structures." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42088.

Full text
Abstract:
This dissertation examines the response and design of reinforced concrete core-slab-frame structures subjected to monotonically increasing earthquake and gravity loads throughout the entire load range until failure, presenting findings from three separate studies by Manatakos and Mirza (1995) continuing the M. Eng. thesis research by Manatakos (1989). A typical building is selected consisting of a central core substructure composed of elevator, staircase and infilled slab cores, with coupling and lintel beams, and surrounding slabs joining to a frame substructure composed of slab-band girders, slabs and columns.
Stage 1 concentrates on the elastic response and Stage 3 examines the nonlinear response of the core-slab-frame structure considering the effects of cracking and crushing of concrete, strain-hardening of the reinforcement, and tension-stiffening. Analyses involve three-dimensional elastic and nonlinear finite element modeling techniques of the structure to investigate the contribution and influence of the various structural components. The structural response is examined for the deformations, the concentrated reinforcement strains and concrete stresses in the cores, the force and stress distributions in the structural members, and the failure mode.
Stage 2 focuses on the design and detailing of the core-slab-frame structure following seismic provisions of building code requirements for reinforced concrete structures where applicable as given in the CSA Standard CAN3-A23.3-MS4 (1984), the ACI Standard ACI 318M-83 (1983) and the New Zealand Standard NZS3101 (1982). Assumptions made in the conventional design procedures and any shortcomings encountered are examined. Suitable design procedures and reinforcement details are suggested where no provisions exist in the codes.
Findings demonstrate complex three-dimensional interaction among the cores, beams, slabs and frames in resisting the lateral and gravity loads, and show considerable strength, ductility and energy absorption capability of the structure. Critical areas for design include the joints and junctions near the vicinity of core wall-slab-beams ends and corners. Plastic hinging extends over the lower 2.5% to 33% height of the structure with the majority of inelastic action and damage concentrated in the bottom 10% to 15% height, predicting an ultimate load of 3.4 to 5.9 times the design earthquake load with top drifts of the structure between 750 mm to 1375 mm.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Reinforced concrete slab"

1

Ajdukiewicz, Andrzej. Reinforced-concrete slab-column structures. Amsterdam: Elsevier, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ajdukiewicz, Andrzej. Reinforced-concrete slab-column structures. Amsterdam: Elsevier, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kwieciński, Marek. Collapse load design of slab-beam systems. Chichester, West Sussex, England: Ellis Horwood, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

American Concrete Institute. Committee 352. Recommendations for design of slab-column connections in monolithic reinforced concrete structures. [Detroit]: American Concrete Institute, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eitel, Amy. Development of a load test for the evaluation and rating of short-span reinforced concrete slab bridges. Cleveland, Ohio: Dept. of Civil Engineering, Case Western Reserve University, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gibbs, Robert J. Comparative study of design methods for two-way reinforced concrete slab systems: An engineering report in civil engineering. Springfield, Va: Available from the National Technical Information Service, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

L, Gamble W., ed. Reinforced concrete slabs. 2nd ed. New York: Wiley, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Monotti, Mario. Reinforced concrete slabs: Compatibility limit design. Zurich: Verlag der Fachvereine Hochschulverlag AG an der ETH Zurich, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Limit analysis of reinforced concrete slabs. Zurich: Institut für Baustatik und Konstruktion ETH Zürich, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strip method design handbook. London: E & FN Spon, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Reinforced concrete slab"

1

Hulse, R., and W. H. Mosley. "Slab Design." In Reinforced Concrete Design by Computer, 104–26. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-18930-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hansemann, Georg, Christoph Holzinger, Robert Schmid, Joshua Paul Tapley, Stefan Peters, and Andreas Trummer. "Lightweight Reinforced Concrete Slab." In Towards Radical Regeneration, 456–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13249-0_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DING, Yining, and Xiliang NING. "Girder–Beam–Slab System." In Reinforced Concrete: Basic Theory and Standards, 403–45. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2920-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shmukler, Valerii, Olena Petrova, and Valerii Nikulin. "Highly Combinatorial Reinforced Concrete Slab System." In Proceedings of CEE 2019, 411–19. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27011-7_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, Surinder. "Reinforced Concrete Beam and Slab System." In Cost Estimation of Structures in Commercial Buildings, 11–62. London: Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13030-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Surinder. "Prestressed Concrete Beam and Reinforced Concrete Slab System." In Cost Estimation of Structures in Commercial Buildings, 109–36. London: Macmillan Education UK, 1994. http://dx.doi.org/10.1007/978-1-349-13030-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Hao, Fengchi Wang, Gang Xu, and Lilong Guo. "Laboratory Model Test of Eco-Concrete Slab Slope Protection." In Lecture Notes in Civil Engineering, 358–67. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_33.

Full text
Abstract:
AbstractIn order to study the protective effects of eco-concrete slope and the influencing factors of eco-concrete slope deformation. The displacement characteristics and ultimate bearing capacity of the slope model under different geometric parameters are obtained through the laboratory model test of eco-concrete slope protection, and the influence laws of slope deformation under different protection slope conditions are summarized, as well as the influence laws of soil compaction, soil moisture content and slope ratio on the horizontal displacement restraint capacity and stability of the slope. Compared with the unprotected slope, the ultimate load of the reinforced concrete slab slope and the ordinary concrete slab slope are increased by 2.2 times and 2.4 times respectively, and the horizontal displacement restraint capacity of the slope is increased by 29.3% and 51.6% respectively. The moisture content, compactness and slope gradient of slope soil have a certain influence on the deformation restraint capacity of slope protected by vegetation concrete slab.
APA, Harvard, Vancouver, ISO, and other styles
8

Haridharan, M. K., and C. Natarajan. "Effect of Fire on Reinforced Concrete Slab—Numerical Simulation." In Lecture Notes in Civil Engineering, 493–505. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0365-4_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Joray, Dominic, and Martin Diggelmann. "Punching Shear Strengthening at the New Station Square in Berne, Switzerland." In Case Studies of Rehabilitation, Repair, Retrofitting, and Strengthening of Structures, 35–56. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2010. http://dx.doi.org/10.2749/sed012.0035.

Full text
Abstract:
<p>The reinforced concrete slab of the reconstructed Station Square in Berne needed to be strengthened against punching shear. The case study led to the application of a newly developed post-installed punching shear reinforcement with inclined bonded bars.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Dissanayaka, R. H. M., M. A. L. Silva, L. P. G. Magallagoda, and J. C. P. H. Gamage. "Physical Behavior of CFRP Retrofitted Reinforced Concrete Slab-Column Connections." In Lecture Notes in Civil Engineering, 458–69. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9749-3_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reinforced concrete slab"

1

"Reducing CO2 Emissions of Concrete Slab Constructions with the PrimeComposite Slab System." In SP-299: Fiber Reinforced Concrete for Sustainable Structures. American Concrete Institute, 2015. http://dx.doi.org/10.14359/51688021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhi, Zhang, Liling Cao, Anurag Bura, Chanjuan Zhou, Lisa Davey, and Seyebabak Momenzadeh. "Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method." In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1404.

Full text
Abstract:
<p>Punching shear is critical for two-way reinforced concrete flat slab. The unbalanced moment at the column-slab joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load, without considering the effect from differential foundation settlement, which may govern he slab design. This paper studies a prestressed reinforced concrete slab under differential settlements using the finite element modeling (FEM) methodology. The methodology to extract data for punching shear check for the FEM is described and correlated with the corresponding code provisions. The study indicates that FE analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case study to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

"Slab-Column Connections Under Seismic Actions." In SP-232: Punching Shear in Reinforced Concrete Slabs. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakai, Hideaki. "Design method for renewal from reinforced concrete slab to precast prestressed concrete slab." In Fifth International Conference on Sustainable Construction Materials and Technologies. Coventry University and The University of Wisconsin Milwaukee Centre for By-products Utilization, 2019. http://dx.doi.org/10.18552/2019/idscmt5013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ARISOY, BENGI. "Slab Application of Fiber Reinforced Lightweigt Concrete." In Fouth International Conference on Advances in Civil, Structural and Construction Engineering - CSCE 2016. Institute of Research Engineers and Doctors, 2016. http://dx.doi.org/10.15224/978-1-63248-101-6-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Xiaochao, Mohamad N. Jlilati, and Isaac Higgins. "Concrete Slab-on-Grade Reinforced by Geogrids." In Eighth International Conference on Case Histories in Geotechnical Engineering. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482094.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Bamboo Reinforced Concrete Beams for Precast Slab." In Non-Conventional Materials and Technologies. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291838-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Modeling Parameters for Reinforced Concrete Slab-Column Connections." In SP-297: Seismic Assessment of Existing Reinforced Concrete Buildings. American Concrete Institute, 2014. http://dx.doi.org/10.14359/51686902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Practical Applications for Natural Cellulose Fiber Including Slab-on-Ground." In SP-268: Fiber Reinforced Concrete in Practice. American Concrete Institute, 2010. http://dx.doi.org/10.14359/51663712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Herraiz, Borja, Henar Martin-Sanz, and Nadja Wolfisberg. "Restoration of a historic reinforced concrete structure with Ultra-High Performance Fiber Reinforced Concrete." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.2500.

Full text
Abstract:
<p>The historic building "Du Pont" in Zurich, Switzerland, was constructed between 1912 and 1913 by the Swiss architects Haller &amp; Schindler and it is listed as a cultural heritage object, including not only the Art Deco façade, but also the ground-breaking structure of reinforced concrete. The building includes several structural particularities, such as the slender, reinforced concrete, one-way ribbed slabs, a reinforced concrete truss structure in the roof hanging four floors and three transfer beams on the ground floor diverting the loads from the seven upper floors. This paper presents a detailed description of the different strengthening measures required to allow a more flexible use of the existing floors with larger live and dead loads, and to fulfil the current provisions of the Swiss Standards (SIA). The main objective of the proposed restoration and strengthening measures is to minimize the interventions as much as possible and preserve the original structural system. Of particular interest is the innovative solution adopted for the existing ribbed slabs. The required increase of resistance is obtained through a thin 40 mm overlay of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) above the carefully prepared existing slab. Due to the significance of the building and the particular characteristics of the existing concrete, experimental tests were conducted. Four specimens of the ribbed slabs were extracted from the building, strengthened on site with UHPFRC and transported to the structural laboratory of the Swiss Federal Institute of Technology in Zürich (ETHZ), where the tests were conducted. The excellent results confirmed the suitability of the proposed strengthening solution through UHPFRC, setting a milestone for future restorations of these particular structures.</p>
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Reinforced concrete slab"

1

Seok, Seungwook, Faezeh Ravazdezh, Ghadir Haikal, and Julio A. Ramirez. Strength Assessment of Older Continuous Slab and T-Beam Reinforced Concrete Bridges. Purdue University, 2020. http://dx.doi.org/10.5703/1288284316924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ravazdezh, Faezeh, Julio A. Ramirez, and Ghadir Haikal. Improved Live Load Distribution Factors for Use in Load Rating of Older Slab and T-Beam Reinforced Concrete Bridges. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317303.

Full text
Abstract:
This report describes a methodology for demand estimate through the improvement of load distribution factors in reinforced concrete flat-slab and T-beam bridges. The proposed distribution factors are supported on three-dimensional (3D) Finite Element (FE) analysis tools. The Conventional Load Rating (CLR) method currently in use by INDOT relies on a two-dimensional (2D) analysis based on beam theory. This approach may overestimate bridge demand as the result of neglecting the presence of parapets and sidewalks present in these bridges. The 3D behavior of a bridge and its response could be better modeled through a 3D computational model by including the participation of all elements. This research aims to investigate the potential effect of railings, parapets, sidewalks, and end-diaphragms on demand evaluation for purposes of rating reinforced concrete flat-slab and T-beam bridges using 3D finite element analysis. The project goal is to improve the current lateral load distribution factor by addressing the limitations resulting from the 2D analysis and ignoring the contribution of non-structural components. Through a parametric study of the slab and T-beam bridges in Indiana, the impact of selected parameters on demand estimates was estimated, and modifications to the current load distribution factors in AASHTO were proposed.
APA, Harvard, Vancouver, ISO, and other styles
3

Hayes, John R., and Jr. Investigation of the Use of Viscoelastic Damping Devices to Rehabilitate a Lightly Reinforced Concrete Slab- Column Structure. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada360496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hasan, Hendy, and J. Ramirez. Behavior of Concrete Bridge Decks and Slabs Reinforced with Epoxy Coated Steel. West Lafayette, IN: Purdue University, 1995. http://dx.doi.org/10.5703/1288284313152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski, and Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40683.

Full text
Abstract:
A patented active porcelain enamel coating improves both the bond between the concrete and steel reinforcement as well as its corrosion resistance. A Small Business Innovation Research (SBIR) program to develop a commercial method for production of porcelain-coated fibers was developed in 2015. Market potential of this technology with its steel/concrete bond improvements and corrosion protection suggests that it can compete with other fiber reinforcing systems, with improvements in performance, durability, and cost, especially as compared to smooth fibers incorporated into concrete slabs and beams. Preliminary testing in a Phase 1 SBIR investigation indicated that active ceramic coatings on small diameter wire significantly improved the bond between the wires and the concrete to the point that the wires achieved yield before pullout without affecting the strength of the wire. As part of an SBIR Phase 2 effort, the University of Louisville under contract for Ceramics, Composites and Coatings Inc., proposed an investigation to evaluate active enamel-coated steel fibers in typical concrete applications and in masonry grouts in both tension and compression. Evaluation of the effect of the incorporation of coated fibers into Ultra-High Performance Concrete (UHPC) was examined using flexural and compressive strength testing as well as through nanoindentation.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Rongtang, and J. Olek. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs. West Lafayette, IN: Purdue University, 2001. http://dx.doi.org/10.5703/1288284313177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rahmani, Mehran, Xintong Ji, and Sovann Reach Kiet. Damage Detection and Damage Localization in Bridges with Low-Density Instrumentations Using the Wave-Method: Application to a Shake-Table Tested Bridge. Mineta Transportation Institute, September 2022. http://dx.doi.org/10.31979/mti.2022.2033.

Full text
Abstract:
This study presents a major development to the wave method, a methodology used for structural identification and monitoring. The research team tested the method for use in structural damage detection and damage localization in bridges, the latter being a challenging task. The main goal was to assess capability of the improved method by applying it to a shake-table-tested prototype bridge with sparse instrumentation. The bridge was a 4-span reinforced concrete structure comprising two columns at each bent (6 columns total) and a flat slab. It was tested to failure using seven biaxial excitations at its base. Availability of a robust and verified method, which can work with sparse recording stations, can be valuable for detecting damage in bridges soon after an earthquake. The proposed method in this study includes estimating the shear (cS) and the longitudinal (cL) wave velocities by fitting an equivalent uniform Timoshenko beam model in impulse response functions of the recorded acceleration response. The identification algorithm is enhanced by adding the model’s damping ratio to the unknown parameters, as well as performing the identification for a range of initial values to avoid early convergence to a local minimum. Finally, the research team detect damage in the bridge columns by monitoring trends in the identified shear wave velocities from one damaging event to another. A comprehensive comparison between the reductions in shear wave velocities and the actual observed damages in the bridge columns is presented. The results revealed that the reduction of cS is generally consistent with the observed distribution and severity of damage during each biaxial motion. At bents 1 and 3, cS is consistently reduced with the progression of damage. The trends correctly detected the onset of damage at bent 1 during biaxial 3, and damage in bent 3 during biaxial 4. The most significant reduction was caused by the last two biaxial motions in bents 1 and 3, also consistent with the surveyed damage. In bent 2 (middle bent), the reduction trend in cS was relatively minor, correctly showing minor damage at this bent. Based on these findings, the team concluded that the enhanced wave method presented in this study was capable of detecting damage in the bridge and identifying the location of the most severe damage. The proposed methodology is a fast and inexpensive tool for real-time or near real-time damage detection and localization in similar bridges, especially those with sparsely deployed accelerometers.
APA, Harvard, Vancouver, ISO, and other styles
8

SEISMIC BEHAVIOR OF BIAXIAL HOLLOW REINFORCED CONCRETE SLAB TO CONCRETE-FILLED STEEL TUBULAR COLUMN CONNECTIONS. The Hong Kong Institute of Steel Construction, September 2020. http://dx.doi.org/10.18057/ijasc.2020.16.3.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

REVIEW OF VARIOUS SHEAR CONNECTORS IN COMPOSITE STRUCTURES. The Hong Kong Institute of Steel Construction, December 2021. http://dx.doi.org/10.18057/ijasc.2021.17.4.8.

Full text
Abstract:
Shear connectors are devices that provide shear connection at the interface of steel girders and reinforced concrete slabs in composite structures to accomplish composite action in a flexure. The seismic response of composite structures can be controlled using properly designed shear connectors. This state-of-the-art review article presents considerable information about the distinct types of shear connectors employed in composite structures. Various types of shear connectors, their uniqueness and characteristics, testing methods and findings obtained during the last decade are reviewed. The literature, efficacy, and applicability of the different categories of shear connectors, for example, headed studs, perfobond ribs, fibre reinforced polymer perfobonds, channels, pipes, Hilti X-HVB, composite dowels, demountable bolted shear connectors, and shear connectors in composite column are thoroughly studied. The conclusions made provide a response to the flow of the use of shear connectors for their behaviours, strength, and stiffness to achieve composite action.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography