To see the other types of publications on this topic, follow the link: Reinforced concrete slab.

Dissertations / Theses on the topic 'Reinforced concrete slab'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Reinforced concrete slab.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Shao, Xiao-yun. "Punching shear strength of reinforced concrete slab." Thesis, University of Ottawa (Canada), 1993. http://hdl.handle.net/10393/10727.

Full text
Abstract:
This thesis presents the results of punching shear tests performed on a 2 x 2 bay continuous slab with/and without supplementary supports. On the basis of these tests, the code method of calculating the ultimate strength of interior, edge and corner column connections of flat slab were investigated. The thickness of the specimen was 140 mm and the spans length were 2743 mm. The ACI 318-89, BS 8110-85 and CEB-FIP 90 Codes were critically reviewed by comparing with the experiment results and results from the literature. It was found that in general the Code predictions are reasonable but for corner column connections the ACI Code over-estimates the ultimate shear capacity of the slab and BS 8110-85 requirements for edge and corner column connections are simplistic. The experimental results show that the supplementary supports can increase the ultimate punching shear capacity when the supports are properly located.
APA, Harvard, Vancouver, ISO, and other styles
2

Russell, Justin. "Progressive collapse of reinforced concrete flat slab structures." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/28991/.

Full text
Abstract:
In 1968 a relatively small gas exposition on the 18th floor of the Ronan Point tower building resulted in the partial collapse of the structure. This event highlighted that progress collapse may occur to structures under an accidental loading event. Other events, including the bombing of the Murrah federal building in 1993 in Oklahoma, have resulted in the common design requirement that a structure be capable of surviving the removal of a load bearing element. This approach, often referred to as the sudden column loss scenario, effectively ignores the cause of the damage and focuses on the structure’s response afterwards. The refinement of the analysis varies, with options to include the nonlinear and dynamic behaviours associated with extreme events, or to use simplified linear and static models with factors included to account for the full behaviour. Previous research into progressive collapse has highlighted that providing ductility in the connections, and avoiding brittle failures, is important in ensuring the structure maintains integrity after a column loss event. However, the majority of this work has been focused on the behaviour of steel and Reinforced Concrete (RC) frame structures. As flat slab construction is a popular method for many structures, due to the flexibility it offers for layouts and its low storey heights, it is an important to consider flat slab behaviour in more detail. Furthermore, slab elements behave differently to frame structures due to the Alternative Load Paths (ALPs) that can develop after a column loss via two-dimensional bending mechanisms. Additionally, punching shear failure is a known issue due to the thin section depths. This work addresses the issue of the response of RC flat slab structures after a sudden column loss. As previous case studies have demonstrated that brittle failures may lead to progressive collapse of such structures, a complete understanding of the response is required. The nonlinear behaviour of a slab structure, due to both material and geometric factors, is investigated to determine the additional capacity available beyond the usual design limits. Additionally, the dynamic factors involved, primarily due to inertial effects, are also considered. To achieve this, experimental and numerical studies were conducted. A series of 1/3 scale models of slab substructures were constructed to replicate column loss events. Two types of tests were conducted, a static push down test with a support removed and a sudden dynamic column removal case. Displacements, strains and support reactions were recorded throughout, along with cracking patterns. For the dynamic tests a high speed camera was used to obtain the deflection response in the short time period after removal and to observe the formation of cracks. Comparisons between the two cases allowed determination of the dynamic effects on the response of the system. The experimental programme was then replicated using a Finite Element (FE) model. The results taken from the experimental case were used to validate the material and modelling assumptions made during the numerical simulations. This validated model was finally used to investigate a wider range of variables and assess the response of typical structural arrangements, with particular focus on the nonlinear and dynamic factors involved after a sudden column loss. The experimental and numeral investigations demonstrated that after the loss of a column, flat slab structures can maintain integrity due to a change in the load paths away from the removal location. Although in some cases a large amount of flexural damage to the concrete and reinforcement occurred, such effects did not lead to complete failure. However, during the experimental programme some punching shear failures occurred, usually at the corner column locations. From the numerical analysis, shear forces of over twice the fully supported condition occurred as a result of removing a column, which may exceed the designed capacity. Comparisons between a static and dynamic analysis provides information into a suitable Dynamic Amplification Factor (DAF) for use with simplified modelling approaches. Based on the range of structures considered, the maximum increase in deflections as a result of a sudden removal was 1.62 times the static case, this is less than the commonly used factor of 2.0. Additionally, this factor reduces as the nonlinearity increases due to further damage, with a smallest DAF calculated at 1.39. This factor can be reduced further if the column is not removed instantaneously. Finally, the material strengthening effect, due to high strain rates, was considered with the conclusion that as such effects only make a limited increase in the capacity of the slab and may be conservatively ignored. In conclusion, RC flat slab structures are capable of resisting progressive collapse after the loss of a column. This is primarily due to their ability to develop ALPs. However, while flexural damage is usually fairly minimal, progressive punching shear failure is a critical design condition as it may result in a complete collapse. Furthermore, the inertial effects involved after a sudden removal can increase the damage sustained, although current design methods may be over conservative.
APA, Harvard, Vancouver, ISO, and other styles
3

Kabir, Ahsanul. "Nonlinear analysis of reinforced concrete structural slabs." Thesis, University of Strathclyde, 1986. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21467.

Full text
Abstract:
Nonlinear response of a structure to progressive loading may originate from two different sources viz, geometric nonlinearity and material nonlinear behaviour. For a rationally proportioned concrete structure, the material nonlinear responses are believed to contribute the major part of its total nonlinear behaviour. Geometric nonlinearities, become significant only when the structure is relatively slender. It is the material nonlinearities of reinforced concrete structures that are of interest in this investigation. Two plate bending finite elements have been generalised to include coupling of inplane actions with the bending effects. This was achieved through layering concept. One of these elements had been employed by some previous researchers. But the present formulation is different from theirs in that a numerical integration scheme is introduced to evaluate the stiffnesses and internal equivalent forces. A number of schemes for solving the nonlinear equations have been included in the present formulation. Suitability and effectiveness of these schemes in tracing the material nonlinear responses of concrete slabs have been examined. The numerical material model behaviour is based on the experimental observation reported by various authors. Readily available material characteristic properties are used in the description of the model. The overall response of reinforced concrete slabs is found to be significantly influenced by the cracking and post cracking treatment of concrete. Some form of tension stiffening scheme seems necessary to represent the structural response realistically. A number of conventional tension stiffening schemes have been incorporated, including a simple alternative formulation. The effect of different tension stiffening schemes and some other numerical parameters on the numerical solution of concrete structures have been investigated. Laboratory tests were carried out on a number of square and rectangular model slabs. The supporting arrangement and the applied loading systems were the main variables. These experimental records were later compared with the numerical predictions. Some other test results from literature have been included also.
APA, Harvard, Vancouver, ISO, and other styles
4

Deaton, James B. "A Finite Element Approach to Reinforced Concrete Slab Design." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7188.

Full text
Abstract:
The objective of this study was the development of a procedure in GT STRUDL to design reinforced concrete flat plate systems based on the results of finite element analysis. The current state-of-practice of reinforced concrete flat plate design was reviewed, including the ACI direct design and equivalent frame techniques, the yield line method, and the strip design method. The principles of these methods along with a critical evaluation of their applicability and limitations were presented as motivation for a finite element based design procedure. Additionally, the current state-of-the-art of flat plate design based on finite element results was presented, along with various flat plate modeling techniques. Design methodologies studied included the Wood and Armer approach, based on element stress resultants, and the resultant force approach, based on element forces. A flat plate design procedure based on the element force approach was embodied in the DESIGN SLAB command, which was implemented in GT STRUDL. The DESIGN SLAB command provides the user the ability to design a slab section by specifying a cut definition and several optional design parameters. The procedure determines all nodes and elements along the cut, computes the resultant moment design envelope acting on the cross-section, and designs the slab for flexure in accordance with provisions of ACI 318-02. Design examples presented include single-panel flat plate systems with various support conditions as well as multi-panel systems with regular and irregular column spacing. These examples allowed for critical comparison with results from experimental studies and currently applied design methods in order to determine the applicability of the implemented procedure. The DESIGN SLAB command was shown to produce design moments in agreement with experimental data as well as conventional design techniques for regular configurations. The examples additionally showed that when cuts were not oriented orthogonally to the directions of principle bending, resulting designs based on element forces could significantly under-reinforce the cross-section due to significant torsional effects.
APA, Harvard, Vancouver, ISO, and other styles
5

Lodi, Sarosh Hashmat. "Reinforced concrete slab elements under bending and twisting moments." Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/1192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Zhicheng. "Corrosion Damage of Reinforcement Embedded in Reinforced Concrete Slab." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1478174479305336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boting, Antony John. "Modelling of reinforced concrete slab deflections at service loading." Master's thesis, University of Cape Town, 1994. http://hdl.handle.net/11427/8458.

Full text
Abstract:
Includes bibliographical references.
Deflection under service loading is an important aspect of reinforced concrete slab design. Under-design can cause large deflections which can be expensive to repair, if at all possible. Over-design can lead to material wastage and unnecessary dead load. Deflection is inversely proportional to the effective moment of inertia of the section under consideration. Cracks, which may or may not be present at the serviceability limit state, have a profound effect on the moment of inertia. Many Codes of practice approach the calculation of deflection in a conservative manner by using the cracked moment of inertia in deflection calculations and ignoring the effect of the concrete in tension. Two of the Codes reviewed make an attempt at including the stiffening effect of the concrete in tension. The theory in the CEB/FIP Model Code is used as a basis for the method that is developed to predict maximum deflections. This method proposes that the total maximum deflection is composed of two components: an elastic deflection and a deflection due to cracking. The elastic deflection for a beam is determined from elastic formulae that are developed from first principles for standard beam cases. The deflection due to cracking involves the cracking moment capacity of the beam, what portion of the beam is cracked, the formation of a hinge and the rotation of this hinge. One-way spanning slabs can be treated as broad, shallow-beams. Two-way spanning slabs are more complicated and to determine the load dispersion of a uniformly distributed load on such a slab, it is divided into five sets of orthogonal strips. The two outer strips do not carry any load. The three inner strips intersect at nine points or nodes. The deflection of each pair of orthogonal strips at each of the nine nodes must be equal. Deflection equations are set up in terms of an unknown portion of the load at each node. Since the full load at each node is known, the sum of the loads in the orthogonal directions must be equal to this full load. A matrix is set up and solved and the load dispersion at each node is determined. The equivalent load on a strip spanning through the region of maximum deflection is thus found. For the two orthogonal strips spanning through the region of maximum deflection, the average deflection is then taken. A computer program is written which incorporates the above approach. The program is then run for slab configurations that were tested in the laboratory and the results are compared. The results show that the proposed computational models over-predict slab deflections. As soon as the slab is clamped on more than one edge or if the aspect ratio increases above 1 then the results in the orthogonal directions differ by a large amount. The recommended improvements to these computational models are: - Increase the number of orthogonal strips and introduce torsion. This will also improve the continuity between strips spanning in the same direction. The tension stiffening factor has to be redefined. This will reduce the contribution of deflection due to cracking.
APA, Harvard, Vancouver, ISO, and other styles
8

El-Hafez, L. M. A. "Direct design of reinforced concrete skew slabs." Thesis, University of Glasgow, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Manatakos, Kyriakos. "Behaviour and design of reinforced concrete core-slab-frame structures." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ30330.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manatakos, Kyriakos 1960. "Behaviour and design of reinforced concrete core-slab-frame structures." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42088.

Full text
Abstract:
This dissertation examines the response and design of reinforced concrete core-slab-frame structures subjected to monotonically increasing earthquake and gravity loads throughout the entire load range until failure, presenting findings from three separate studies by Manatakos and Mirza (1995) continuing the M. Eng. thesis research by Manatakos (1989). A typical building is selected consisting of a central core substructure composed of elevator, staircase and infilled slab cores, with coupling and lintel beams, and surrounding slabs joining to a frame substructure composed of slab-band girders, slabs and columns.
Stage 1 concentrates on the elastic response and Stage 3 examines the nonlinear response of the core-slab-frame structure considering the effects of cracking and crushing of concrete, strain-hardening of the reinforcement, and tension-stiffening. Analyses involve three-dimensional elastic and nonlinear finite element modeling techniques of the structure to investigate the contribution and influence of the various structural components. The structural response is examined for the deformations, the concentrated reinforcement strains and concrete stresses in the cores, the force and stress distributions in the structural members, and the failure mode.
Stage 2 focuses on the design and detailing of the core-slab-frame structure following seismic provisions of building code requirements for reinforced concrete structures where applicable as given in the CSA Standard CAN3-A23.3-MS4 (1984), the ACI Standard ACI 318M-83 (1983) and the New Zealand Standard NZS3101 (1982). Assumptions made in the conventional design procedures and any shortcomings encountered are examined. Suitable design procedures and reinforcement details are suggested where no provisions exist in the codes.
Findings demonstrate complex three-dimensional interaction among the cores, beams, slabs and frames in resisting the lateral and gravity loads, and show considerable strength, ductility and energy absorption capability of the structure. Critical areas for design include the joints and junctions near the vicinity of core wall-slab-beams ends and corners. Plastic hinging extends over the lower 2.5% to 33% height of the structure with the majority of inelastic action and damage concentrated in the bottom 10% to 15% height, predicting an ultimate load of 3.4 to 5.9 times the design earthquake load with top drifts of the structure between 750 mm to 1375 mm.
APA, Harvard, Vancouver, ISO, and other styles
11

Zou, Yunyi. "FRP Reinforced Concrete and Its Application in Bridge Slab Design." Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1101960743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

De, Vittorio Stefano. "Time-dependent behaviour of reinforced concrete slabs." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3247/.

Full text
Abstract:
In this thesis is studied the long-term behaviour of steel reinforced slabs paying particular attention to the effects due to shrinkage and creep. Despite the universal popularity of using this kind of slabs for simply construction floors, the major world codes focus their attention in a design based on the ultimate limit state, restraining the exercise limit state to a simply verification after the design. For Australia, on the contrary, this is not true. In fact, since this country is not subjected to seismic effects, the main concern is related to the long-term behaviour of the structure. Even if there are a lot of studies about long-term effects of shrinkage and creep, up to date, there are not so many studies concerning the behaviour of slabs with a cracked cross section and how shrinkage and creep influence it. For this reason, a series of ten full scale reinforced slabs was prepared and monitored under laboratory conditions to investigate this behaviour. A wide range of situations is studied in order to cover as many cases as possible, as for example the use of a fog room able to reproduce an environment of 100% humidity. The results show how there is a huge difference in terms of deflections between the case of slabs which are subjected to both shrinkage and creep effects soon after the partial cracking of the cross section, and the case of slabs which have already experienced shrinkage effects for several weeks, when the section has not still cracked, and creep effects only after the cracking.
APA, Harvard, Vancouver, ISO, and other styles
13

Zioris, Stavros, and Alija Vranjkovina. "Evaluation of a Tramway’s Track Slab in Conventionally Reinforced Concrete or Steel Fibre Concrete." Thesis, KTH, Betongbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177890.

Full text
Abstract:
The dominant reinforcement used widely for concrete structures is conventional steel bars (rebars). Nevertheless, the perpetual effort toward evolution and development could not exclude the engineering field, thus new innovative and sophisticated methods are introduced. It is true that, due to lack of extended regulations and standards, the fibre reinforced concrete (FRC) was limited to non-structural applications. However, the last years the situation is changing rapidly and already the applications of FRC include actual structural members. The subject of the current thesis was a tramway’s track slab from “Sparvag City” project in Stockholm. The aim was to evaluate the track slab, in terms of alternative reinforcing ways. In particular three models were examined; model I – conventional reinforcement, model II – steel fibre reinforced concrete (SFRC) and model III – SFRC with conventional reinforcement. The assessment was performed from structural, regulations – compliance, economic and ergonomic perspective. A static linear analysis of the track slab was performed using Abaqus; a finite element analysis (FEA) software. The track slab was subjected only to mechanical loads (selfweight and traffic actions) and thus, the design internal forces were extracted. Thereafter, Eurocode 2 (EN 1992-1-1, 2004) and Swedish standards for FRC structures (SS 812310:2014) were utilized for the reinforcement design of the models. The design was performed in ultimate limit state (ULS), for bending moment and shear resistance, and in serviceability limit state (SLS), for stress limitation and crack control. Model I and III were successfully designed abiding with the respective regulations and requirements, while “only fibres” model was considered valid only for bending moment resistance according to SS 812310:2014. Consequently only models I and III were compared with each other. From the economic comparison it was obtained that model I was less expensive than model III, but on the other hand its construction time was larger. Furthermore model III contained significantly less total rebars’ mass in comparison to model I. This particularity was crucial for the ergonomic assessment. The human factors, that were relevant to the ergonomic assessment, improved the quality of the comparison and the extracted inferences, but also introduced aspects impossible to be put against economic facts as an equal quantity. Thus, there was not a final proposal as the best solution for the thesis subject.
Armeringen av betongkonstruktioner domineras av konventionell armering (armeringsjärn). Med den ständiga strävan mot utveckling och förbättring har inom teknikområdet nya innovativa och avancerade metoder introducerats. Det är på grund av bristen på normer, standarder som fiberarmerad betong begränsats till icke- bärande ändamål. Däremot har situationen förändrats under de senaste åren, redan idag kan man se konstruktioner där fiberarmering används till bärande ändamål. Amnet for den aktuella masterexamen var betongplatta i projektet ”Sparvag City” i Stockholm. Syftet var att utvärdera betongplattan, i form av att undersöka alternativa armeringsmöjligheter. I synnerhet undersöktes tre modeller; modell I- konventionellt armerad platta, modell IIstålfiberarmerad platta och modell III stålfiberarmerad platta kombinerad med konventionell armering. Modellernas möjligheter att uppfylla regelverkens krav undersöktes, men de jämfördes även ur ekonomiskt samt ergonomiskt perspektiv. En statisk linjär analys av betongplattan genomfördes i ett finit element program, Abaqus. Betongplattan utsattes för mekanisk belastning (egenvikt samt trafiklast) för vilken dimensionerande krafter extraherats. Därefter användes Eurocode 2 (EN 1992-1-1, 2004) och den svenska standarden för fiberarmerade betong konstruktioner (SS 812310:2014) för vidare konstruktionsberäkningar. Konstruktionsberäkningarna för betongplattan genomfördes i brottgränstillstånd för böjmoment samt tvärkraft, i brukgränsmotståndet undersöktes betongplattan för spänningsbegränsningar samt sprickkontroll. Konstruktionsberäkningarna kunde genomföras för modell I och III med de existerande föreskrifterna och kraven, men modellen med ”endast fibrer” kunde endast dimensionerna för böjmoment enligt SS 812310:2014. Därför kunde endast modell I och III fortsättningsvis jämföras med varandra. Från den ekonomiska jämförelsen erhölls det att modellen I var billigare än modell III, men att konstruktionstiden var längre. Dessutom var behoven för konventionell armering (armeringsjärn) betydligt mindre för modell III till skillnad från modell I. Modellernas innehåll av konventionell armering var avgörande för den ergonomiska bedömningen. Den mänskliga faktorn, som var relevanta för den ergonomiska bedömningens, gav jämförelsen av modellerna en annan dimension, där de viktiga mänskliga faktorerna
APA, Harvard, Vancouver, ISO, and other styles
14

Hon, Alan 1976. "Compressive membrane action in reinforced concrete beam-and-slab bridge decks." Monash University, Dept. of Civil Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/5629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bai, Jong-Wha. "Seismic fragility and retrofitting for a reinforced concrete flat-slab structure." Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/521.

Full text
Abstract:
The effectiveness of seismic retrofitting applied to enhance seismic performance was assessed for a five-story reinforced concrete (RC) flat-slab building structure in the central United States. In addition to this, an assessment of seismic fragility that relates the probability of exceeding a performance level to the earthquake intensity was conducted. The response of the structure was predicted using nonlinear static and dynamic analyses with synthetic ground motion records for the central U.S. region. In addition, two analytical approaches for nonlinear response analysis were compared. FEMA 356 (ASCE 2000) criteria were used to evaluate the seismic performance of the case study building. Two approaches of FEMA 356 were used for seismic evaluation: global-level and member-level using three performance levels (Immediate Occupancy, Life Safety and Collapse Prevention). In addition to these limit states, punching shear drift limits were also considered to establish an upper bound drift capacity limit for collapse prevention. Based on the seismic evaluation results, three possible retrofit techniques were applied to improve the seismic performance of the structure, including addition of shear walls, addition of RC column jackets, and confinement of the column plastic hinge zones using externally bonded steel plates. Finally, fragility relationships were developed for the existing and retrofitted structure using several performance levels. Fragility curves for the retrofitted structure were compared with those for the unretrofitted structure. For various performance levels to assess the fragility curves, FEMA global drift limits were compared with the drift limits based on the FEMA member-level criteria. In addition to this, performance levels which were based on additional quantitative limits were also considered and compared with FEMA drift limits.
APA, Harvard, Vancouver, ISO, and other styles
16

Cheung, (Patrick) Pak Chiu. "Seismic design of reinforced concrete beam-column joints with floor slab." Thesis, University of Canterbury. Civil Engineering, 1991. http://hdl.handle.net/10092/9451.

Full text
Abstract:
Beam-column joints are addressed in the context of current design procedures and performance criteria for reinforced concrete ductile frames subjected to large earthquake motions. Attention is drawn to the significant differences between the pertinent requirements of concrete design codes of New Zealand and the United States for such joints. The difference between codes stimulated researchers and structural engineers of the United States, New Zealand, Japan and China to undertake an international collaborative research project. The major investigators of the project selected issues and set guidelines for co-ordinated testing of joint specimens designed according to the codes of the countries. The tests conducted at the University of Canterbury, New Zealand, are reported. Three full-scale beam-column-slab joint assemblies were designed according to existing code requirements of NZS 3101:1982, representing an interior joint of a one-way frame, an interior joint of a two-way frame, and an exterior joint of a two-way frame. Quasistatic cyclic loading simulating severe earthquake actions was applied. The overall performance of each test assembly was found to be satisfactory in terms of stiffness, strength and ductility. The joint and column remained essentially undamaged while plastic hinges formed in the beams. The weak beam-strong column behaviour sought in the design, desirable in tall ductile frames designed for earthquake resistance, was therefore achieved. Using the laws of statics and test observations, the action and flow of forces from the slabs, beams and column to the joint cores are explored. The effects of bond performance and the seismic shear resistance of the joints, based on some postulated mechanisms, are examined. Implications of the test results on code specifications are discussed and design recomendations are made.
APA, Harvard, Vancouver, ISO, and other styles
17

Park, Hae-geun. "MECHANICAL BEHAVIOR OF REINFORCED CONCRETE SLAB RETROFITTED WITH CARBON FIBER SHEET." Kyoto University, 2000. http://hdl.handle.net/2433/157080.

Full text
Abstract:
本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第8355号
工博第1920号
新制||工||1170(附属図書館)
UT51-2000-F259
京都大学大学院工学研究科土木システム工学専攻
(主査)教授 小野 紘一, 教授 田村 武, 教授 宮川 豊章
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
18

AlHarras, Omar. "Seismic behaviour and nonlinear modeling of reinforced concrete flat slab-column connections." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54469.

Full text
Abstract:
The contemporary structural design practice of tall buildings typically incorporates a lateral force resisting system, along with a gravity system that often includes reinforced concrete flat slabs. A major challenge with the design of this system is ensuring adequate strength and deformation capacities of the flat slab-column connections, especially when the structure is prone to strong seismic excitations. When a flat slab-column connection is subjected to a combination of gravity and lateral loads, failure may occur in multiple modes. Comprehensive literature reviews of the experimental studies and the analytical models related to reinforced concrete flat slabs, and flat slab-column connections are presented in Chapters 2 and 3, respectively. The existing nonlinear models that are currently available in literature were developed as assessment tools for old flat-plate structures. Thus, they are not capable of capturing the hysteretic behaviour of ductile flat slab-column connections with shear reinforcement. In Chapter 4, a new nonlinear model for flat slab-column connections is proposed. Utilizing the proposed model allows detecting potential failures due to all the possible modes of failure. The model was verified and calibrated using data from actual experimental studies. Chapter 5 investigates the effects of flat slabs on the global seismic response of typical high-rise concrete shear wall buildings. Two analytical case studies were conducted using a prototype building designed in Vancouver, Canada. The results from nonlinear dynamic analyses confirmed that including flat slabs in the analysis models of tall buildings is important to obtain accurate estimates of the structural responses and seismic demands. A concise summary of the research outcomes is presented in Chapter 6.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
19

McHarg, Peter J. "Effect of fibre-reinforced concrete on the performance of slab-column specimens." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ37272.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Aldwaik, Mais M. "Cost Optimization of Reinforced Concrete Highrise Building Structures." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574738135695095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Smith, Holly Kate Mcleod. "Punching shear of flat reinforced-concrete slabs under fire conditions." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20962.

Full text
Abstract:
This thesis examines punching shear response of reinforced-concrete flat slabs under fire conditions. The shear behaviour of concrete in fire is relatively poorly understood compared to its flexural response. Failures such as the Gretzenbach car park failure in Switzerland (2004) have prompted concerns over the punching shear capacity of flat slabs in fire. The shear behaviour of reinforced-concrete in fire depends on degradation of the individual material properties with temperature, their interaction, and more recently recognised, the effects of restrained thermal expansion. Through experimental testing this thesis aims to build a foundation understanding of the punching shear behaviour of flat reinforced-concrete slabs in fire conditions. A series of shear blocks, tested after exposure to elevated temperature (realistic fire temperature), were used to develop an understanding of the effects of elevated temperature on the shear transfer performance of reinforced-concrete. These tests allowed the complex interplay of shear-carrying mechanisms at ambient temperature to be extended to the case of post-elevated temperature. Fifteen slab-column punching shear specimens were tested under both applied load and extreme heating. In particular, the effects of restrained thermal expansion were experimentally investigated by altering the support conditions of the slab-column specimens. A purpose-built restraint frame allowed the boundary support conditions to be either fully restrained or unrestrained. This experimental series is the only series to have tested restrained specimens at elevated temperatures, though previous researchers have simulated the thermal restraint effects and reported the importance of restrained thermal expansion and curvature on the behaviour of punching shear. Parameters of slab thickness and reinforcement ratio were also varied to investigate their respective impacts on punching shear behaviour at elevated temperature. The thicker 100 mm reinforced slabs failed in punching shear, whereas the 50 mm and 75 mm thick slabs failed in flexure-shear mechanisms and the unreinforced slabs failed in flexure. Clear behavioural differences were observed between specimens with different support conditions. Unrestrained 100 mm thick slabs under sustained load failed soon after heating began, whereas none of the corresponding restrained specimens failed during heating. One restrained, heavily reinforced specimen failed during cooling, whilst under sustained load. This is the first recorded punching shear failure during the cooling phase of an elevated temperature test and may also be the first recorded test specimen ever to have failed during the cooling phase of an elevated temperature test. This failure highlights the unknown and potentially unsafe behaviour of structures during the cooling phase. Further structural investigation of the cooling behaviour of concrete flat slabs after exposure to fire, needs to be undertaken. Most of the specimens’ central deflection was away from the heat source (in the direction of loading) during the whole test, irrespective of support condition. The test setup was assessed to investigate the unusual slab-column deflection away from the heat source, however the complex behaviour observed during the tests cannot currently be explained. It is assumed that the degradation in concrete properties and non-linear material behaviour dominates over the thermal expansion of the slabs. Quantitative and qualitative comparisons are presented, though the quantitative data is impacted by size effect, non-repeatable heating application between tests and jack friction influences on specimens with low capacities. Eurocode 2 punching shear prescriptive elevated temperature design, extends the ambient temperature equation for elevated temperature use, by degrading the temperature-dependant parameters by factors. Support conditions are not considered, with the code specifically telling the designer not to consider in-plane thermal expansion effects, therefore consequently ignoring the premature punching shear failure that can occur. Furthermore, the ambient temperature equation is based on the regression of available experimental data at the time and does not consider the reinforcement as a shear transfer mechanism. The experimental capacities of the 100 mm thick, reinforced slabs that failed in pure punching shear mechanism were similar to the Eurocode 2 punching shear prescriptive design capacity, when directly compared. The unrestrained support condition was shown to be consistently, not conservatively predicted by Eurocode 2, whereas the restrained support condition capacities were conservatively predicted. It is comforting to know that the Eurocode 2 design predicts the restrained supported slabs conservatively, as real buildings are more likely to have supports closer to the restrained condition rather than the unrestrained support condition. A sensitivity analysis of the Eurocode 2 prescriptive design equation shows it is highly sensitive to the concrete strength degradation and not the variable, cp, which was used to make a support condition comparison in this thesis. This indicates how the Eurocode 2 equation for punching shear capacity lacks in its consideration of whole structural behaviour. The Critical Shear Crack Theory has been proposed as the background to a harmonised shear design approach, called Model Code 2010. The Critical Shear Crack Theory was safe in predicting the experimental punching shear capacities. There were large variances for the 100 mm thick slabs, however they are consistent with the original model comparison to test data. An expansion of the Critical Shear Crack Theory for elevated temperature requires further validation with experimental restrained thermal expansion tests, such as those presented in this thesis. Finally, a digital image correlation technique has been proven to be a reliable method to measure structural displacements of concrete at elevated temperatures. Digital image correlation allowed the crack locations and slab rotation angles to be visualized throughout testing. No other measurement techniques are able to provide similar versatility in fire testing such as that presented herein.
APA, Harvard, Vancouver, ISO, and other styles
22

Muizzu, Mohamed. "Thermal and time-dependent effects on monolithic reinforced concrete roof slab-wall joints." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yan, Ping Yu. "Behaviour of shearhead system between flat reinforced concrete slab and steel tubular column." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/behaviour-of-shearhead-system-between-flat-reinforced-concrete-slab-and-steel-tubular-column(7a3b5496-ca58-4a85-8028-3f64ad0eeddd).html.

Full text
Abstract:
This thesis presents the results of an experimental, numerical and analytical study to develop a design method to calculate punching shear resistance for a new shearhead system between tubular steel column and reinforced concrete flat slab. This shearhead system enables two of the most popular structural systems, i.e. reinforced concrete flat slab floor and steel tubular column, to be used to produce efficient structures of low cost and short construction time. This research investigates slabs without and with a service hole adjacent to the column. The new shearhead system should not only possess sufficient punching shear resistance, but should also be efficient for construction. The main methodology for this project was based on numerical finite element simulations verified by two full scale tests. These two tests were carried out in the University of Manchester's Structural Testing Laboratory. The two specimens had the same slab size, thickness and reinforcement ratio, but differed in the column shape (rectangular or circular), central reinforcement arrangement (continuous or discontinuous), shearhead position in the slab thickness and shearhead fabrication arrangement. Recorded load-deflection and load-strain relationships, crack development and critical perimeter were used for detailed validation of using the commercial finite element software ABAQUS. The validated ABAQUS model was used to conduct a comprehensive parametric study to investigate the effects of a number of design parameters, including the effect of varied column size, shearhead arm length, shearhead arm cross section, shearhead arm angle, amount of flexural reinforcement, slab thickness, shearhead positions and hole positions. The main conclusion from the parametric study was that the shearhead system could be treated as an enlarged column in normal flat slab structure. The parametric study enabled pressure distribution below the shearhead arms to be approximated for checking whether the shearhead arms would be sufficient for the enlarged column assumption to be valid. The parametric study results were also used to determine the effective depth of the flat slab and critical punching shear perimeter of the slab with and without a service hole.Using the enlarged column assumption, the punching shear resistance of all structures used in the parametric study were re-calculated using Eurocode 2 (EC2), British stand 8110 (BS8110) and American Concrete Institute code 318 (ACI 318). Comparison of calculation results using these three design methods indicates that both EC2 and BS8110 predicted very close value which reached very good agreement with the ABAQUS simulation (normally within 10%). Among these three design methods, ACI 318 was the only code that explicitly considered shearhead system. ACI 318 was not able to predict the slab critical perimeter length with good accuracy, however, its prediction of slab punching shear resistance achieved reasonably good agreement with numerical analysis results and were on the safe side. Based on these studies, a design method for calculating punching resistance of the proposed shearhead system between reinforced concrete flat slab and steel tubular column has been developed in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
24

Joyce, Patrick Conor. "Development of Improved Connection Details for Voided Slab Bridges." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/49108.

Full text
Abstract:
Adjacent voided slab bridges (AVSB) are economical systems for short spans. They provide the advantages of having low clearances due to their small section depths, accelerated construction times, and high torsional stiffness. The current longitudinal connection detail, a partial depth grouted shear key, has been known to fail in many of these bridges. The failure leads to reflective cracking in the wearing surface which allows chloride laden water to seep down through the joint, where it corrodes the reinforcement and prestressing strand. Ultimately, the failed keys lead to costly repairs and bridge replacements sooner than their proposed lifespan. This research project aimed to develop a more durable longitudinal connection detail by using sub-assemblages to test five alternate connections. The objective was to find a connection that abated all cracking in the shear key, thus removing the need for transverse post-tensioning. The tested connections employed alternate connection shapes and two different mix designs of fiber reinforced high strength concretes. The results showed that each tested connection outperformed the current detail. The findings of this research indicate that the longitudinal connection detail of adjacent member voided slab bridges should be modified. The modified version should be a blockout with lap splice connection detail utilizing a nonproprietary fiber reinforced high strength concrete.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
25

Ho, S. L. "An investigation into the behaviour of hollow ribbed (waffle) rectangular reinforced concrete slabs at ultimate limit state." Thesis, University of Abertay Dundee, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mohammed, Tesfaye A. "Reinforced Concrete Structural Members Under Impact Loading." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321650443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Roy, Sujata Thiagarajan Ganesh. "Nonlinear finite element analysis of reinforced concrete bridge deck/bridge approach slab using ABAQUS." Diss., UMK access, 2005.

Find full text
Abstract:
Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2005.
"A thesis in civil engineering." Typescript. Advisor: Ganesh Thiagarajan. Vita. Title from "catalog record" of the print edition Description based on contents viewed June 26, 2006. Includes bibliographical references (leaves 91-93). Online version of the print edition.
APA, Harvard, Vancouver, ISO, and other styles
28

Haji, Kamis Haji Elmi Bin. "Three dimensional analysis of fibre reinforced polymer laminated composites." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/three-dimensional-analysis-of-fibre-reinforced-polymer-laminated-composites(0ba2ceae-129c-4d09-bdbd-de110e7b3617).html.

Full text
Abstract:
The thesis presents the structural behaviour of fibre reinforced polymer (FRP) laminated composites based on 3D elasticity formulation and finite element modeling using Abaqus. This investigation into the performance of the laminate included subjecting it to various parameters i.e. different boundary conditions, material properties and loading conditions to examine the structural responses of deformation and stress. Both analytical and numerical investigations were performed to determine the stress and displacement distributions at any point of the laminates. Other investigative work undertaken in this study includes the numerical analysis of the effect of flexural deformation of the FRP strengthened RC slab. The formulation of 3D elasticity and enforced boundary conditions were applied to establish the state equation of the laminated composites. Transfer matrix and recursive solutions were then used to produce analytical solutions which satisfied all the boundary conditions throughout all the layers of the composites. These analytical solutions were then compared with numerical analysis through one of the commercial finite element analysis programs, Abaqus. Out of wide variety of element types available in the Abaqus element library, shells and solids elements are chosen to model the composites. From these FEM results, comparison can be made to the solution obtained from the analytical. The novel work and results presented in this thesis are the analysis of fully clamped laminated composite plates. The breakthrough results of fully clamped laminated composite plate can be used as a benchmark for further investigation. These analytical solutions were verified with FEM solutions which showed that only the solid element (C3D20) exhibited close results to the exact solutions. However, FEM gave poor results on the transverse shear stresses particularly at the boundary edges. As an application of the work above, it is noticed that the FEM results for the FRP strengthened RC slab, agreed well with the experimental work conducted in the laboratory. The flexural capacity of the RC slab showed significant increase, both at service and ultimate limit states, after FRP sheets were applied at the bottom surface of the slab. Given the established and developed programming codes, exact solutions of deflection and stresses can be determined for any reduced material properties, boundary and loading conditions, using Mathematica.
APA, Harvard, Vancouver, ISO, and other styles
29

Ulaeto, Nsikak. "Progressive collapse analysis of reinforced concrete flat slab structures considering post-punching and dynamic response." Thesis, University of Surrey, 2018. http://epubs.surrey.ac.uk/850029/.

Full text
Abstract:
Flat slabs are reinforced concrete slabs supported directly on columns without beams. Flat slabs are commonly used for construction of medium-rise office buildings and car parking structures due to their ease of construction, reduced story height and ease of routing of services. Load concentrations can be significant at edge and corner columns as well as around internal columns, making the slab-column connections susceptible to punching shear failure. Most reported occurrences of progressive collapse in flat slab structures have had punching shear failure as an initial local failure. Some of these collapses progressed horizontally through punching of adjoining connections due to gravity load redistribution, dynamic effects and excessive slab deformation. In many cases, failure also progressed vertically due to impact of falling slabs on lower lying ones. Design rules specified in codes and building regulations to prevent progressive collapse are not suitable for application to flat slab structures due to the development of failure mechanisms, such as punching shear and compressive membrane action at small deformations; and post-punching shear and tensile membrane action at large deformations. The influence of these mechanisms, and their interaction, on the response of flat slab systems during progressive collapse is not fully understood. Knowledge on influence of the dynamic nature of progressive collapse in flat slab system response is also not fully established. Existing numerical and analytical approaches for assessment of progressive collapse in flat slab structures either limits response assessment to failure at the first connection or neglects one or more mechanisms. Hence, they can provide unrealistic predictions of damage after local failure, little knowledge on the collapse progression and the contributions of neglected mechanisms to overall system response. In this thesis, numerical and analytical models were developed and validated for the prediction of the post-punching shear capacity of isolated slab specimens, using tests reported in literature. Results of numerical modelling of punching shear strength, residual shear strength after punching and post-punching shear strength in isolated slab specimens agreed with those of tests. Results of residual shear strength after punching and post-punching shear strength obtained analytically were also in agreement with test results. A numerical approach was developed for the assessment of progressive collapse of flat slab systems. The flat slab system model considered compressive membrane action, tensile membrane action, gravity load redistribution and damage propagation. These mechanisms were not considered in the isolated slab specimens. Results of numerical flat slab system analysis provided a good understanding of the gravity load redistribution after the sudden loss of an internal column, the contribution of compressive membrane action prior to the punching shear failure, tensile membrane and post-punching shear actions after punching shear failure of connections. The transition and interaction between these mechanisms were also investigated. Analytical slab-column subsystem and flat slab system models were also developed. Both models provided results which agreed with those obtained through dynamic finite element analysis. Results from the analytical flat system model confirmed the contribution of compressive membrane action in the resistance of progressive collapse through the confinement of the slab area around the slab-column connections and the reduction of slab deformation around the slab-column connections. Both numerical and analytical flat slab system approaches showed that for cases of slabs with sufficient integrity reinforcement and no punching shear reinforcement, punching shear failure of adjoining connections would occur though the progressive collapse could be arrested with sufficient area of integrity reinforcement. Required areas of integrity reinforcement calculated using code formulae were found to be insufficient in cases of sudden loss of an internal column since they do not account for dynamic amplifications of gravity loads and possible reductions in post-punching capacity at the connections due to geometric and load asymmetry. It was generally concluded that integrity reinforcement is effective for arresting progressive collapse (vertical collapse propagation) in flat slab systems if designed with the consideration of dynamic loading, geometric and load asymmetry developed after the occurrence an initial local failure. However, provision of integrity reinforcement for robustness does not arrest the horizontal propagation of damage after an initial punching shear failure of adjacent connections. Therefore, it is concluded that a more effective design approach for robustness is increasing the strength and deformation capacity of flat slab connections (using punching shear reinforcement).
APA, Harvard, Vancouver, ISO, and other styles
30

Fox, David Christopher Alexander. "The fire performance of restrained polymer-fibre-reinforced concrete composite slabs." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/17998.

Full text
Abstract:
Composite slab flooring systems for steel-framed buildings consist of a profiled steel deck and a cast in-situ slab. The slab traditionally includes a layer of light gauge steel mesh reinforcement. This mesh is placed near the surface, which controls the early-age cracking caused by concrete drying and shrinkage. The steel mesh also performs a vital structural role at high temperatures. Structural fire tests and numerical investigations over the last 15 years have established that the mesh can provide enhanced fire resistance. A load-carrying mechanism occurs in fire with the mesh acting as a tensile catenary, spanning between perimeter supports. This structural mechanism is currently utilised regularly in the performance-based fire engineering design of steel-framed buildings. In a recent development, this mesh can be removed by using concrete with dispersed polymer fibre reinforcement to form the composite slab. The polymer-fibre-reinforced concrete (PFRC) is poured onto the deck as normal, and the fibres resist early crack development. For developers this technique has several advantages over traditional reinforcing mesh, such as lower steel costs, easier site operations and faster construction. However, to date the fire resistance of such slabs has been demonstrated only to a limited extent. Single element furnace tests with permissible deflection criteria have formed the basis for the fire design of such slabs. But these have not captured the full fire response of a structurally restrained fibre-reinforced slab in a continuous frame. The polymer fibres dispersed throughout the slab have a melting point of 160ºC, and it is unclear how they contribute to overall fire resistance. In particular, there has been no explanation of how such slabs interact with the structural perimeter to maintain robustness at high deflections. This project was designed to investigate the structural fire behaviour of restrained polymer-fibre-reinforced composite slabs. An experimental series of six slab experiments was designed to investigate the effects of fibre reinforcement and boundary restraint. A testing rig capable of recording the actions generated by the heat-affected slab was developed and constructed. Model-scale slab specimens were tested with different reinforcement and perimeter support conditions, to establish the contributions to fire resistance of the polymer fibres and applied structural restraint.
APA, Harvard, Vancouver, ISO, and other styles
31

Thuresson, Sofia. "Parametric optimization of reinforced concrete slabs subjected to punching shear." Thesis, KTH, Betongbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279466.

Full text
Abstract:
The construction industry is currently developing and evolving towards more automated and optimized processes in the project design phase. One reason for this development is that computational power is becoming a more precise and accessible tool and its applications are multiplying daily. Complex structural engineering problems are typically time-consuming with large scale calculations, resulting in a limited number of evaluated solutions. Quality solutions are based on engineering experience, assumptions and previous knowledge of the subject.The use of parametric design within a structural design problem is a way of coping with complex solutions. Its methodology strips down each problem to basic solvable parameters, allowing the structure to be controlled and recombined to achieve an optimal solution.This thesis introduces the concept of parametric design and optimization in structural engineering practice, explaining how the software application works and presenting a case study carried out to evaluate the result. In this thesis a parametric model was built using the Dynamo software to handle a design process involving a common structural engineering problem. The structural problem investigated is a reinforced concrete slab supported by a centre column that is exposed to punching shear failure. The results provided are used for comparisons and as indicators of whether a more effective and better design has been achieved. Such indicators included less materials and therefore less financial cost and/or fewer environmental impacts, while maintaining the structural strength. A parametric model allows the user to easily modify and adapt any type of structure modification, making it the perfect tool to apply to an optimization process.The purpose of this thesis was to find a more effective way to solve a complex problem and to increase the number of solutions and evaluations of the problem compared to a more conventional method. The focus was to develop a parametric model of a reinforced concrete slab subjected to punching shear, which would be able to implement optimization in terms of time spent on the project and therefore also the cost of the structure and environmental impact.The result of this case study suggests a great potential for cost savings. The created parametric model proved in its current state to be a useful and helpful tool for the designer of reinforced concrete slab subjected to punching shear. The result showed several solutions that meet both the economical and the punching shear failure goals and which were optimized using the parametrical model. Many solutions were provided and evaluated beyond what could have been done in a project using a conventional method. For a structure of this type, a parametric strategy will help the engineer to achieve more optimal solutions.
Just nu utvecklas Byggbranschen mot mer automatiserade och optimerade processer i projektdesignfasen. Denna utveckling beror till stor del på teknikutveckling i form av bättre datorprogram och tillgänglighet för dessa. Traditionellt sett löses komplexa konstruktionsproblem med hjälp av tidskrävande och storskaliga beräkningar, vilka sedan resulterar i ett begränsat antal utvärderade lösningar. Kvalitets lösningar bygger då på teknisk erfarenhet, antaganden och tidigare kunskaper inom ämnet.Användning av parametrisk design inom ett konstruktionsproblem är ett sätt att hantera komplexa lösningar. Dess metod avgränsar varje problem ner till ett antal lösbara parametrar, vilket gör att strukturen kan kontrolleras och rekombineras för att uppnå en optimal lösning.Denna avhandling introducerar begreppet parametrisk design och optimering i konstruktionsteknik, den förklarar hur programvaran fungerar och presenterar en fallstudie som genomförts för att utvärdera resultatet. I denna avhandling byggdes en parametrisk modell med hjälp av programvaran Dynamo för att hantera en designprocess av ett vanligt konstruktionsproblem. Det strukturella problemet som undersökts är en armerad betongplatta som stöds av en mittpelare, utsatt för genomstansning. Resultaten används för att utvärdera om en bättre design med avseende på materialanvändning har uppnåtts. Minimering av materialanvändning anses vara en bra parameter att undersöka eftersom det ger lägre kostnader och/eller lägre miljöpåverkan, detta undersöks under förutsättning att konstruktionens hållfasthet bibehålls. En parametrisk modell gör det möjligt för användaren att enkelt modifiera en konstruktionslösning med avseende på olika parametrar. Detta gör det till det perfekta verktyget att tillämpa en optimeringsprocess på.Syftet med denna avhandling var att hitta ett mer effektivt sätt att lösa ett komplext problem och att multiplicera antalet lösningar och utvärderingar av problemet jämfört med en mer konventionell metod. Fokus var att utveckla en parametrisk modell av en armerad betongplatta utsatt för genomstansning, som kommer att kunna genomföra optimering med avseende på tid som spenderas på projektet och därmed också kostnaden för konstruktionen och miljöpåverkan.Resultatet av denna fallstudie tyder på att det finns en stor möjlighet till kostnadsbesparingar och anses därför vara ett mycket hjälpsamt verktyg för en konstruktör. Resultatet visade flera lösningar som uppfyllde de konstruktionsmässiga kraven samtidigt som de gav en lägre materialanvändning tack vare optimeringen. Många lösningar tillhandahölls och utvärderades utöver vad som kunde ha gjorts i ett projekt med en konventionell metod. En parametrisk strategi kommer att hjälpa ingenjören att optimera lösningen för en konstruktion av denna typ.
APA, Harvard, Vancouver, ISO, and other styles
32

Abdul-Salam, Bahira. "Behaviour of shear critical frp reinforced concrete one-way slabs." Thèse, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5352.

Full text
Abstract:
Résumé : Les dalles de tabliers de ponts et des stationnements sont exposées à des environnements agressifs en particulier au Québec et en Amérique du Nord en raison de l'utilisation de sels de déglaçage et des cycles de gel-dégel. La substitution des armatures d’acier par des armatures en matériaux composites de polymères renforcés de fibres (PRF) constitue une alternative intéressante qui connait beaucoup de succès ces dernières années. Le béton armé de PRF est durable, car l’armature n’est pas sujette à la corrosion électrochimique. Aussi l’armature de PRF possède une résistance en traction élevée et est légère. En Amérique du Nord, l’utilisation des composites de PRF a suscité une attention toute particulière de la part des ingénieurs et des gestionnaires d’ouvrages. Plusieurs organismes dont des ministères de transport spécifient l’armature de PRF comme matériau structural dans leurs devis techniques pour lutter contre la corrosion et allonger la durée de service de leurs infrastructures. Les dalles en béton armé sont souvent soumises à des efforts de cisaillement critiques. Actuellement les méthodes de calcul au cisaillement (à l’effort tranchant) de dalles unidirectionnelles en béton armé de PRF différèrent d’une norme à une autre. En effet, la majorité des équations proposées dans les normes et guides de conception ont dérivées à partir de relations empiriques. Bien que des efforts de recherche considérables aient été consacrés dans ce domaine au cours de la dernière décennie, une meilleure compréhension du comportement au cisaillement et des mécanismes de rupture de dalles unidirectionnelles en béton armé de PRF est encore nécessaire. Dans cette recherche, un programme expérimental visant à étudier le comportement de dalles renforcées avec différents types de barres en PRF a été mis en place. Vingt-deux dalles unidirectionnelles en béton renforcées avec des barres de PRF ont été construites et testées en flexion a quatre points jusqu’à la rupture. Les paramètres d’étude comprennent : le type et le taux d’armature, le diamètre de la barre, l’espacement et la configuration de l’armature ainsi que la résistance en compression du béton afin d’examiner leur effet sur la résistance au cisaillement des dalles. Le comportement des dalles testées a été examiné en considérant le réseau de fissures, la charge ultime ainsi que les modes de rupture. Aussi, une base de données comprenant 203 poutres et dalles unidirectionnelles en béton armé de PRF rompues en cisaillement a été répertoriée et introduite dans les analyses. Les charges de rupture en cisaillement des dalles testées dans le cadre de cette thèse ainsi que celles de la base de données ont été comparées à celles prédites par les équations de calcul proposées par la normes canadiennes CSA S6-06/S1 et CSA S806-12, ainsi que celles des deux guides de calcul ACI 440.1R-06 et JSCE-97. Les analyses effectuées ont montré que les valeurs prédites par les équations de calcul proposées par l’ACI 440.1R-06 sont très conservatrices, alors que celles prédites par celles de JSCE-97 sont en meilleur accord avec les valeurs expérimentales. Aussi, les résultats obtenus ont montré que les équations de la nouvelle norme CSA S806-12 prédisent bien la résistance au cisaillement expérimentale. Toutefois, une amélioration de l'équation de la norme CSAS806-12, conduisant à de meilleurs résultats, est proposée. Par ailleurs, les résultats obtenus dans le cadre de cette thèse ont mené à une meilleure compréhension des mécanismes de rupture et des facteurs principaux qui contribuent à la résistance au cisaillement de dalles unidirectionnelles en béton armée de PRF. Enfin, des recommandations pour des travaux futurs y sont également formulées. // Abstract : Bridge deck and parking garage slabs are exposed to aggressive environments particularly in the North American regions resulting from the excessive use of de-icing salts. Fiber-reinforced-polymer (FRP) reinforcements have emerged as a practical and sustainable anti-corrosive reinforcing material with superior tensile strength to overcome the corrosion problem. High comfort level and increase use of the material is currently seen. Protection and regulations policies of some Public North American agencies currently include GFRP reinforcing bars as premium reinforcement. Shear behaviour in RC slabs is examined since most of the bridge deck and parking garage slabs are shear critical. However, there is still no agreement in FRP design codes and guidelines for shear strength equations. Several design code equations are still based on empirical relationships while recent developments are based on shear theories. The complex nature of shear phenomena which is influenced by many parameters, in addition to the existence of various schools of thoughts in shear, makes it difficult to find a general agreement on a unified equation. Huge research efforts are being established, however better understanding for the shear behaviour and failure mechanisms for unidirectional FRP RC slabs is still needed. In this research study, an experimental program was designed to investigate the shear behaviour of one-way concrete slabs reinforced with different types of FRP bars. A total of twenty one concrete slabs reinforced with FRP bars in addition to a steel reinforced slab were constructed and tested to failure under two-point loading. The variation in the concrete contribution to the shear strength V[subscript c] is investigated with respect to FRP reinforcement properties. Newly developed GFRP bars with high modulus, which were not previously investigated in the literature, are used. Different FRP reinforcement properties were included in the study such as reinforcement ratio, modulus of elasticity and axial stiffness, type of bars, and reinforcement configuration. Also, normal concrete and high strength concrete were considered in the research program. Analysis of the experimental results included the general behavior of the tested slabs, crack patterns, ultimate capacities, and modes of failure, load deflection relationships as well as the concrete and reinforcement strains. Test results of the present investigation indicate an influence of the reinforcement type, bar diameter, and the shear stiffness of the bars on the mode of failure and the shear strength. The experimental investigation and analysis of test results provided better understanding of concerning mechanisms of failure and factors contributing to the shear capacity of FRP RC slabs. A refined shear model to the CSA S806-12 is introduced and found to provide better results compared to the existing design codes and guidelines. The model is based on regression analysis of an experimental database. The database is assembled from twenty five different studies in addition to the present investigation. The used database includes 203 unidirectional members reinforced with FRP bars (without shear reinforcement) failing in shear. The model was evaluated through the experimental concrete shear capacities (V[subscript c exp]) of the database and found to provide good predictions. The experimental shear capacities of the database ( V[subscript c exp]) was compared to their corresponding predicted shear capacities (Vcpred ) using CSA S806-12, CAN/CSA-S6.1S1, ACI 440.1R-06, and JSCE-97. It was found that the ACI guide is very conservative. It can be noted that using this guide in its present form may reduce the economic competitiveness of fibre-reinforced polymers. JSCE recommendations are in better agreement with the test results. The Canadian CSA S806-12 equation was found to be in good fit with the experimental shear capacities.
APA, Harvard, Vancouver, ISO, and other styles
33

Hagen, Garrett Richard. "Performance-Based Analysis of a Reinforced Concrete Shear Wall Building." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/803.

Full text
Abstract:
PERFORMANCE-BASED ANALYSIS OF A REINFORCED CONCRETE SHEAR WALL BUILDING Garrett Richard Hagen In this thesis, a special reinforced concrete shear wall building was designed per ASCE 7-05, and then the performance was investigated using the four analysis procedures outlined in ASCE 41-06. The proposed building was planned as a 6-story office building in San Francisco, CA. The structural system consisted of a two-way flat plate and reinforced concrete columns for gravity loads and slender structural walls for seismic loads. The mathematical building models utilized recommendations from ASCE 41-06 and first-principle mechanics. Moment-curvature analysis and fiber cross-section elements were used in developing the computer models for the nonlinear procedures. The results for the analysis procedures showed that the building met the Basic Safety Objective as defined in ASCE 41-06. The performance levels for the nonlinear procedures showed better building performance than for the linear procedures. This paper addresses previously found data for similar studies which used steel special moment frames, special concentric braced frames, and buckling restrained braced frames for their primary lateral systems. The results showcase expected seismic performance levels for a commercial office building designed in a high seismicity region with varying structural systems and when using different analysis procedures. Keywords: reinforced concrete structural walls, shear walls, performance-based analysis, ETABS, Perform-3D, flat plate, two-way slab.
APA, Harvard, Vancouver, ISO, and other styles
34

Cuenca, Asensio Estefanía. "ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/18326.

Full text
Abstract:
Cuenca Asensio, E. (2012). ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18326
Palancia
APA, Harvard, Vancouver, ISO, and other styles
35

Lim, Albert Kee Wah. "Non-linear response of reinforced concrete coupling slab with drop panel in earthquake-resisting shear wall structures." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kassem, Fidaa. "Reliability of reinforced concrete structures : Case of slabs subjected to impact." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0096/document.

Full text
Abstract:
Dans le domaine du génie civil, le dimensionnement des structures en béton armé est essentiellement basé sur des démarches déterministes. Cependant, les informations fournies par des analyses déterministes sont insuffisantes pour étudier la variabilité de la réponse de la dalle. Le manque de connaissance des charges appliquées ainsi que les incertitudes liées à la géométrie de la dalle et les caractéristiques des matériaux nécessitent donc l’utilisation d’une approche fiabiliste qui permet la propagation de ces incertitudes dans les analyses déterministes. L'approche fiabiliste est basée sur le principe de couplage mécano-fiabiliste qui consiste à coupler un modèle stochastique et un modèle déterministe. Cependant un couplage mécano-fiabiliste peut être très exigeant en temps de calcul. Dans le cadre de cette thèse, la méthodologie propre aux problématiques des ouvrages du génie civil est développée et validée tout d'abord sur un cas simple de structures en béton armé. Le cas d'une poutre encastrée en béton armée est proposé. Le système est modélisé sous CASTEM par une approche aux éléments finis de type multifibre. Puis la fiabilité d'une dalle en béton armé impactée par une masse rigide à faible vitesse est étudiée en couplant OpenTURNS à Abaqus. Enfin, une enceinte de confinement en béton précontrainte modélisée sous ASTER est étudiée d'un point de vue probabiliste. Seul le problème physique des dalles en béton armé soumises à une chute de colis dans les centrales nucléaires est examiné en détail. Deux modèles déterministes sont utilisés et évalués afin d’étudier les phénomènes dynamiques appliqués aux dalles en béton armé sous impact : un modèle par éléments finis en 3D modélisé sous Abaqus et un modèle simplifié de type masse-ressort amorti à deux degrés de liberté. Afin d’étudier la fiabilité des dalles en béton armé, nous avons couplé les méthodes Monte Carlo et simulation d’importance avec le modèle de type masse-ressort. FORM est utilisée avec le modèle par éléments finis. L’objectif de cette étude est de proposer des solutions pour diminuer le temps de calcul d'une analyse fiabiliste en utilisant deux stratégies dans le cas des dalles impactées. La première stratégie consiste à utiliser des modèles analytiques qui permettent de prédire avec précision la réponse mécanique de la dalle et qui sont moins coûteux en temps de calcul. La deuxième consiste à réduire le nombre d’appels au modèle déterministe, surtout dans le cas des modèles par éléments finis, en utilisant des méthodes probabilistes d'approximation. Ces deux stratégies sont comparées afin de vérifier l’efficacité de chacune pour calculer la probabilité de défaillance. Enfin, une étude paramétrique est réalisée afin d’étudier l’effet des paramètres d’entrées des modèles déterministes sur le calcul de la probabilité de défaillance
Reinforced concrete structures (RC) are subjected to several sources of uncertainties that highly affect their response. These uncertainties are related to the structure geometry, material properties and the loads applied. The lack of knowledge on the potential load, as well as the uncertainties related to the features of the structure shows that the design of RC structures could be made in a reliability framework. This latter allows propagating uncertainties in the deterministic analysis. However, in order to compute failure probability according to one or several failure criteria, mechanical and stochastic models have to be coupled which can be very time consuming and in some cases impossible. The platform OpenTURNS is used to perform the reliability analysis of three different structures . OpenTURNS is coupled to CASTEM to study the reliability of a RC multifiber cantilever beam subjected to a concentrated load at the free end, to Abaqus to study the reliability of RC slabs which are subjected to accidental dropped object impact during handling operations within nuclear plant buildings, and to ASTER to study the reliability of a prestressed concrete containment building. Only the physical problem of reinforced concrete impacted by a free flying object is investigated in detail. Two deterministic models are used and evaluated: a 3D finite element model simulated with the commercial code “Abaqus/Explicit” and an analytical mass-spring model. The aim of this study is to address this issue of reliability computational effort. Two strategies are proposed for the application of impacted RC slabs. The first one consists in using deterministic analytical models which predict accurately the response of the slab. In the opposite case, when finite element models are needed, the second strategy consists in reducing the number of simulations needed to assess the failure probability. In order to examine the reliability of RC slabs, Monte Carlo and importance sampling methods are coupled with the mass-spring model, while FORM is used with the finite element model. These two stategies are compared in order to verify their efficiency to calculate the probability of failure. Finally, a parametric study is performed to identify the influence of deterministic model parameters on the calculation of failure probability (dimensions of slabs, impact velocity and mass, boundary conditions, impact point, reinforcement
APA, Harvard, Vancouver, ISO, and other styles
37

Tazaly, Zeinab. "Punching Shear Capacity of Fibre Reinforced Concrete Slabs with Conventional Reinforcement : Computational analysis of punching models." Thesis, KTH, Bro- och stålbyggnad, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118825.

Full text
Abstract:
Steel fibre reinforced concrete is not a novel concept, it has been around since the mid-1900s, but despite its great success in shotcrete-reinforced rock walls and industrial floors it has not made any impact on either beams or elevated slab. Apparently, the absence of standards is the main reason. However, the combination of steel fibre reinforced concrete and conventional reinforcement has in many researches shown to emphasize good bearing capacrty. In this thesis, two punching shear capacity models have been analysed and adapted on 136 test slabs perfomred by previous researchers. The first punching model altemative is proposed in DAfStB - BetonKalender 201l, and the second punching model alternative is established in Swedish Concrete Association - Report No. 4 1994. Due to missing information of the experimental measured residual tensile strength, a theoretical residual tensile strength was estimated in two different manners to be able to adapt the DAfStB punching model altemative on the refereed test slabs. The first solution is an derivation of a suggestion made by Silfiverbrand (2000) and the second solution is drawn from a proposal made by Choi etal. (2007). The result indicates that the SCA punching model alternative is easier to adapt and provides the most representative result. Also DAfStb altemative with the second solution of estimating the residual strength contributes to arbitrary result, however due to the uncertainty of the estimation of the residual tensile strength, the SCA punching model is recommended to be applied until further investigation can confirm the accuracy of the DAfStB alternative with experimentally obtained residual tensile strength.
APA, Harvard, Vancouver, ISO, and other styles
38

Darabi, Mohammadali. "Long-Term Deflection Of One-Way Concrete Slab Strips Containing Steel And GFRP Reinforcement." Thesis, Fredericton: University of New Brunswick, 2011. http://hdl.handle.net/1882/35382.

Full text
Abstract:
Fibre reinforced polymers (FRP’s) are considered an alternative to steel reinforcement in concrete structures because of their noncorrosive nature and nonmagnetic properties. FRP materials are, however, brittle and have a lower stiffness compared to steel. The latter property can lead to deflection and crack control problems in FRP-reinforced concrete flexural members under service loads. A considerable amount of information is available for short-term deflection of FRP-reinforced concrete members, but data on long-term deflections are scarce. This study presents the results of monotonic (short-term) and sustained (long-term) loading tests of 12 concrete shallow beams reinforced with either steel or glass FRP (GFRP) bars. The short-term load-deflection responses of the members are evaluated using existing deflection prediction models (Branson’s and Bischoff’s), and the long-term deflection results (monitored over a period of one year) are used to evaluate the existing ACI code and CSA standard approaches for estimating long-term deflection. The GFRP-reinforced concrete beams exhibited greater amounts of both immediate deflection (under sustained load) and long-term deflections over time, than the steel-reinforced concrete beams. The long-term deflections of both the steel- and GFRP-reinforced concrete beams are overestimated when using the ACI and CSA approaches. Although ACI Committee 440 recommends use of lower values of the long-term deflection multiplier for GFRP-reinforced concrete beams, results obtained from this study suggest that the same longterm multiplier values may be used for GFRP- and steel-reinforced concrete beams loaded at between 115 to 157 days of concrete age.
APA, Harvard, Vancouver, ISO, and other styles
39

Óskarsson, Einar. "Redistribution of bending moments in concrete slabs in the SLS." Thesis, KTH, Bro- och stålbyggnad, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149300.

Full text
Abstract:
The finite element method (FEM) is commonly used to design the reinforcement in concrete slabs. In order to simplify the analysis and to be able to utilize the superposition principle for evaluating the effect of load combinations, a linear analysis is generally adopted although concrete slabs normally have a pronounced non-linear response. This type of simplification in the modeling procedure will generally lead to unrealistic concentrations of cross-sectional moments and shear forces. Concrete cracks already at service loads, which leads to redistribution of moments and forces. The moment- and force-peaks, obtained through linear finite element analysis, can be redistributed to achieve a distribution more similar to what is seen in reality. The topic of redistribution is however poorly documented and design codes, such as the Eurocode for concrete structures, do not give descriptions of how to perform this in practice. In 2012, guidelines for finite element analysis for the design of reinforced concrete slabs were published in a joint effort between KTH Royal Institute of Technology, Chalmers University of Technology and ELU consulting engineers, which was financially supported by the Swedish Transport Administration. These guidelines aim to include the non-linear response of reinforced concrete into a linear analysis. In this thesis, the guidelines mentioned above are followed to obtain reinforcement plans based on crack control, for a fictitious case study bridge by means of a 3D finite element model. New models were then constructed for non-linear analyses, where the reinforcement plans were implemented into the models by means of both shell elements as well as a mixture of shell and solid elements. The results from the non-linear analyses have been compared to the assumptions given in the guidelines. The results from the non-linear analyses indicate that the recommendations given in the aforementioned guidelines are indeed reasonable when considering crack width control. The shell models yield crack widths equal to approximately half the design value. The solid models, however, yielded cracks widths that were 15 - 20$\%$ lower than the design value. The results show that many factors attribute to the structural behavior during cracking, most noticeably the fracture energy, a parameter not featured in the Eurocode for concrete structures. Some limitations of the models used in this thesis are mentioned as well as areas for further improvement.
APA, Harvard, Vancouver, ISO, and other styles
40

Milani, Alexandre Caio. "Análise de lajes planas protendidas pelo método dos elementos finitos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2006. http://hdl.handle.net/10183/10608.

Full text
Abstract:
Na construção civil atual, existe uma tendência de crescimento da automatização do projeto, visando o desenvolvimento de soluções personalizadas a fim de fugir das indesejadas repetições arquitetônicas. Dentro desta tendência, as lajes planas protendidas proporcionam grande flexibilidade de layout, maior rapidez na execução da estrutura e diminuição do número de pilares, proporcionando ganhos de área útil. Um dos principais esquemas estruturais adotados para representar lajes planas protendidas é a laje lisa, com ou sem engrossamento na região dos pilares. As lajes lisas apresentam vantagens em relação às demais (nervuradas e outras), sobretudo do ponto de vista da facilidade de execução. Esta dissertação apresenta um modelo numérico para o cálculo de lajes planas lisas protendidas via Método dos Elementos Finitos.O elemento finito empregado, isoparamétrico com 8 nós, possui 5 graus de liberdade por nó: os 3 graus de liberdade referentes a teoria de Flexão de Placas de Reissner-Mindlin e os 2 graus de liberdade relativo ao Estado Plano de Tensões. A protensão é considerada através do Método de Equilíbrio de Cargas (criado por T. Y. Lin e utilizado por AALAMI (1990)), que consiste na transformação dos esforços devido aos cabos protendidos em um conjunto de cargas equivalentes. Também é proposto um modelo de cálculo para determinação da posição do cabo de protensão em elevação e das perdas imediatas da força de protensão (perdas por atrito e recuo das ancoragens). São analisadas as tensões de serviço, para verificação da deformação, e as tensões últimas a que a laje protendida pode estar submetida, para o dimensionamento das armaduras ativa e passiva.
There is a recent trend, in Civil Engineering, toward automatized projects, aiming at the development of personal solutions, avoiding undesirable design repetitions. As an example, pre-tensioned plane plates give great layout flexibility, faster structural execution and reduction of the number and cross section of pillars, resulting in gains in the net area of the construction. One of the most common structures used as pre-tensioned plates is the flat slab, with or without enlargements near the pillars. The flat slab have advantages related to others (ribbed and others) mainly regarding its easier execution. These work presents a numerical model to calculate pre-tensioned flat slab by the Finite Element Method. The finite element used, isoparametric with 8 nodes, has 5 degrees of freedom per node: 3 degree of freedom regarding the Reissner-Mindlin´s plate bending theory and the 2 remaining regarding the plane stress state. The pre-tension is considered through the Load Equilibrium Method (created by T. Y. Lin and used AALAMI (1990)). The method consists in the transformation of loads due to pre-tensioned cables in one assemble of equivalent loads. Also, it is proposed a calculus model to determine the pre-tensioned cable elevation and the instantaneous losses of the pre-tensioned forces (losses by friction and partial retreat of the anchorage). The stress and deformation in service are analyzed as well as the ultimate stresses of the pre-tensioned plate can be subjected are verified, in order to design active and passive reinforcements.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhou, Yang. "Nonlinear analysis of reinforced concrete slab on partially softening ground : Ickelinjär analys av armerad betongplatta på delvis uppmjuknande grund." Thesis, KTH, Betongbyggnad, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205266.

Full text
Abstract:
Reinforced concrete slabs are a conventional type of foundation that is widely used in residential, commercial and industrial buildings. Most of the slab foundations are constructed directly on the ground without another structural medium in between and some of the slabs are therefore influenced by ground softening. A slab foundation is designed to transfer vertical loads and bridge imperfections in the ground, but excessive soil distortion may destroy the support conditions of the slab and through this influence the stability of the superstructures. The aim of this project is to study how ground softening and its further development influence a typical concrete slab. Furthermore, an approximate analytical method to evaluate the condition of a slab due to ground softening was studied. A practical case has been studied to capture the actual failure behaviours of a reinforced concrete slab, based on a previous project. For the case studied, possible future mining activities close to a high bay warehouse may cause damaging settlement in the underground. The fault that may appear softens the soils underneath the foundation, which may deteriorate and cause collapse of the concrete slab under the warehouse. Two types of failure scenarios were studied; subsoil softening and subsoil collapse. The Finite Element Method (FEM) was used to analyse the behaviour of the slab and the development of the failures in the subsoil. A commercial FEM software package, Abaqus, was used as the analytic tool, with a built-in Concrete Damaged Plasticity model (CDP) that for the concrete material model. Both linear and nonlinear material properties have been used in the analyses with same softening effect of the subsoil. A large number of models were analysed to simulate the development of the fault and capture the failure modes of the slab at different stages. Excessive tensile cracks and vertical deformations were found in both failure scenarios studied. A possible internal stability problem of the warehouse due to this was also found. The nonlinear behaviour of the concrete slab was captured through the failure scenarios before damage. It is shown that the serviceability of the reinforced concrete slab can be influenced by softening ground, and a more realistic description of the possible failures was here obtained based on the nonlinear model compared to previous elastic analyses. Keywords:     Reinforced concrete slab, Nonlinear, Ground softening, Finite Element Method (FEM), Abaqus, Concrete Damaged Plasticity (CDP).
Armerade betongplattor är en vanlig typ av fundament som ofta används för bostäder, kommersiella och industriella byggnader. De flesta av grundplattorna konstrueras direkt på marken utan andra strukturella medium emellan och vissa av plattorna påverkas därför av mjuknande undergrunder. En grundplatta är konstruerad för att överföra vertikala laster och överbrygga imperfektioner i marken, men stora sättningar i undergrunden kan förstöra plattans stödförhållanden och genom detta störa stabiliteten för överbyggnaderna. Syftet med projektet är att studera hur mjuknande undergrund och dess propagering påverkar en typisk betongplatta. Vidare används en approximativ analysmetod för att utvärdera tillståndet hos en platta på sådan mark. Ett praktiskt fall har studerats för att fånga det verkliga brottbeteendet hos en armerad betongplatta, vilket bygger på ett tidigare genomfört projekt. För det studerade fallet kan eventuell framtida gruvdrift nära ett höglager orsaka skadliga sättningar i undergrunden. Den förkastning som kan uppstå kan leda till uppmjukning av jordarna under fundamentet, vilket kan förvärras och orsaka kollaps av betongplattan under lagret. Två typer av brottscenarier studerades; uppmjuknande respektive full kollaps av undergrunden. Finita Element Metoden (FEM) användes för att analysera beteendet hos plattan och utvecklingen av fbrott och förskjutning i undergrunden. Ett kommersiellt FEM programpaket, Abaqus, användes som analytiskt verktyg, med en inbyggd plasticitets och skademodell (CDP) för att beskriva betongmaterialets egenskaper. Både linjärelastiska och icke-linjära materialegenskaper har använts i analyserna, för att simulera effekten av den mjukande undergrunnden. Ett stort antal modeller analyserades för att simulera skadepropageringen och fånga brottmoder i plattan genom olika skeden. Dragsprickor och vertikala deformationer uppstod i bägge de studerade scenariorna. Ett möjligt intern stabilitetsproblem hos lagret på grund av detta konstaterades också. Det olinjära beteendet hos betongplattan fångades fram tills allvarlig skada uppstod. Det visas att funktionen i bruksgränsstadiet hos den armerade betongplattan kan påverkas genom uppmjuknande undergrund, och att en mer realistisk beskrivning av möjliga brott här kunde erhållas genom den olinjära modellen, jämfört med tidigare elastiska analyser. Nyckelord:   Betongplatta , Icke-linjärt uppträdande, Finita Element Metoden (FEM), FE-modell, Abaqus, Plasticitets och skademodell för betong (CDP).
APA, Harvard, Vancouver, ISO, and other styles
42

Pieraccini, Luca. "Shear behaviour of reinforced cconcrete slab under concentrated load: an investigation through non-linear and sequentially linear analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5902/.

Full text
Abstract:
English: The assessment of safety in existing bridges and viaducts led the Ministry of Public Works of the Netherlands to finance a specific campaing aimed at the study of the response of the elements of these infrastructures. Therefore, this activity is focused on the investigation of the behaviour of reinforced concrete slabs under concentrated loads, adopting finite element modeling and comparison with experimental results. These elements are characterized by shear behaviour and crisi, whose modeling is, from a computational point of view, a hard challeng, due to the brittle behavior combined with three-dimensional effects. The numerical modeling of the failure is studied through Sequentially Linear Analysis (SLA), an alternative Finite Element method, with respect to traditional incremental and iterative approaches. The comparison between the two different numerical techniques represents one of the first works and comparisons in a three-dimensional environment. It's carried out adopting one of the experimental test executed on reinforced concrete slabs as well. The advantage of the SLA is to avoid the well known problems of convergence of typical non-linear analysis, by directly specifying a damage increment, in terms of reduction of stiffness and resistance in particular finite element, instead of load or displacement increasing on the whole structure . For the first time, particular attention has been paid to specific aspects of the slabs, like an accurate constraints modeling and sensitivity of the solution with respect to the mesh density. This detailed analysis with respect to the main parameters proofed a strong influence of the tensile fracture energy, mesh density and chosen model on the solution in terms of force-displacement diagram, distribution of the crack patterns and shear failure mode. The SLA showed a great potential, but it requires a further developments for what regards two aspects of modeling: load conditions (constant and proportional loads) and softening behaviour of brittle materials (like concrete) in the three-dimensional field, in order to widen its horizons in these new contexts of study.
APA, Harvard, Vancouver, ISO, and other styles
43

Kollárik, Adrián. "Monolitická železobetonová nádrž." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409794.

Full text
Abstract:
The thesis deals with design and assessment of all supporting parts of cast-in-place reinforced concrete tank. The thesis includes a technical report, static analysis, drawing documentations, construction proces and visualization. The drawing documentation consists of shape and reinforcement drawings of supporting parts.
APA, Harvard, Vancouver, ISO, and other styles
44

Rocha, Filipe de Lima. "Contribuição ao estudo do sistema de pré-lajes tipo painel treliçado em pavimentos de edificações." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/7456.

Full text
Abstract:
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-09-23T12:46:32Z No. of bitstreams: 1 DissFLR.pdf: 3397805 bytes, checksum: 748cef78a5c04d386df8100510a2b742 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:36:55Z (GMT) No. of bitstreams: 1 DissFLR.pdf: 3397805 bytes, checksum: 748cef78a5c04d386df8100510a2b742 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:37:01Z (GMT) No. of bitstreams: 1 DissFLR.pdf: 3397805 bytes, checksum: 748cef78a5c04d386df8100510a2b742 (MD5)
Made available in DSpace on 2016-09-26T20:37:08Z (GMT). No. of bitstreams: 1 DissFLR.pdf: 3397805 bytes, checksum: 748cef78a5c04d386df8100510a2b742 (MD5) Previous issue date: 2015-08-24
Não recebi financiamento
The civil construction more than ever is challenged by the circumstances faced by the country, the economic crisis experienced in these last few years puts into perspective the necessity of more rational choices avoiding unnecessary dispenses and wastes. In face of this scenario the pre-cast elements became vital to guarantee the conclusion in less time and trying to reduce constructive bottlenecks. The latticed pre-cast concrete slabs are one of the many types of pre-cast parts which can be used at the construction sites, however the national standards are confuse and vague about some aspects contained especially in the European standards. Even the last review of the NBR 6118 of 2014 adds little about the issue and the more specific standard (NBR 14680) has few constructive details regarding the connection between elements and the calculus procedures, therefore this work tries to discuss the main questions related to this kind of pavement, introduces knowledge coming from other standards trying to answer some less usual doubts, but extremely pertinent ones such as, for example, the concept of self-portance, the use of this material in bridge floors and also the type connective reinforcement needed to attain the effective monolithism at the interface between beamstructure. This dissertation also presents some examples of pre- and post-constructive deflection limits, fissured deformation and a full example of calculation for a common pavement. Some data from the experiments realized at the NEPRE in the University of São Carlos and their practical application are shown as well.
A construção civil mais do que nunca se vê desafiada pelas circunstâncias enfrentadas pelo país, a crise econômica vivida nos últimos anos coloca a necessidade de escolhas mais racionais evitando gastos e desperdícios desnecessários. Em face deste cenário as peças prémoldadas se tornaram vitais para garantir prazos menores e redução de gargalos construtivos. As lajes pré-moldadas do tipo painel treliçado são um dos muitos tipos de peças pré-fabricadas que podem ser utilizadas nos canteiros de obra, porém as normas vigentes são confusas e vagas em relação a alguns aspectos celebrados principalmente nas normas europeias. Mesmo a última revisão da NBR 6118 de 2014 acrescenta pouco sobre o assunto e a norma mais específica (NBR 14860) possui poucos detalhes construtivos relativos à ligação entre elementos e a procedimentos de cálculo, portanto este trabalho tenta abordar as principais questões relativas a esse tipo de pavimento, introduz conhecimento vindo de outras normas na tentativa de responder a algumas dúvidas menos usuais, porém extremamente pertinentes como, por exemplo, o conceito de autoportância, o uso desse material em pavimentos de pontes e também o tipo de ancoragem necessário para se atingir o monolitismo adequado da interface vigaestrutura. O trabalho ainda apresenta exemplos de cálculo de flecha limite pré e pós-construtiva, deformação fissurada e um dimensionamento completo de um pavimento. São apresentados também os dados coletados durante os ensaios realizados no NETPRE da Universidade Federal de São Carlos e sua aplicação prática para aqueles resultados.
APA, Harvard, Vancouver, ISO, and other styles
45

Recalde, Bruno Ramón Blanc. "Análise numérica de flexão em lajes nervuradas com a consideração dos efeitos de fissuração no concreto." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/103824.

Full text
Abstract:
Lajes nervuradas modeladas computacionalmente são geralmente analisadas por metodologias simplificadas, tanto para a geometria da seção (convertendo em lajes maciças ou grelhas) como para as propriedades mecânicas dos materiais (regime elástico-linear). Estes estudos teóricos apresentam grandes diferenças quando comparados com ensaios experimentais, mesmo para baixos níveis de carregamento. Isto se deve principalmente pela não consideração da excentricidade entre os eixos da nervura e da capa, como também à simplificação do comportamento mecânico do concreto à tração. Modelos numéricos chamados realísticos consideram o efeito da excentricidade entre os eixos da capa e nervura da seção transversal. Pode-se, ainda, introduzir a não-linearidade física do concreto armado nestes modelos, obtendo resultados mais próximos do real. O objetivo deste trabalho é estabelecer um modelo numérico realístico, para a seção típica de laje nervurada, atendendo às indicações descritas acima. Para a consideração da excentricidade entre os eixos da capa e nervura empregam-se elementos de casca, em posição horizontal para a capa e vertical para a nervura. A não-linearidade física do concreto à tração é representada através do modelo de fissuração distribuída proposto por D’AVILA (2003). Para as análises não-lineares empregou-se o programa computacional de elementos finitos SAP2000 versão 16, onde os elementos de casca permitem discretizar o concreto armado em camadas, ao longo da espessura. Um bom desempenho do modelo numérico proposto foi verificado pela validação deste a partir de modelos experimentais, assim como da análise numérica de outros autores. Realizaram-se, por último, análises de algumas lajes nervuradas com solicitações de carregamentos excessivos, a fim de prever seus desempenhos frente a estados limites de flexão. Os resultados obtidos nestas análises mostraram, também, um bom desempenho do modelo proposto.
Waffle slab structures simulated by computational models are generally analyzed by simplified methods, both for section geometry (converting into solid slabs) and the material mechanical properties (linear elastic regime). The results obtained by such theoretical studies show large differences when compared to experimental tests, even at low loading levels. This is mainly due to non-consideration of the eccentricity between the rib and cover axes and simplification of the concrete tensile strength mechanical behavior. The so called realistic numerical models consider the effect of eccentricity between the axes of hood and ribs of the cross section. One may also introduce physical nonlinearity of reinforced concrete in these models, obtaining results closer to real. The objective of this work is to establish a realistic numerical model for the typical section of a waffle slab, considering the physical nonlinearity of concrete and its collaboration between cracks, by the smeared crack model proposed by D' AVILA (2003). The computational finite element program SAP2000 version 16 is used for the non-linear analysis. The shell element discretization enabled the heterogeneous characteristics of reinforced concrete to be considered through layers along the thickness. The numerical model was validated based on the analysis of experimentally tested slabs. Finally, some waffle slabs were numerically analyzed under a uniformly distributed and incrementally growing load. The proposed model was able to predict their overall behavior and some local aspects could also be observed.
APA, Harvard, Vancouver, ISO, and other styles
46

Hetmer, Jakub. "Nosná konstrukce víceúčelové budovy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227219.

Full text
Abstract:
This master´s thesis“ Load-bearing Structure of Multi-purpose Building“ is processed in the form of project documentation according to applicable regulations. It deals with static solution of monolitic reinforced concrete construction of administrative building of Česká spořitelna. Subject of the solutions is reinforced concrete monolithic point – supported ceiling slab, columns and staircase.
APA, Harvard, Vancouver, ISO, and other styles
47

Neužil, David. "Statické řešení nosné železobetonové konstrukce rodinné vily." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240199.

Full text
Abstract:
Master thesis describes design of reinforced concrete structure for family villa. Building is situated to the slope. Only chosen parts of concrete structure was designed and checked for ultimate limit state. Building consist of basemen and two floors. Part of second floor is cantilevered. Cantilevered part was designed according to vertical deflection. Building foundation consist of waterproof slabs. Walls in contact with soil are considered as waterproof, as well.
APA, Harvard, Vancouver, ISO, and other styles
48

Oliveira, Richard Sarzi. "Análise de pavimentos de edifícios de concreto armado com a consideração da não-linearidade física." Universidade de São Paulo, 1997. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-14062007-112910/.

Full text
Abstract:
Este trabalho trata da evolução natural do modelo de cálculo em regime elástico linear, largamente empregado no dimensionamento de pavimentos de concreto armado, para um modelo com maior capacidade de representação. A consideração da não-linearidade física do material concreto armado é incorporada a um sistema computacional em elementos finitos segundo modelos não-estratificados, através da generalização das formulações para o campo dos esforços. O elemento de barra é abordado em campo uniaxial, verificando-se o escoamento produzido pela flexão. Para o elemento de placa, estabelece-se o critério de escoamento de Von Mises com leis associativas particularizado ao estado plano de tensões (EPT). Essas tensões são integradas ao longo da espessura do elemento, permitindo escrever o critério em função do terno de valores de momentos atuantes. Por fim, os modelos de barra e placa são integrados ao sistema computacional, resultando um sistema de análise não-linear de pavimentos de concreto armado. A caracterização do comportamento físico da seção transversal é feita segundo um diagrama momento-curvatura trilinear. A aplicação do modelo proposto a elementos estruturais isolados, e a um pavimento convencional, confirma a melhoria do sistema computacional, e os tempos de processamento requeridos evidenciam a viabilidade do emprego do modelo não-linear físico em projetos usuais de pavimentos de concreto armado.
This work deals with the natural evolution of the design model based on linear elasticity, widely employed on reinforced concrete slabs designs, to a improved design model. The consideration of physical nonlinearity of the reinforced concrete is introduced into a finite element computational system by nonlayered models with generalization of the formulation to the bending moment field. The beam element is treated in a uniaxial field, with bending moment yielding. In the plate element it is established the Von Mises yield criterion with associative laws particularized to the plane stress. These stresses are integrated along the element depth, enabling to write the criterion with plate bending moments. At last, the beam and the plate models are incorporated into a computational system, resulting in a reinforced concrete slabs analysis system. The characterization of the cross section physical behavior is made by a trilinear bending moment-curvature diagram. The application of the proposed model to isolate structural elements and to a conventional slab confirms the improvement of the finite element system and the required computational analysis times show the feasibility of the nonlinear model application into usual reinforced concrete slab design.
APA, Harvard, Vancouver, ISO, and other styles
49

Trigo, Ana Paula Moreno. "Estudo de lajes com adição de resíduo de pneu /." Ilha Solteira : [s.n.], 2008. http://hdl.handle.net/11449/91476.

Full text
Abstract:
Resumo: No Brasil, o concreto armado é bastante empregado na confecção de pilares, vigas e lajes das estruturas de edificações. As lajes são utilizadas como piso ou forro e, considerandose que a laje de forro não demanda ações elevadas, quando comparada à laje de piso, pensa-se na possibilidade de substituir parcialmente o agregado do concreto por outros materiais que sejam, ecológica e economicamente, viáveis. Desses materiais, o resíduo de borracha se mostra promissor, por ser gerado em abundância. Este trabalho objetiva mostrar uma alternativa de reaproveitamento para o resíduo proveniente do processo de recauchutagem de pneu, utilizando-o como parte do agregado de concreto para lajes de forro. São ensaiadas, à flexão, duas lajes unidirecionais, sendo uma delas constituída parcialmente por resíduo de borracha de pneu, e a outra sem, ambas formadas por vigotas pré-moldadas treliçadas. Através dos deslocamentos verticais, das deformações no concreto e na armadura, medidos com auxílio de relógios comparadores e extensômetros elétricos, e dos modos de ruptura da estrutura, obtidos nos ensaios, avalia-se o comportamento dessas lajes.
Abstract: In Brazil, the reinforced concrete is used for pillars, beams and slabs. The slabs are used as floor or lining and, as the lining slab do not demand raised actions, when compared with the floor slab, it is possible to replace partially the concrete aggregate for ecologically and economically viable materials. From these materials, the rubber residue is promising and abundant. The aim of this work is to show a recycling alternative for tire rubber from retreading process, using it as part of the concrete aggregate in lining slabs. Two unidirectional slabs are assayed to the flexure, one partially with tire rubber residue and another one without, both formed by precast lattice joist. The slabs behavior is evaluated through the vertical displacements, concrete and reinforcement deformations, measured with comparing clocks and electric strain gages, and structure rupture ways.
Orientador: Jorge Luís Akasaki
Coorientador: José Luiz Pinheiro Melges
Banca: Jefferson Sidney Camacho
Banca: Roberto Chust Carvalho
Mestre
APA, Harvard, Vancouver, ISO, and other styles
50

Trigo, Ana Paula Moreno [UNESP]. "Estudo de lajes com adição de resíduo de pneu." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/91476.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:25:21Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-02-28Bitstream added on 2014-06-13T19:53:01Z : No. of bitstreams: 1 trigo_apm_me_ilha.pdf: 2296077 bytes, checksum: aa464f95de9d5130225ee4ae495722db (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
No Brasil, o concreto armado é bastante empregado na confecção de pilares, vigas e lajes das estruturas de edificações. As lajes são utilizadas como piso ou forro e, considerandose que a laje de forro não demanda ações elevadas, quando comparada à laje de piso, pensa-se na possibilidade de substituir parcialmente o agregado do concreto por outros materiais que sejam, ecológica e economicamente, viáveis. Desses materiais, o resíduo de borracha se mostra promissor, por ser gerado em abundância. Este trabalho objetiva mostrar uma alternativa de reaproveitamento para o resíduo proveniente do processo de recauchutagem de pneu, utilizando-o como parte do agregado de concreto para lajes de forro. São ensaiadas, à flexão, duas lajes unidirecionais, sendo uma delas constituída parcialmente por resíduo de borracha de pneu, e a outra sem, ambas formadas por vigotas pré-moldadas treliçadas. Através dos deslocamentos verticais, das deformações no concreto e na armadura, medidos com auxílio de relógios comparadores e extensômetros elétricos, e dos modos de ruptura da estrutura, obtidos nos ensaios, avalia-se o comportamento dessas lajes.
In Brazil, the reinforced concrete is used for pillars, beams and slabs. The slabs are used as floor or lining and, as the lining slab do not demand raised actions, when compared with the floor slab, it is possible to replace partially the concrete aggregate for ecologically and economically viable materials. From these materials, the rubber residue is promising and abundant. The aim of this work is to show a recycling alternative for tire rubber from retreading process, using it as part of the concrete aggregate in lining slabs. Two unidirectional slabs are assayed to the flexure, one partially with tire rubber residue and another one without, both formed by precast lattice joist. The slabs behavior is evaluated through the vertical displacements, concrete and reinforcement deformations, measured with comparing clocks and electric strain gages, and structure rupture ways.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography