Academic literature on the topic 'Reinforcement of structural elements'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reinforcement of structural elements.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reinforcement of structural elements"
Safi, Walid Ahmad, Yo Hibino, Koichi Kusunoki, Yasushi Sanada, and Tomohisa Mukai. "Impact of the Reinforcement Detailing on Seismic Performance of Isolated Non-structural Walls." Buildings 10, no. 5 (May 7, 2020): 89. http://dx.doi.org/10.3390/buildings10050089.
Full textTannert, Thomas, Jorge M. Branco, and Mariapaola Riggio. "RILEM TC "Reinforcement of Timber Elements in Existing Structures"." Advanced Materials Research 778 (September 2013): 1041–48. http://dx.doi.org/10.4028/www.scientific.net/amr.778.1041.
Full textGhavami, Khosrow. "Bamboo as reinforcement in structural concrete elements." Cement and Concrete Composites 27, no. 6 (July 2005): 637–49. http://dx.doi.org/10.1016/j.cemconcomp.2004.06.002.
Full textLibotean, Dan Alexandru, Alexandru Chira, and Ferdinánd-Zsongor Gobesz. "Textile-Reinforced Concrete Structural Elements." Műszaki Tudományos Közlemények 8, no. 1 (April 1, 2018): 61–66. http://dx.doi.org/10.33894/mtk-2018.08.07.
Full textPidun, Kevin, and Thomas Gries. "Shaped Textile Reinforcement Elements for Concrete Components." Advanced Materials Research 747 (August 2013): 415–19. http://dx.doi.org/10.4028/www.scientific.net/amr.747.415.
Full textDöbrich, Oliver, Thomas Gereke, and Chokri Cherif. "Modelling of textile composite reinforcements on the micro-scale." Autex Research Journal 14, no. 1 (March 14, 2014): 28–33. http://dx.doi.org/10.2478/v10304-012-0047-z.
Full textKomarov, Valeriy A., Alexander A. Pavlov, Svetlana A. Pavlova, and Ramaz V. Charkviani. "Reinforcement of Aerospace Structural Elements Made of Layered Composite Materials." Procedia Engineering 185 (2017): 126–30. http://dx.doi.org/10.1016/j.proeng.2017.03.329.
Full textKnauff, M., B. Grzeszykowski, and A. Golubińska. "Minimum Reinforcement for Crack Width Control in RC Tensile Elements." Archives of Civil Engineering 65, no. 1 (March 1, 2019): 111–28. http://dx.doi.org/10.2478/ace-2019-0008.
Full textMassone, Leonardo M., and Eduardo E. López. "Modeling of reinforcement global buckling in RC elements." Engineering Structures 59 (February 2014): 484–94. http://dx.doi.org/10.1016/j.engstruct.2013.11.015.
Full textPlyusnin, Mikhail G., and Sergey V. Tsybakin. "The effect of anisotropy of elastic properties of GFRP reinforcement on strength of compressed concrete structural elements." Vestnik MGSU, no. 6 (June 2019): 669–79. http://dx.doi.org/10.22227/1997-0935.2019.6.669-679.
Full textDissertations / Theses on the topic "Reinforcement of structural elements"
Brown, Adrian D. "The use of carbon fibre reinforced cement as tensile reinforcement for concrete structural elements." Thesis, University of Bath, 1987. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287533.
Full textRussell, Darren. "Finite element analysis of embankments on soft ground incorporating reinforcement and drains." Thesis, University of Sheffield, 1992. http://etheses.whiterose.ac.uk/1853/.
Full textSundberg, Lars Andreas. "Analysis of welded reinforcements on a boom mower : A structural and modal analysis of reinforcement properties on a industrial boom mower." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-148593.
Full textTrafiksäkerhet är ett komplicerat ärende som påverkar de flesta världsekonomier på grund av dess negativa socioekonomiska inverkan. I trafiksäkerhetsprogrammen ingår olika program som täcker olika områden för att minimera de socioekonomiska effekterna. Ett av dessa program koncentrerar sig på trafiksäkerhet mot invasion av vilda djur på motorbanor. De flesta världsekonomiers system som omfattar dessa trafiksäkerhetsprogram, till exempel Sverige, är beroende av specifika maskiner och tekniker för röjning av vägarna som gör det möjligt för föraren att i god tid ska kunna förutse eventuell fara eller vilt som kommer in på vägen. Den vanligaste maskinen som används för röjning av vägar kallas kättingröjare. Kättingröjaren kan liknas vid gigantiska gräsklippare som är fastsatta på en grävmaskin, hjullastare och/eller väghyvel så att de kan rensa bort gräs från vägkanten. Kättingröjare lider av kraftigt slitage på grund av deras dimensioner, vikt och driftshastighet. Det kräver att tillverkaren uppmärksammar konstruktionen och materialvalet till kättingröjaren. Cranab Slagkraft är ett svenskt företag som under de senaste 30 åren har specialiserat sig på att leverera högkvalitativa kättingröjare. Kättingröjarna är ofta dyra och komplicerade att tillverka. Av den anledningen har Cranab begärt en studie för att förenkla produktionen och minska tillverkningskostnaderna. Den här studien koncentrerar sig på det senaste komponenttillägget i kättingröjarens konstruktion för att bedöma deras prestanda. I den här studien testas flera förstärkningar i kättingröjarens modell SH150 för att undersöka deras prestanda mot harmonisk vibration och strukturell hållfasthet mot lokala spänningar. I studien ingår två kompletterande analyser. Först görs en modalanalys på kättingröjarens huvudstruktur för utvärdering av resonansnivåer vid driftsfrekvensen. Sedan görs en strukturell analys med idealiserat tillstånd vid driftshastigheten för att bestämma spänningsmotståndet. I resultatet beskrivs en grupp av förstärkningar som inte har någon påverkan för kättingröjarens harmoniska vibration och spänningsmotstånd och en andra grupp som visar påverkan. Även resultaten visar att den komplicerade geometrin kräver avancerad mjukvara för att ge mer avgörande resultat. Dessutom kan kättingröjarens egen geometri och materialval ha påverkan vid justering av dess harmoniska resonans och mekaniska egenskaper. Den senare slutsatsen bör betraktas som ett begrepp för framtida studier inom samma område.
Reyes, Ordoñez Murray Olaf, and Argomedo Yuliana Vanessa Alegre. "Análisis estructural de la iglesia de San Pedro de Carabayllo – Lima / Perú." Bachelor's thesis, Universidad Ricardo Palma, 2015. http://cybertesis.urp.edu.pe/handle/urp/1343.
Full textBaingo, Darek. "A Framework for Stochastic Finite Element Analysis of Reinforced Concrete Beams Affected by Reinforcement Corrosion." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23063.
Full textFawwaz, Maha, and Adnan Hanna. "Structural behavior of notched glulam beams reinforced by means of plywood and FRP." Thesis, Linnéuniversitetet, Institutionen för teknik, TEK, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19479.
Full textTack vare sina goda egenskaper används trä i byggnadskonstruktioner i allt storeomfattning. Konstruktionsvirke (sågade trävaror) kan dock inte alltid användas pågrund av de begränsade dimensioner som finns tillgängliga. På grund av bl a dettahar ett flertal så kallade engineer wood products (EWP) utvecklats. Limträ är en typav EWP som består av sammanlimmade lameller som bygger upp tvärsnitt i balkareller pelare. Limträ kan tillverkas i nästan godtycklig storlek och form och kan enkeltförses med t ex urtag. Vid urtag i balkändar nära upplag uppstår högaspänningskoncentrationer vid urtagets horn på grund av geometrin. Koncentrationenav normalspänningar och skjuvspänningar kan leda till plötsligt brott på grund avsprickpropagering från urtagets hörn, något som måste tas hänsyn till viddimensionering. Dagens dimensioneringsmetoder är baserade på att man tar hänsyntill enbart normalspänningarna vinkelrät fiberriktningen.Målet med detta arbete har varit att studera beteendet hos limträbalkar med urtag vidupplag som förstärkts med fiberarmering eller plywood. Huvudmålet har varit attbestämma balkarnas bärförmåga, vilket skett genom att genomföra försök med olikakonfigurationer vad gäller förstärkningsmaterial och dess utformning. Vidare harolika dimensioneringsmetoder från litteraturen studerats.Kraft och förskjutning under provningarna uppmättes dels med traditionellamätmetoder, men deformationerna mättes även med beröringsfri metod, ARAMIS.En enkel tvådimensionell finit elementmodell skapades och analyserades i ABAQUSför analys av oförstärkt balk. Normalspänningar och skjuvspänningar beräknades ochmedelspänningarna längs en på förhand definierad sträcka beräknades.Medelspänningskriteriet användes sedan för att uppskatta balkens bärförmåga.Enligt FE-beräkningarna uppskattades bärförmågan för de oförstärkta balkarna till ca40 kN. Provningarna gav ett medelvärde på balkarnas bärförmåga på ca 30 kN,medan de förstärkta balkarna hade en 2,5 gånger högre bärförmåga. Skillnadenmellan FE-beräkningarna och provningarna kan förklaras med den osäkerhet somfinns vad gäller det aktuella trämaterialets egenskaper.Beräkningar enligt Eurokod 5 gav en karakteristisk bärförmåga på 20,2 kN.
Anampa, Vilcas Oscar Alonso, and Carranza Lucia Isabel Loyola. "Evaluación estructural del Museo de Sitio Bodega y Quadra ante un evento sísmico severo." Bachelor's thesis, Universidad Ricardo Palma, 2015. http://cybertesis.urp.edu.pe/handle/urp/1346.
Full textGowripalan, N. "Reinforcement of concrete elements with modified polymers." Thesis, University of Leeds, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378032.
Full textHaji, Oussama. "Modèles de comportement de structures textiles : développement, identification, implémentation." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE3007.
Full textThe fibrous textile undergoes different mechanical loads, which induce strains and damage to the fabric at different scales. As a result, the mechanical properties of the final parts are drastically impacted. It is therefore essential topredict the feasibility of composite parts by the modelization and the simulation of the fabric preforming process.This task requires an appropriate mechanical behaviour of the fibrous textile. This behaviour is mainly a structural effect that depends essentially on the yarn interlacing and secondly on the yarn behaviour. Each yarn is composedof thousands of fibers; therefore, the objective of the present thesis is to establish a reliable numerical model ofslightly entangled and quasi-parallel fibers. The present work presents mainly: (i) a realistic representation of the fiber network geometry and (ii) a reliable simulation strategy to model the main phenomena at the fiber scale. To feed this approach, compaction tests were conducted on fiber network specimens of 40 polyester fibres. The experiments were combined with X-ray tomography image analysis. Using these tools, simulations of confined compaction on the same microstructure of the used specimen were performed on Abaqus®/Explicit. Beam finite elements were chosen to model the fibers and optimise the calculation cost. The normal contact behaviour between the fibers were was accurately modelled using the contact stiffness scaling and referring to Hertz contact model. The simulation strategy has been validated by comparing the mechanical response of the compaction experiment with the numerical one. The proposed model offers encouraging results in accordance with the real compaction test. More loading trajectories will be performed on a bundle of hundreds of fibers to gather more information on the microscopic scale (fiber scale), and then formulate a mechanical behaviour at the mesoscopic scale (yarn scale)
Tabatabai, Seyed Mohammad Reza. "Finite element-based elasto-plastic optimum reinforcement dimensioning of spatial concrete panel structures /." Basel ; Boston ; Berlin : Birkhäuser, 1996. http://e-collection.ethbib.ethz.ch/show?type=incoll&nr=815.
Full textBooks on the topic "Reinforcement of structural elements"
Branco, Jorge, Philipp Dietsch, and Thomas Tannert, eds. Reinforcement of Timber Elements in Existing Structures. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67794-7.
Full textFehl, Barry D. Use of reinforcement in a nonlinear, incremental structural analysis. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1995.
Find full textKeller, Thomas. Use of fibre reinforced polymers in bridge construction. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2003. http://dx.doi.org/10.2749/sed007.
Full textP, Kamat Manohar, ed. Elements of structural optimization. The Hague: M. Nijhoff, 1985.
Find full textBerg, Glen V. Elements of structural dynamics. Englewood Cliffs, N.J: Prentice Hall, 1989.
Find full textZafer, Gürdal, and Kamat Manohar P, eds. Elements of structural optimization. 2nd ed. Dordrecht: Kluwer Academic Publishers, 1990.
Find full textHaftka, Raphael T. Elements of structural optimization. 3rd ed. Dordrecht: Kluwer Academic Publishers, 1992.
Find full textHaftka, Raphael T. Elements of Structural Optimization. Dordrecht: Springer Netherlands, 1990.
Find full textBook chapters on the topic "Reinforcement of structural elements"
Bertolini-Cestari, Clara, and Tanja Marzi. "Nanocomposites as Reinforcement for Timber Structural Elements." In RILEM State-of-the-Art Reports, 79–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67794-7_5.
Full textSai Venkata Ramanjaneyulu, V., and G. Papa Rao. "Behaviour of RC Structural Elements with Laced Reinforcement." In Lecture Notes in Civil Engineering, 817–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0362-3_66.
Full textDeluce, J., S. C. Lee, and F. J. Vecchio. "Crack Formation in FRC Structural Elements Containing Conventional Reinforcement." In High Performance Fiber Reinforced Cement Composites 6, 271–78. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2436-5_33.
Full textDietsch, Philipp, and Andreas Ringhofer. "Self-tapping Screws as Reinforcement for Structural Timber Elements." In RILEM State-of-the-Art Reports, 7–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67794-7_2.
Full textKasal, Bo, and Libo Yan. "Fiber-Reinforced Polymers as Reinforcement for Timber Structural Elements." In RILEM State-of-the-Art Reports, 51–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67794-7_4.
Full textJockwer, Robert, and Erik Serrano. "Glued-in Rods as Reinforcement for Timber Structural Elements." In RILEM State-of-the-Art Reports, 29–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67794-7_3.
Full textTannert, Thomas, Philipp Dietsch, and Jorge Branco. "Reinforcement of Timber Elements in Existing Structures." In RILEM State-of-the-Art Reports, 1–6. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67794-7_1.
Full textThulin, Frederick A., and John D. Brock. "Structural Evaluation of Cold-Formed Sheet Steel Concrete Reinforcement Using Finite Elements and Tests." In Computational Mechanics ’86, 965–71. Tokyo: Springer Japan, 1986. http://dx.doi.org/10.1007/978-4-431-68042-0_139.
Full textFloss, R. "Reinforcing Elements in Steep Slopes and Vertical-Faced Earth Structures — German State of the Art." In The Application of Polymeric Reinforcement in Soil Retaining Structures, 561–67. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1405-6_22.
Full textDritsos, Stephanos, and Dimitrios Baros. "Modification and Strengthening of a Characteristic Reinforced Concrete Building in Patras, Greece." In Case Studies on Conservation and Seismic Strengthening/Retrofitting of Existing Structures, 21–41. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2020. http://dx.doi.org/10.2749/cs002.021.
Full textConference papers on the topic "Reinforcement of structural elements"
Zhelyazov, Todor. "Finite Element Modelling of FRP – Strengthened Structural Elements." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0752.
Full textDel Giudice, Lorenzo, Rafal Wrobel, Antonios Katsamakas, Christian Leinenbach, and Michalis Vassiliou. "CYCLIC TESTING OF 1:40 SCALE CANTILEVER RC ELEMENTS WITH DIGITALLY MANUFACTURED REINFORCEMENT." In 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2021. http://dx.doi.org/10.7712/120121.8545.18965.
Full textAlves, Ricardo Valeriano, Mayra Soares Pereira Lima Perlingeiro, and Flávia Moll de Souza Judice. "Structural Restoration and Reinforcement of Desengano Bridge." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1584.
Full textSlaitas, Justas, and Juozas Valivonis. "Crack parameters in normal section of FRP strengthened RC elements." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.028.
Full textGosain, Narendra. "Repair of Concrete Elements Using Externally Bonded Reinforcement: 30 Year History." In Structures Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41031(341)218.
Full textOsman Letelier, Juan Pablo, Alex Hückler, and Mike Schlaich. "Application of Prestressed CFRP Textiles for the Development of Thin- Walled Concrete Structural Elements." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0102.
Full textKHOMWAN, N., and S. J. FOSTER. "FE MODELLING OF FRP-REPAIRED RC PLANE STRESS ELEMENTS." In Proceedings of the Sixth International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS–6). World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812704863_0113.
Full textTANN, D. B., P. DAVIES, and R. DELPAK. "A REVIEW OF DUCTILITY DETERMINATION OF FRP STRENGTHENED FLEXURAL RC ELEMENTS." In Proceedings of the Sixth International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS–6). World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812704863_0031.
Full textShin, In-Seob, Jae-Yong Park, Seog-Young Han, and Timothy C. Kennedy. "Topology Optimization of the Inner Reinforcement for a Vehicle’s Hood Using Evolutionary Procedure." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84322.
Full textBabu, C. Ramesh. "Technical note on using CNTs as reinforcements in reinforced concrete structural elements." In INTERNATIONAL CONFERENCE ON FUNCTIONAL MATERIALS, CHARACTERIZATION, SOLID STATE PHYSICS, POWER, THERMAL AND COMBUSTION ENERGY: FCSPTC-2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4990225.
Full textReports on the topic "Reinforcement of structural elements"
Rickard, N. D. STRUCTURAL DESIGN CRITERIA FOR REPLACEABLE GRAPHITE CORE ELEMENTS. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/10197186.
Full textJourneay, J. M., and J. van Ulden. Neogene structural elements of northern Cascadia, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209503.
Full textHerrmann, George. Mechanical Response of Structural Elements to Dynamic Loads. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada209827.
Full textHamins, Anthony, Alexander Maranghides, Kevin B. McGrattan, Erik L. Johnsson, Thomas J. Ohlemiller, Michelle K. Dennelly, Jiann C. Yang, et al. Experiments and modeling of structural steel elements exposed to fire. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-5bv1.
Full textChen, Bing C., Weiya Zhang, David Johnson, Manoj Thota, Zhen Wu, Kon-Well Wang, Soobum Lee, and Fabio Semperlotti. Adaptable Structural Logic System Synthesis with Bistable Snap-Through Elements. Fort Belvoir, VA: Defense Technical Information Center, December 2012. http://dx.doi.org/10.21236/ada574780.
Full textDeAnna, Dixon, and Hodo Wayne. Finite element analysis of quoin block deterioration and load transfer mechanisms in miter gates : pintle and pintle connections. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40842.
Full textLeland, Robert W. Comparative Study of Hexahedral and Tetrahedral Elements for Non-linear Structural Analysis. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/1331497.
Full textDurling, P., and F. Marillier. Stratigraphy and structural elements of the Cumberland Basin from seismic reflection data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/208198.
Full textHamins, Anthony, Alexander Maranghides, Kevin B. McGrattan, Erik L. Johnsson, Thomas J. Ohlemiller, Michelle K. Dennelly, Jiann C. Yang, et al. Experiments and modeling of structural steel elements exposed to fire (Appendices D-G). Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-5bv2.
Full textDurling, P., and F. Marillier. Structural elements of the Magdalen Basin, Gulf of St. Lawrence, from seismic reflection data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/134281.
Full text